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1 Introduction
In 1982, Richard Hamilton introduced the Ricci flow equation to homogenize metrics on a
manifold [3]. He successfully used the Ricci flow to produce an other proof of the Poincaré
conjecture in two dimensions. Unfortunately, the three dimensional case appeared more difficult
and he was unable finish the proof. In 2002, Perelman successfully showed the conjecture by
using Hamilton’s concept of surgery for the Ricci flow.

We first review the key concepts of differential geometry: manifolds, (co)tangent bunde,
metrics, connections, curvature, Lie derivative, as well as a brief word on space-time manifolds.
This last concept is fundamental to define Ricci flow with surgery, although it will not be
presented it here.

Instead, we develop the proof of the local existence for the Ricci flow equation via deTurck’s
trick [2] in the form presented later on by Hamilton [4]. In short, the idea is to couple the
Ricci flow equation to remove the diffeomorphism invariance and obtain a parabolic equation,
called Ricci-deTurck equation, from which one can retrieve a solution to the Ricci flow equation.
For uniqueness, introducing the harmonic map Laplacian allows us to go from the Ricci flow
equation to the Ricci-deTurck equation where in the latter setting the uniqueness is established.

Then, we look at well-known solutions, called solitons, given by self-similar manifolds. Typ-
ically, these solutions go beyond the local existence and may be classified in the three types:
shrinking, steady and expending; some concrete examples of solitons will be given for each type.

The work is organized as follows: Section 2 prepares the framework for the Ricci flow equa-
tion. Section 3 introduces the Ricci flow equation and present the proof of the local existence
of the solutions. Finally, Section 4 discusses the solitons and gives explicit examples.

2 Elements of differential geometry
This section provides a concise introduction to differential geometry based on the book [5], by
presenting the following notions: manifolds, tangent/cotangent bundle, metrics, connections,
curvature, Lie derivative and space-time manifold.

2.1 Manifold, tangent and cotangent bunde

A n-manifold M is an abstract object which locally looks like the Euclidean space Rn, that is to
say

• there are open sets Uλ yielding a covering of M ;

• ϕλ : Uλ → ϕλ(Uλ) ⊂ Rn are homeomorphisms.

1
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Locally, this gives to M all the nice features of Rn, in particular M is locally metrizable.
However, M might not be globally metrizable. This is an issue if we try to define objects over
the whole manifold. As a matter of fact, we use partitions of unity to pass from local geometry
to global geometry.

It is sufficient to require the following two properties:

• M is second-countable;

• M is Hausdorff.

Indeed, since every point has a neighbourhood that is homeomorphic to some open subset
of Rn, so since Rn is locally compact, every manifold is locally compact and a locally compact
Hausdorff space is (completely) regular.

Finally, the fact that M is second-countable means that there exists a countable basis for
the topology of M and by Urysohn metrization theorem we know that a regular space with a
countable base is metrizable.

Furthermore, since we are interested in developing calculus on manifolds, we add a smooth
structure to M :

for all α, β, the map ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ) is C∞.

The diffeomorphisms ϕλ provides local coordinates and the pair (Uλ, ϕλ) is referred as a local
chart. Altogether, (ϕλ)λ is an atlas of the manifold.

If we consider M to be a surface, it is clear that the tangent space at a point p ∈M is given
by all the velocity vectors at a point p. In fact, it is the quotient space of the set of curves on
M passing through p with the equivalence relation: γ1 ∼ γ2 if and only if they have the same
velocity vector at p.

Since the velocity vectors are independent of the choice of the curve, we can view tan-
gent vectors as directional derivatives on functions f ∈ C∞(Rn,R), that is X is an operator
C∞(Rn,R)→ R defined by

(Xf)p = d

dt

∣∣∣∣
t=0

f ◦ γ(t), where γ(0) = p, γ̇(0) = Xp.

One can then show that the set of all the velocity vectors at a point p and TpRn are isomor-
phic.

We call these maps derivations and the set of all of them at a point p is denoted by TpM .
Note that they satisfy the product rule X(fg) = gXf + fXg, so for an arbitrary manifold a
derivation X ∈ TpM is a map C∞(M,R)→ R satisfying the product rule.

Then, we consider the push-forward f∗ : TpM → Tf(p)N of a smooth map f : M → N , where
M and N are smooth manifolds, defined by

(f∗X)g = X(g ◦ f).

We can now relate what we know from Rn to a n-dimensional smooth manifold M : if ϕ is a
local chart, then ϕ∗ : TpM → Tϕ(p)Rn is an isomorphism.

To summarize the ideas:

Definition 2.1 (Tangent and cotangent space). The tangent space TpM at a point p of a
manifold M is the set of all derivations, that is to say all maps X : C∞(M,R) → R satisfying
X(fg) = gXf + fXg.

In local coordinates ϕ = (x1, . . . , xn), the tangent space admits the basis
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∂

∂xi

∣∣∣∣
p

def= (ϕ−1)∗
∂

∂xi

∣∣∣∣
ϕ(p)

.

The set TM def=
⋃
p∈M

TpM defines the tangent bundle, from which TpM is a fibre. We denote

by T (M) the smooth section of TM , in other words, T (M) is the set of vector fields over M .
The dual of tangent space (TpM)∗ def= T ∗pM is called the cotangent space. Given local coor-

dinates (x1, . . . , xn), it is characterized by the relation(
(xi)∗

∂

∂xj

∣∣∣∣
p

)
id = ∂

∂xj

∣∣∣∣
p

id ◦ xi = δij ,

which yields the basis

dx1|p, . . . , dxn|p, where dxi(•) def=
(
(xi)∗•

)
id : T ∗pM → R.

The set T ∗M def=
⋃
p∈M T ∗pM is the cotangent bundle, from which T ∗pM is a fibre.

2.2 Metrics and connections

We know wish to add an additional object to our smooth manifold M : the metric. The purpose
is to define an inner product for TpM , so that we can do introduce some geometry (i.e. angle,
distances,...).

Definition 2.2 (Metric). A Riemannian metric on a smooth manifold M is a continuous map g
ofM in the set of symmetric positive definite bilinear form on TpM . In other words, g associates
to each p ∈M an inner product of TpM . Thus, g is a (0, 2)-tensor.

In local coordinates (x1, . . . , xn), given X,Y ∈ TpM , we have

g(X,Y ) = g(∂i, ∂j)XiY j =⇒ g = gijdx
i ⊗ dxj , where gij

def= g(∂i, ∂j).

We denote by gij := (g−1)ij the components of the inverse of g.
Moreover, consider the isomorphism TpM ' T ∗pM given by v 7→ g(v, ·). Let (ei) be a local

basis of TpM and (εi) a local basis of T ∗pM . Then, the representation of v = viei ∈ TpM in the
dual space is given by g(v, ·) = viε

i ∈ T ∗pM such that:

vi = g(v, ei) = vjg(ej , ei) = vjgji and vi = vkgkjg
ji = vjg

ji.

Lemma 2.3. We have the following properties:

1. Given a manifold M and a Riemannian manifold (N, gN ) together with a smooh map
f : M → N , we can define a metric on M by the pull-back f∗:

(f∗gN )(X,Y ) def= gN (f∗X, f∗Y ).

2. Moreover, every smooth manifold admits a Riemannian metric.

Idea of the proof. The first property is straightforward from the definition; for the second, use
a partition of unity.

Velocity vectors evolve in a priori very different tangent fibres. As a result, the acceleration
cannot be computed as we did for the velocity (all positions belonged to the same space). To
fix this, we introduce the notion of connections to link bundles (we will in particular consider
the tangent bundle).
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Definition 2.4 (Affine connection). An affine connection ∇ is a map ∇ : T (M) × T (M) −→
T (M) satisfying

1. (Left linearity) for f, g ∈ C∞(M,R), ∇fX1+gX2Y = f∇X1Y + g∇X2Y ;

2. (Right R-linearity) for a, b ∈ R, ∇X(aY1 + bY2) = a∇XY1 + b∇XY2;

3. (Right Leibnitz-linearity) for f ∈ C∞(M,R), ∇X(fY ) = (Xf)Y + f∇XY .

For a general (0, k)-tensor field τ and Y1, . . . , Y ∈ T (M), we have

(∇Xτ)(Y 1, . . . , Y k) =X
(
τ(Y 1, . . . , Y k)

)
− τ(∇XY 1, Y 2, . . . , Y k)− . . .

. . .− τ(Y 1, . . . , Y k−1,∇XY k).

Lemma 2.5. Let ∇ be an affine connection on M , p ∈ M and X,Y ∈ T (M). The quantity
∇XY (p) depends only on X(p) and Y in a neighbourhood of p. Moreover, in local coordinates,

∇XY = (XY k +XiY jΓkij)∂k, where Γkij∂k
def= ∇∂i∂j .

Consequently,

1. for any manifold, there exists an affine connection.

2. there is a unique operator Dt : T (γ)→ T (γ), where T (γ) is the space of vector field along
a curve γ, satisfying

(a) (R-linearity) Dt is linear;
(b) (Leibnitz-linearity) for f ∈ C∞(I,R), Dt(fV ) = ḟV + fDtV ;
(c) (Compatibility with ∇) for V ∈ T (γ) with extension Ṽ ∈ T (M), DtV (t0) = ∇γ̇(t0)(Ṽ ◦

γ)(t0) for all t0 ∈ I.

Sketch of the proof. Let p ∈ M and X1, X2, Y1, Y2 ∈ T (M). If X1 = X2 and Y1 = Y2 on a
neighbourhood of p, then

∇X1Y1(p) = ∇X2Y2(p).

This implies that ∇XY (p) depends only on X and Y in a neighbourhood of p. Given a
system of coordinates, and supposing X(p) = 0, we have

∇XY (p) = ∇Xi∂iY (p) = Xi(p)∇∂iY (p) = 0.

The formula in local coordinates is obtained by unravelling the definitions, and the existence
of the affine connection on M follows by using a partition of unity.

Finally, let t0 ∈ I and consider a local basis for the tangent space in a neighbourhood of
γ(t0) a vector field V along a curve γ is written as Ṽ = Ṽ i∂i. The unicity and existence follows
by studying

DtV = ∇γ̇(Ṽ ◦ γ)

=
(
γ̇(Ṽ ◦ γ)k + γ̇i(Ṽ ◦ γ)kΓkij

)
∂k

=
(
γ̈k + γ̇j γ̇i(γkij ◦ γ)

)
∂k.
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This last Lemma tells us something fundamental: ∇ is determined by the Christoffel sym-
bols Γkij which should be understood in the same spirit as an operator in linear algebra: it is
determined by its action over the basis vectors.

On might wish to obtain a connection close to the one of Rn, that is to say ∇g ≡ 0.

Definition 2.6 (Levi-Civita connection). A Levi-Civita connection is an affine connection ∇
satisfying

1. (Compatibility with the metric) for any X ∈ T (M), ∇Xg = 0;

2. (Symmetry) for X,Y ∈ T (M), [X,Y ] = ∇XY −∇YX, where the latter is the Lie bracket,
defined as [X,Y ]pf

def= Xp(Y f)− Yp(Xf).

Lemma 2.7. For any Riemannian manifold, there exists a unique Levi-Civita connection. More-
over, in local coordinates, we have

Γkij = 1
2g

sk(∂jgsi + ∂igsj − ∂sgij).

Sketch of the proof. Using the definitions, one can show

(Z,∇YX) = 1
2(X(Y,Z) + Y (Z,X)− Z(X,Y ) + ([X,Z], Y )− ([Y, Z], X)− ([X,Y ], Z)).

Since this is independent of ∇, this equality uniquely determine ∇XY . In particular, this
identity yields

(∂s,∇∂i∂j) = Γkijgsk = 1
2(∂jgsi + ∂igsj − ∂sgij),

which shows the existence.

The covariant derivative allows us to define the Hessian of a smooth function at any point,
not just a critical point.

Definition 2.8 (Gradient, Hessian, Laplacian). Let f : M → R be a smooth function and ∇
denote the Levi-Civita connection.

From Definition 2.4, the gradient of f is

∇•f = df(•) = f∗(•)id (cf. Definition 2.1),

that is

∇Xf = df(X) = Xf, for X ∈ T (M).

The hessian of f is

Hess(f)(X,Y ) = ∇X(∇Y f) = X(Y f)− (∇XY )(f) = g(∇X(∇f), Y ),

and in local coordinates, df = ∂kfdx
k and ∇(dxk) = −Γkijdxi ⊗ dxj, yielding

Hess(f)ij = ∂i∂jf − (∂kf)Γkij .

The Laplacian of f is

∆f = Hess(f)ii.

The gradient is a (0, 1)-tensor and the hessian is a symmetric (0, 2)-tensor over C∞(M,R)
functions.
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2.3 Curvature

The Riemannian tensor measures the non commutativity of second derivatives:

Definition 2.9 (Riemann tensor). The Riemann curvature tensor is a (1, 3)-tensor R defined
by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

or in local coordinates (xi)

R = R l
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂l, where R(∂i, ∂j)∂k = R l
ijk ∂l.

More precisely,

R l
ijk = ∂jΓlik − ∂iΓljk + ΓmikΓljm − ΓmjkΓlim.

If Π ⊂ TpM is a 2-plane, the sectional curvature is the contraction of the Riemann tensor:

K(Π) = g(R(∂1, ∂2)∂2, ∂1).

The Ricci curvature tensor is a (0, 2)-tensor obtained by taking the contraction of the second
and fourth indices of the Riemann tensor:

Ricij = Ric(∂i, ∂j)
def= R k

ikj = gpqRipjq, Ric = Ric(∂i, ∂j)dxi ⊗ dxj .

2.4 Lie derivative

The idea behind the Lie derivative, is to generalize the notion of directional derivatives for vector
fields in Rn.

Definition 2.10 (Lie derivative). Given a covariant tensor field τ on M , we define the Lie
derivative of τ with respect to X ∈ T (M) as

(LXτ)(p) =
(
d

dt

∣∣∣∣
t=0

(θt)∗τ
)

(p) = lim
t→0

(θt)∗τθt(p) − τp
t

,

where θt is the flow of X.

We quote without proof elementary results of the Lie derivative (cf. Chapter 13 in [5] for
more details).

Lemma 2.11. The Lie derivative takes the form:

1. for f ∈ C∞(M,R) (i.e a 0-tensor), LXf = Xf ;

2. for Y ∈ T (M) (i.e a (0, 1)-tensor), LXY = [X,Y ].

3. for a general (0, k)-tensor τ on M and any vector fields Y1, . . . , Yk,

(LXτ) (Y1, . . . , Yk) = X (τ(Y1, . . . , Yk))− τ(LXY1, Y2, . . . , Yk)− . . .− τ(Y1, . . . , Yk−1,LXYk).

We conclude this section by showing a property that will be useful in the proof of local
existence of the Ricci flow.



2 ELEMENTS OF DIFFERENTIAL GEOMETRY 7

Lemma 2.12. Let (M, g) be a Riemannian manifold and ∇ denote the Levi-Civita connection
of the metric g. For any vector field X, we have

(LXg)ij = ∇iXj +∇jXi.

Proof. Let X,Y ∈ T (M) and define X[ = g(X, ·). We compute

LXg(Y,Z) = X(g(Y,Z))− g(LXY,Z)− g(Y,LXZ)
= g(∇XY, Z) + g(Y,∇XZ)− g([X,Y ], Z)− (Y, [X,Z])
= g(∇XY − [X,Y ], Z) + g(Y,∇XZ − [X,Z])
= g(∇YX,Z) + g(Y,∇ZX)
= Y (g(X,Z))− g(X,∇Y Z) + Z(g(Y,X))− g(∇ZY,X)
= Y (X[(Z))− g(X,∇Y Z) + Z(X[(Y ))− g(∇ZY,X)
= (∇YX[)(Z) + (∇ZX[)(Y ).

2.5 Space-time

This section introduces formally the notion of space-time manifold. It is an essential concept if
one wants to define the Ricci flow with surgery, however we will not address this concept in this
report.

Definition 2.13. A space-time manifold is a smooth n+ 1-dimensional manifold M (possibly
with boundary) equipped with a time coordinate t :M→ R and a time vector field Xt ∈ T (M)
such that:

1. t(M) is a possibly infinite interval and the boundary ofM is the preimage under t of the
boundary of t(M);

2. for each p ∈ M, there is an open neighbourhood U ⊂ M of p and a diffeomorphism
f : U → V × J where V is an open subset of Rn and J an interval;

3. t = πJ ◦ f , where πJ is the projection of V × J onto J ;

4. Xt is the image under f−1 of the unit vector field in the positive direction tangent to the
foliation by {v} × J of V × J , i.e Xt = (f−1)∗∂t.

Remark 2.14. 1. We have

Xt(t) = ((f−1)∗∂t)(t) = ∂t(t ◦ f−1) = ∂t(πJ) = 1.

2. The level sets of the time coordinate t are smooth n-dimensional manifolds whose tangent
bundle is a section of ker dt ⊂ TM which is a n-dimensional subbundle. Likewise, the
metrics g(t) are a section of ((ker dt)∗)⊗2.

Since Xt preserves the horizontal foliation, we can form the Lie derivative of a horizontal
metric with respect to Xt.
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3 Local existence of the Ricci flow
A n-dimensional generalized Ricci flow is a one-parameter family (M(t), g(t)) satisfying{

LXtg = −2 Ric(g),
(M(0), g(0)) = (M0, g0).

(1)

Lemma 3.1. For a space-time cylinderM = M × I, the Ricci flow equation reads

∂

∂t
g = −2 Ric g.

Proof. In this context, Xt = ∂/∂t, and since L∂t∂k = [∂t, ∂k] = 0, we obtain

LXtg(∂i, ∂j) = ∂

∂t
gij − g(L∂t∂i, ∂j)− g(∂i,L∂t∂j) = ∂

∂t
g(∂i, ∂j).

The importance of (1) is that the topology of M is allowed to change. This allows surgery
on the Ricci flow, a concept first introduced by Hamilton. For further readings, refer to [6].

For the purpose of this report, we will not treat this notion. In fact, we will always consider
the settings of Lemma 3.1.

Thus, given a fixed background manifold M , we are looking for a one-parameter family of
metrics g(t) solving {

∂
∂tg = −2 Ric(g),
g(0) = g0.

(2)

To better understand the meaning of the Ricci flow equation, it is useful to consider harmonic
coordinates (x1, . . . , xn) about p, that is to say ∆xi = 0 for all i.

Lemma 3.2 (Lemma 3.32, [1]). In harmonic coordinates (x1, . . . , xn), the Ricci flow equation
(2) becomes

∂

∂t
gij = ∆(gij) +Qij(g−1, ∂g), (3)

where Q denotes a sum of terms which are quadratic in the metric inverse g−1 and its first
derivatives ∂g.

Sketch of the proof. Given a point p ∈ M , we wish to prove the existence of harmonic coordi-
nates. In geodesic coordinates (i.e. Γkij = 0), by Definition 2.8 it follows that ∆x = ∂i∂ix = 0
and by the theory on elliptic PDEs we have obtained our set of coordinates.

Then,

−2 Ricjk = −2 Rmq
qjk

= −2
(
∂qΓqjk − ∂jΓ

q
qk + ΓpjkΓ

q
qp − ΓpqkΓ

q
jp

)
= −∂qgqr(∂jgkr + ∂kgjr − ∂rgjk) + ∂jg

qr(∂qgkr + ∂kgqr − ∂rgqk) + ΓpjkΓ
q
qp − ΓpqkΓ

q
jp

= gqr(∂q∂rgjk − ∂q∂kgjr + ∂j∂kgqr − ∂j∂rgqk) +Qij(g−1, ∂g)

= ∆(gjk)− gqr
(
∂k
(
Γsqrgsj

)
+ ∂j

(
Γsqrgsk

))
+Qij(g−1, ∂g)

= ∆(gjk) +Qij(g−1, ∂g).
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Morally, this lemma shows that the Ricci flow equation (2) is the heat equation for metrics.
To prove the short-time existence of Ricci flows, we recall the definition of parabolic equa-

tions:

Definition 3.3 (Principal symbol and parabolic PDEs). Let E,F be bundles over a manifold
M and Γ(E) a smooth section of E.

The principal symbol, denoted σ̂, of a differential operator P : Γ(E)→ Γ(F ) in the direction
ξ ∈ Γ(E) is defined to be the bundle homomorphism:

σ̂[DP (u0)](ξ) =
∑
|α|=k

DPα(u0)ξα,

where u0 ∈ Γ(E) is a given solution and DP : Γ(E) → Γ(F ) is the linearisation of P at u0
defined by

DP |u0(v) = ∂

∂t

∣∣∣∣
t=0

P (u(t)),

where u(0) = u0 and u′(0) = v.
A differential operator P of order 2m is elliptic if for every ξ, v ∈ Γ(E) there exists c > 0

such that

g(σ̂[DP (u0)](ξ), v) ≥ c|ξ|2m|v|2.

A linear equation ∂tu = Pu is parabolic if DP is elliptic.

Lemma 3.4. Suppose g(t) is a one-parameter family of metrics on M such that ∂
∂tg = h. Then,

the linearisation of the Ricci curvature tensor is

[DRic(g)(h)]ik = 1
2g

jp (∇j∇khip −∇i∇khjp +∇j∇ihkp −∇j∇phik) ,

so the principal symbol is

σ̂[DRic(g)(h)ik](ξ) = 1
2g

jp (ξjξkhip − ξiξkhjp + ξjξihkp − ξjξphik) .

Proof. Recall the local expression of the Riemann tensor given in Definition 2.9. In geodesic
coordinates, i.e. Γkij(p) = 0, we obtain

∂

∂t
R l
ijk = ∂

∂t
(∂jΓlik − ∂iΓljk) +

((
∂

∂t
Γmik
)

Γljm + Γmik
(
∂

∂t
Γljm

))
−
((

∂

∂t
Γmjk

)
Γlim + Γmjk

(
∂

∂t
Γlim

))
= ∂

∂t
(∂jΓlik − ∂iΓljk).

Then,

∂

∂t
Γkij = 1

2

(
∂

∂t
gkl
)

(∂jgil + ∂igjl − ∂lgij) + 1
2g

kl ∂

∂t
(∂jgil + ∂igjl − ∂lgij)

= 1
2g

kl ∂

∂t
(∇jhil +∇ihjl −∇lhij),

where we used ∂jgil + ∂igjl − ∂lgij = 0 and the commutativity of the differentials as well as the
fact that ∇j∂i = 0 to obtain the last equality.

Hence,
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∂j

(
∂

∂t
Γlik
)

= 1
2∂jg

lp (∇khip +∇ihkp −∇phik) + 1
2g

lp (∂j(∇khip +∇ihkp −∇phik))

= 1
2g

lp (∇j∇khip +∇j∇ihkp −∇j∇phik) .

Consequently,

∂

∂t
R l
ijk = 1

2g
lp (∇j∇khip +∇j∇ihkp −∇j∇phik −∇i∇khjp −∇i∇jhkp +∇i∇phjk) ,

and the desired result follows by contraction:

∂

∂t
Ricik = ∂

∂t
R j
ijk

= 1
2g

jp (∇j∇khip −∇i∇khjp +∇j∇ihkp −∇j∇phik) .

Firstly, let us be cautious that (3) does not make the Ricci flow a strongly parabolic equation.
Indeed, there is no reason for harmonic coordinates to remain harmonic at latter time.

Moreover, the Ricci flow equation (1) is invariant under diffeomorphisms: given any diffeo-
morphism Φ : M →M and a Ricci flow g(t), we have

∂

∂t
Φ∗gt = −2 Ric(Φ∗gt).

It can be shown that the diffeomorphism invariance of the Ricci flow equation breaks the
parabolicity (cf. Chapter 3 in [1] for more details). Hence, the strategy is to couple the Ricci
flow equation with an evolving diffeomorphism.

While the proof of existence does not require any more tool than the one already introduced,
the uniqueness requires one more operator:

Definition 3.5 (Harmonic map Laplacian). Let (M, g), (N,h) be two Riemannian manifolds
and let f : M → N be a smooth map. The harmonic map Laplacian is

∆g,hf
def= gij(∇∂if∗)(∂j).

It is constructed as follow. The pull-back bundle f∗TN over M of TN by f is the smooth
vector bundle defined by

f∗TN = {(p, ξ) : p ∈M, ξ ∈ TN, π(ξ) = f(p)}.

The restriction Xf of X ∈ T (N) to f is a smooth section of f∗TN given by

Xf (p) = X(f(p)), ∀p ∈M.

Then, f∗(p) : TpM → Tf(p)N = (f∗TN)p, that is f∗(p) ∈ T ∗pM ⊗ (f∗TN)p, so f∗ is a smooth
section of T ∗M ⊗ f∗TN .

Let (xi) be local coordinates on M about p and (yα) be local coordinates on N about f(p),
such that fα = yα ◦ f . Thus,

f∗(p) =
(
∂

∂xi

∣∣∣∣
p

fα
)
dxi|p ⊗

∂

∂yα

∣∣∣∣
f(p)

, that is f∗ = (∂ifα) dxi ⊗ (∂α)f .
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Let ∇(M,g),∇(N,h) be the connections on TM and TN respectively. Moreover, the pull-back
connection f∇(N,h) on f∗TN is the connection satisfying

f∇(N,h)
X Yf = ∇(N,h)

f∗X
Y, X ∈ T (M), Y ∈ T (N),

and is determined by the Christoffel symbols

f∇(N,h)
∂i

(∂α)f = (∂ifβ)∇(N,h)
(∂β)f ∂α = ∂if

β(Γ(N,h))γβα(∂γ)f , that is (fΓ(N,h))γiβ = ∂if
α(Γ(N,h))γαβ.

Then, there is an induced connection ∇ on T ∗M ⊗ f∗TN over M satisfying

∇X(ξ ⊗ Y ) = ∇(M,g)
X (ξ)⊗ Y + ξ ⊗ (f∇(N,h)

X Y ).

Then,

(∇∂if∗)(∂j) = ∇∂i
[
(∂kfα) dxk ⊗ (∂α)f

]
(∂j)

=
[(
∇(M,g)
∂i

dxk
)
⊗ ∂kfα(∂α)f + dxk ⊗

(
f∇(N,h)

∂i
∂kf

α(∂α)f
)]

(∂j)

= −(Γ(M,g))kij∂kfα(∂α)f + ∂i∂jf
α(∂α)f + ∂jf

α∂if
β(Γ(N,h))γαβ(∂γ)f

=
(
∂

∂xi
∂

∂xj
fα − (Γ(M,g))kij

∂

∂xk
fα + ∂

∂xi
fβ

∂

∂xj
fγ(Γ(N,h))αγβ

)
(∂α)f ,

and the harmonic map is obtained by taking the trace.

Lemma 3.6 (Local existence). Let (M, g) be a compact Riemannian manifold with no boundary.
There exists 0 < T ≤ +∞ and a unique solution g(t) to the Ricci flow equation (2) for all
t ∈ [0, T ).

Proof. The proof is done as follow: we compensate the Ricci flow equation with a vector field
W to obtain a strongly parabolic equation called the Ricci-de Turck equation. Then, we obtain
a diffeomorphism Φt : M → M such that its pull-back on the solution of the Ricci-de Turck
equation, in fact gives us a solution for the Ricci flow equation.

To establish the uniqueness, we prove that if we have a solution of the Ricci flow equation,
we can define a diffeomorphism Φt using the harmonic map Laplacian such that we obtain a
solution to the Ricci-de Turck equation. Then, we have the uniqueness of the diffeomorphism
to conclude.

Existence

Let g̃ be some fixed metric on M , and define

W k = gpq(Γkpq − Γ̃kpq). (4)

Consider the Ricci-de Turck equation given by

∂tg = Q(g) = −2 Ric(g) + LW g. (5)

We first rewrite the linearisation obtained in Lemma 3.4 in the form

−2[DRic(h)]ik = ∆hik + gpq(∇i∇khqp −∇q∇ihkp −∇q∇khip)
= ∆hik −∇iVk −∇kVi + Sik,
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where

Vk = gpq(∇qhpk −
1
2∇khpq),

∇iVk = gpq(∇i∇qhpk −
1
2∇i∇khpq,

Sik = gpq(2R r
qik hrp −Riphkq −Rkphip).

Then, by Lemma 2.12 we know that (LW g)ij = ∇iWj +∇jWi from which we deduce

[DLW (h)]ik = ∇iVk +∇kVi + Tik,

where Tik is a linear first order expression in h.
It follows that

[DQ(h)]ik = ∆hik + Tik − Sik =⇒ σ̂[DQ(h)](ξ) = |ξ|2h,

which imply that the Ricci-deTurck equation (5) is parabolic.
Consequently, for any smooth initial metric g0 there exists T > 0 such that g(t) is a smooth

unique solution to (5) for all t ∈ [0, T ). Note that this implies in turn the existence of a
one-parameter family of vector fields W (t) as defined in (4) for the same time interval.

Hence, the ODE {
∂
∂tΦt(p) = −(W (t))Φt(p),

Φ0 = id,
(6)

has a unique solution (for more details cf. Lemma 12.9 and Lemma 12.11 in [5]), yielding a one
parameter family of diffeomorphisms Φt for all t ∈ [0, T ).

Thus, g(t) = Φ∗t g(t) is a solution to the Ricci flow equation since g(0) = g(0) = g0 and

∂

∂t
g = d

ds

∣∣∣∣
s=0

Φ∗t+sg(t+ s)

= Φ∗t
(
∂

∂t
g(t)

)
+ Φ∗t

d

ds

∣∣∣∣
s=0

Φ∗sg(t)

= Φ∗t (−2 Ric(g) + LW g) + Φ∗tL−W g
= −2Φ∗t Ric(g)
= −2 Ric(Φ∗t g)
= −2 Ric(g).

Uniqueness

We first show that a solution of the Ricci flow equation satisfies the Ricci-de Turck equation.
Let (M, g(t)) satisfy the Ricci flow equation and consider the Levi-Civita ∇̃ overM associated

with the metric g̃.
Let Φt be defined by

∂tΦt = ∆g,g̃Φt.

Then, g(t) = (Φ−1
t )∗g(t) solves the Ricci-deTurck equation. Indeed, following the same

development as before, we obtain
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∂

∂t
g = (Φ−1

t )∗
(
∂

∂t
g

)
+ LV g = −2 Ric(g) + LV g,

where V = −(∆g,g̃Φt)Φ−1
t
.

Let p ∈M and set (xi) to be the local coordinates near p and (yα) the ones near Φt(p) given
by yα = xα ◦ Φt. Then, gij = gij so Γkij = Γkij and we have

V (p) = −∆g(t),g̃Φt(Φ−1
t (p))

= −gij
(
∂

∂xi
∂

∂xj
Φα
t − Γkij

∂

∂xk
Φα
t + ∂

∂xi
Φβ
t

∂

∂xj
Φγ
t Γ̃αγβ

)
(∂α)Φt(Φ−1

t (p))

= −gij
(
∂

∂xi
∂

∂xj
xα − Γkij

∂

∂xk
xα + ∂

∂xi
xβ

∂

∂xj
xγΓ̃αγβ

)
∂α

= gij
(
Γkij − Γ̃kij

)
∂α

= W (p).

We are now ready to prove the uniqueness: suppose there are solutions g1(t), g2(t) of the
Ricci flow with g1(0) = g2(0). From the preceding result, we can obtain solutions g1(t), g2(t) of
the Ricci-deTurck equation such that g1(0) = g1(0) = g2(0) = g2(0). By uniqueness of solutions
of the Ricci-deTurck equation, g1(t) = g2(t) for all t in their common interval of existence.

Thus, W (t) defined by (4) is the same for the two solutions. Then, Φ(1)
t = Φ(2)

t since the
two diffeomorphisms Φ(1)

t ,Φ(2)
t generated by the harmonic map Laplacian satisfy the same ODE

given by (6).
Then,

g1 = (Φ(1)
t )∗g1 = (Φ(2)

t )∗g2 = g2

which proves the uniqueness.

4 Ricci solitons
A Ricci soliton is a Ricci flow (M, g(t)), 0 ≤ t < T ≤ ∞, with the property that for each
t ∈ [0, T ) there is a diffeomorphism Φt : M →M and a term σ(t) such that

g(t) = σ(t)Φ∗t g(0).

The following lemma gives a way to produce a Ricci soliton.

Lemma 4.1. Let X ∈ T (M), λ ∈ R and a metric g(0) such that

− Ric(g(0)) = 1
2LXg(0)− λg(0). (7)

Set T =∞ if λ ≤ 0 or T = (2λ)−1 if λ > 0, and define

σ(t) = 1− 2λt, ∀t ∈ [0, T ), Yt(x) = X(x)
σ(t) .

Let Φt be the one-parameter family of diffeomorphisms generated by the vector fields Yt.
Then, the flow (M, g(t)), 0 ≤ t < T , where g(t) = σ(t)Φ∗t g(0), is a soliton.
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Proof. We have

∂

∂t
g(t) = σ′(t)Φ∗t g(0) + σ(t)Φ∗tLY (t)g(0)

= Φ∗t (−2λ+ LX)g(0)
= Φ∗t (−2 Ric(g(0)))
= −2 Ric(Φ∗t (g(0))).

Since Ric(αg) = Ric(g) for any α > 0, it follows that

∂

∂t
g = −2 Ric(g).

An important class of solitons are the gradient solitons.

Lemma 4.2. Suppose we have a complete Riemannian manifold (M, g(0)), a smooth function
f : M → R, and a constant λ such that

−Ric(g(0)) = Hess(f)− λg(0).

Then there is a T > 0 and soliton (M, g(t)) called gradient soliton.

Sketch of the proof. One can prove L(∇f)]g(0) = 2Hess(f), from which we recover Equation (7)
with the vector field X = (∇f)], where ] : viei 7→ viei.

In particular, an Einstein manifold (M, g0), that is

Ric(g0) = λg0,

yields a gradient soliton.
By using the fact that the Ricci curvature tensor is invariant under rescaling, i.e. Ric(λg0) =

Ric(g0), the one parameter family g(t) = σ(t)g0 is a solution to the Ricci flow if

σ′(t)g0 = ∂

∂t
g(t) = −2 Ric(g(t)) = −2 Ric(g0) = −2λg0.

Hence, we recover the previous result

g(t) = (1− 2λt)g0.

One notes the following three cases:

1. (shrinking case) λ > 0: the solution shrinks to 0 in finite time, it exists up to t = 1/2λ;

2. (steady case) λ = 0: the solution is constant for all time;

3. (expanding case) λ < 0: the solution grows to infinity.
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4.1 Examples

We finish this report by giving some concrete examples of solitons.

Euclidean space

For the Euclidean space, the metric is gRn = δijdx
i⊗dxj , so R l

ijk = 0 and therefore Ric = 0.
Hence, g(t) = gRn at all time; it is a steady soliton.

Gaussian soliton

The Gaussian soliton (Rn, gRn , f = λ|x|2/4). It is a shrinking, steady, or expanding gradient
soliton if λ > 0,= 0, < 0 respectively.

Sphere

The two dimensional sphere has the metric g(t) = r2(t)gS2 = r2 (dθ⊗2 + sin2 θdφ⊗2) and we
can compute, using the invariance under rescaling of the Ricci curvature tensor, Ric(g(t)) =
Ric(gS2) = gS2 . Consequently, the Ricci flow equation reads

2rṙgS2 = −2gS2 =⇒ r(t) =
√

1− t.

Thus, we have a shrinking soliton.

Cylinder

For a cylinder S2 × R, we have the metric g0 = gS2 + gR. From the preceding examples, we
know that the solution is g(t) = (1− t)gS2 + gR.

Cigar soliton

The cigar soliton (R2, g0 = dx⊗2+dy⊗2

1+x2+y2 , (∇f)# = −2x∂x− 2y∂y). The flow Φt satisfies ∂
∂tΦt =

(∇f)#|Φt , that is

x′(t) ∂
∂x

∣∣∣∣
(x(t),y(t))

+ y′(t) ∂
∂y

∣∣∣∣
(x(t),y(t))

= −2x(t) ∂
∂x

∣∣∣∣
(x(t),y(t))

− 2y(t) ∂
∂y

∣∣∣∣
(x(t),y(t))

,

so Φt = (xe−2t, ye−2t), and by direct computation

(Φt)∗
∂

∂x

∣∣∣∣
p

= ∂

∂x

∣∣∣∣
p

(xe−2t) ∂
∂x

∣∣∣∣
Φt(p)

+ ∂

∂x

∣∣∣∣
p

(ye−2t ∂

∂x

∣∣∣∣
Φt(p)

= e−2t ∂

∂x

∣∣∣∣
(xe−2t,ye−2t)

,

(Φt)∗
∂

∂y

∣∣∣∣
p

= e−2t ∂

∂y

∣∣∣∣
(xe−2t,ye−2t)

.

Hence,

Φ∗t g0(∂x|p, ∂y|p) = e−4tg0(∂x|Φt(p), ∂y|Φt(p)) = 0,

Φ∗t g0(∂x|p, ∂x|p) = e−4t

1 + x2e−4t + y2e−4t = 1
e4t + x2 + y2 ,

Φ∗t g0(∂y|p, ∂y|p) = 1
e4t + x2 + y2 ,
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that is g(t) = Φ∗t g0 = dx⊗2+dy⊗2

e4t+x2+y2 . It is straightforward to check that this is indeed a solution to
the Ricci flow equation, yielding a steady soliton.

Rosenau soliton

The Rosenau soliton (S2, gα = 1
1−α2x2 gS2) where α ∈ [0, 1). It can be shown to converge

(in the sense of Cheeger-Gromov) to the cylinder (base points away from the ends) as α → 1.
Similarly, it converges to the cigar (base points near an end) as α→ 1.
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