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Notes on Cheeger Estimates and Nodal Sets of
the p-Laplacian

The p-Laplacian can be defined as a map ∆p : W 1,p →W−1,q where

〈∆pu, v〉 =

∫
|∇u|p−2∇u · ∇v.

The weak formulation of the p-Laplacian equation arises naturally as a varia-
tional problem; a solution is a minimizer of the energy functional

L(u) =

∫
Ω

|∇u|p.

Nonlinear eigenvalue problems for differential operators of this type can be for-
mulated as another type of variational problem, where the class of admissible
functions to be minimized over is restricted to only those functions in W 1,p

0

satisfying an integral constraint of the form∫
G(u) = 0

where G is a fixed smooth function. Then if g = G′, there is a real number λ
such that

−〈∆pu, v〉 = λ〈g(u), v〉. (1)

A more detailed discussion of this approach can be found in chapter 8 of [1].

Unlike the eigenvalues of a linear operator, there is no guarantee in general
that scaling an eigenfunction u → au gives another eigenfunction. For the
particular choice g = |u|p−2u, however, we retain this property, so we consider
this type of homogeneous constraint to be the natural setting for the eigenvalue
problem for the p-Laplacian. One of the uses of this scaling property is to show
that

u(x, t) = e−λtu(x)

solves the nonlinear time evolution problem

(∂t −∆p)u = 0.

This nonlinear parabolic PDE generalizes the heat equation, and has been used
to model flow in porous media.
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The Dirichlet eigenvalue problem consists of finding which values of λ admit
a nontrivial solution to (1) in W 1,p

0 . This problem is extremely difficult, in fact
for p 6= 2 it is not even known whether or not the spectrum is discrete. How-
ever, if we restrict attention to the principal eigenvalue, we find many results
in common with the linear case p = 2. In particular, the principal eigenvalue is
simple, positive and isolated, and its associated eigenfunction has constant sign.

The relative ease of studying the principal eigenvalue, when compared to
general eigenvalues, is the due to the fact that it can be expressed as the mini-
mum of a Rayleigh quotient

λp = inf
u∈W 1,p

0

∫
Ω
|∇u|p∫
|u|p

(2)

much like the principal eigenvalue of the Laplacian. We prove first that this
infimum is actually attained for some eigenfunction u.

Theorem 1. Let 1 < p < n and Ω a bounded domain in R
n, n ≥ 2, and Ω

having C1 boundary. There is at least one function u which does not change
signs and which minimizes the Rayleigh quotient (2). This function is an eigen-
function associated with λ.

Proof. Let uk be a minimizing sequence of the Rayleigh quotient. Since (2) is
invariant under the scaling u→ au, we may assume that∫

|uk|p = 1, ∀n ∈ N. (3)

Since bounded subsets of W 1,p have weakly convergent subsequences, we can
pass to a subsequence which converges weakly to some u in W 1,p. Weakly
convergent sequences can be badly behaved in general; however, under our hy-
potheses we can apply the Rellich-Kondrachov theorem to extract a subsequence
which converges strongly in Lp to the limit function u ∈W 1,p. Clearly∫

Ω

|u|p = 1,

and with the sequence uk normalized as in (3) we find that∣∣∣∣λp − ∫
Ω

|∇uk|p
∣∣∣∣→ 0, as k →∞.

By the weak convergence in W 1,p we also have

λp = lim

∫
Ω

|∇uk|p =

∫
Ω

|∇u|p.

Since W 1,p is uniformly convex, the Radon-Riesz theorem finishes the existence
proof.
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The proof that u is an eigenfunction is standard for variational problems, so
I only provide a rough sketch here. Simply observe that for any v ∈W 1,p,

d

dt

∫
Ω

|u+ tv|p = p

∫
Ω

|u+ tv|p−1v

and
d

dt

∫
Ω

|∇u+∇tv|p = p

∫
Ω

|∇u+∇tv|p−2[∇u+∇tv] · ∇v.

Comparing these at t = 0 proves that the equation is satisfied for all such v,
since otherwise there would be some small number ε such that u+εv contradicts
the minimality of λp. If u minimizes the Rayleigh quotient, then so does |u|.
Hence there is a first eigenfunction which does not change signs.

The following theorem states an important uniqueness property of the prin-
cipal eigenfunction.

Theorem 2. If u is an eigenfunction with eigenvalue λp, and v is any eigen-
function of constant sign, then u = kv for some k.

The proof is omitted since it is quite technical and not particularly instruc-
tive, being based on direct computations and the convexity of the map x→ |x|p.
It can be found in [4].

Cheeger Estimates

For a domain Ω ∈ Rn, there is a result due to Cheeger which relates a certain
geometric quantity to the lowest eigenvalue of the Laplacian. In particular,
given a subdomain D ⊂ Ω which does not touch ∂Ω, define its Cheeger quotient
to be

Q(D) =
Hn−1(∂D)

Hn(D))

Hn is the n-dimensional Hausdorff measure of the set. Define the Cheeger
constant of Ω to be

h(Ω) = inf
D⊂Ω

Q(D).

Cheeger proved the lower bound

λ2 ≥
h(Ω)2

4
.

for the first eigenvalue of the ordinary Laplacian. It turns out that this estimate
generalizes very easily to arbitrary p, which is the content of the following the-
orem. This theorem, and the rest of the results from this section, can be found
in [2]. The proof makes use of a special case of the coarea formula, namely that
for smooth functions u ∫

Ω

|∇u| =
∫
R

∫
Hn−1(u−1(t))dt.
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Theorem 3. The first eigenvalue λp of the p-Laplacian on the domain Ω sat-
isfies

λp ≥
(
h(Ω)

p

)p
.

Proof. We begin by approximating by smooth functions. Let w ∈ C∞(Ω) and
let At = {x ∈ Ω : w(x) ≤ t}. Apply the coarea formula to obtain∫

Ω

|∇w| =
∫
R

Hn−1(∂At)

Hn(At)
Hn(At)dt =

∫
R

Q(At)Hn(At) ≥ h(Ω)

∫
Ω

|w|. (4)

By approximation (4) holds on W 1,1. To relate this W 1,1 estimate to general p,
choose v ∈ W 1,p and let u = |v|p−1v. Chain rule and Hölder’s inequality lead
to

||∇u||L1 ≤ p||v||p−1
Lp ||∇v||Lp

and in particular u ∈W 1,1. Then (4) applies and gives

h(Ω)

∫
Ω

|v|p ≤
∫

Ω

|∇u| ≤ p||v||p−1
Lp ||∇v||Lp

from which the result follows by a simple rearrangement.

With this theorem proved, we can obtain a lower bound on λp(Ω) provided
we can compute the Cheeger constant, though this is a non-trivial task. The
best results are found in the case of simply connected planar domains, such
as in [3]. A common approach to the computation of this constant is to look
for Cheeger domains, which are defined to be D ⊂ Ω such that Q(D) = h(Ω).
Note that such minimal domains are not required to be compactly contained,
and may touch ∂Ω. There are many results attempting to characterize such
subdomains. I present a few such results here without proof.

Theorem 4. (i) A Cheeger domain is C1 if Ω is C1, and analytic except on a
set of Hn−1-measure zero

(ii) The boundary of a Cheeger domain has constant mean curvature h(Ω) wher-
ever it does not touch ∂Ω

(iii) The union of all balls of radius 1/h(Ω) is a Cheeger domain for any convex
planar domain.

It is reasonable to wonder how good of an estimate the Cheeger bound is.
As p becomes large, this relationship becomes more difficult to understand. On

4



the other hand, when p is very close to 1, the estimate is very good, and we will
make this fact rigorous with the next theorem. Observe that(

h(Ω)

p

)p
→ h(Ω), p↘ 1.

The Cheeger lower bound is sharp in this limit.

Theorem 5. For any domain Ω we have limp→1 λp(Ω) = h(Ω).

Proof. Let D be compactly contained in Ω, and let w be a function satisfying
w = 1 on Dk, w = 0 outside an ε-neighbourhood of D, and |∇w| = 1/ε in
between. For sufficiently small ε, w ∈ W 1,∞

0 (Ω) and is thus an admissible
function for the variational problem. Returning once more to the Rayleigh
quotient,

λp ≤
∫

Ω
|∇wk|p∫

Ω
|wk|p

≤ Hn−1(∂Dk)

Hn(Dk)
ε1−p.

Sending p→ 1 gives
lim
p→1

λp ≤ Q(D)

and since this holds for every D we have the result.

Therefore we should expect the existence of an eigenvalue very close to
(h(Ω)/p)p when p is close to 1.

Nodal Sets

The remainder of this note will be dedicated to proving a theorem on the size of
nodal sets of eigenfunctions in a planar domain. Given an eigenvalue λ, let Zλ
be the set of zeroes of the associated eigenfunction. For the classical Laplacian
p = 2, it is known that the nodal set always has empty interior. Furthermore,
Yau’s conjecture states that

∃c, C : cλ
1
2 ≤ Hn−1(Zλ) ≤ Cλ 1

2 .

This conjecture has not been proven in the general case, but has been shown to
hold for many special cases. For simply connected domains in the plane R2, we
will prove one side of a generalization, namely

∃c : H1(Zλ) ≥ cλ
1
p . (5)

Note that the upper bound is not proven to hold, in fact it is not known that
the nodal set of an arbitrary eigenfunction has empty interior for general p. All
the arguments that follow will be based on the assumption that Zλ is a union
of curves, though this is not currently known to be true. The theorem will still
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hold, however, since the H1 measure of an set of nonempty interior is infinite.

The proof of the generalized Yau Conjecture follows [5]. First, we need a
theorem which says roughly that for sufficiently large λ, nodes appear frequently.
In particular,

Theorem 6. Let R =
(
C
λ

)1/p
for some C > λ′p where λ′p is the first eigenvalue

of ∆p on the unit disc. If BR ⊂ Ω, then any eigenfunction with eigenvalue λ
vanishes in BR.

Proof. Observe that the first eigenvalue on a domain Ω is not greater than the
first eigenvalue on another Ω′ ⊂ Ω. This can be seen from the fact that the first
eigenfunction on Ω′ is admissible in the Rayleigh quotient for Ω, after smooth
approximation if necessary. Now let A be any nodal domain of uλ which contains
a ball of radius BR. It follows that uλ is the first eigenfunction on A, since the
first eigenfunction is the only one of constant sign. Then since

λ = λ1,p(A) ≤ λ1,p(BR) ≥ λ1,p(B1)

Rp

which contradicts our assumption on the radius R. Thus there is no nodal
domain containing any BR, or equivalently the eigenfunction vanishes in every
BR ⊂ Ω.

As a side note, if we want to make λ1,p(B1) more explicit, the exact Cheeger
estimate for B1 is quite easy to derive using the isoperimetric inequality. For
the next step, we will need a version of the Harnack inequality for quasilinear
elliptic equations.

Theorem 7. If K(ρ) is a square of side length ρ compactly contained in Ω and
uλ is an eigenvalue of the p-Laplacian which is nonnegative on K, then

sup
x∈K(ρ)

uλ ≤ C inf
x∈K(ρ)

uλ (6)

for some C which depends only on p, λ, and K.

To avoid this note becoming extremely long, the proof is omitted, but it is
due to Trudinger and can be found in [6].

With this quasilinear Harnack inequality, we can finally prove the generalized
Yau conjecture for planar domains.

Proof. We can cover Ω with squares of side length proportional to λ−
1
p each of

which contains a zero of uλ. Assume that λ is so large that we can make the
centre of each square a zero of the eigenfunction. Furthermore, each zero lies
on a curve of nodes which partitions the square in two, otherwise the Harnack
inequality would show that the eigenfunction is zero on the entire square, in
which case H1(Zλ) =∞.

6



There are two possible types of curve which bisect a square and also intersect
the centre. One is a curve that touches two boundaries of the square and the
centre of the square. The other is a curve which is closed and completely
contained in the square. A completely enclosed curve is a contradiction by the
same type of domain monotonicity argument used to prove that uλ vanishes in
BR. Thus all nodal curves are of the first type, and in particular are at least of

length equal to λ−
1
p , the side length of the square. Combining this with the fact

that it takes aymptotically at least Area(Ω)λ2/p squares to cover Ω, we obtain
the desired result.
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