MATH 581 ASSIGNMENT 4

DUE THURSDAY MARCH 28

1. (a) Let $u \in \mathscr{E}'$ and $v \in \mathscr{D}'$. Show that

 $\partial^{\alpha}(u * v) = (\partial^{\alpha}u) * v = u * (\partial^{\alpha}v).$

(b) Let $u \in \mathscr{E}'$ and $v \in \mathscr{D}'$. Show that

 $\operatorname{supp}(u * v) \subset \operatorname{supp} u + \operatorname{supp} v.$

(c) Show that

$$1 * (\delta' * \vartheta) \neq (1 * \delta') * \vartheta,$$

where 1 is the function identically 1 in \mathbb{R} , and ϑ is the Heaviside step function.

- (d) Let u and v be the surface measures of the spheres $\{x \in \mathbb{R}^3 : |x| = a\}$ and $\{|x| = b\}$, respectively. Compute u * v, and determine its singular support.
- 2. Prove that $\mathscr{D}(\Omega)$ is sequentially dense in $\mathscr{D}'(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is open.
- 3. Show that any distribution satisfying the Laplace equation must be smooth (therefore harmonic in the classical sense).
- 4. (a) Let $a \in \mathscr{E}(\mathbb{R}^n)$. Prove that the pointwise multiplication $u \mapsto au : \mathscr{S}' \to \mathscr{S}'$ is well-defined and continuous if $a \in \mathscr{O}_M$, that is, for every multi-index α there is a polynomial p such that $|\partial^{\alpha} a(x)| \leq p(x), x \in \mathbb{R}^n$.
 - (b) Prove that if p is a polynomial with no real zeroes, then there are constants c > 0and m such that $|p(\xi)| \ge c(1+|\xi|)^m$ for all $\xi \in \mathbb{R}^n$. Operators p(D) with p satisfying this condition are called *strictly elliptic*.
 - (c) Show that if p(D) strictly elliptic, then the equation p(D)u = f has a solution for each $f \in \mathscr{S}'$.
- 5. Let p be a nonzero polynomial. Show the following.
 - a) The equation p(D)u = f has at least one smooth solution for every $f \in \mathscr{D}$.
 - b) If all solutions of p(D)u = 0 are smooth, then p(D) is hypoelliptic.
 - c) If p(D) admits a fundamental solution that is smooth outside some ball of finite radius (centred at the origin), then p(D) is hypoelliptic.
- 6. Recall Hörmander's theorem that p(D) is hypoelliptic if and only if for any $\eta \in \mathbb{R}^n$ one has $p(\xi + i\eta) \neq 0$ for all sufficiently large $\xi \in \mathbb{R}^n$. Apply this criterion to show the following.
 - (a) All elliptic operators are hypoelliptic.
 - (b) The wave operator is not hypoelliptic.
 - (c) The heat operator is hypoelliptic.

Date: Winter 2019.

DUE THURSDAY MARCH 28

7. For $s \in \mathbb{R}$, the (Bessel potential) Sobolev space $H^s(\mathbb{R}^n)$ is the set of those $u \in \mathscr{S}'(\mathbb{R}^n)$ with $||u||_{H^s} := ||\langle D \rangle^s u||_{L^2} < \infty$, where the Bessel potential $\langle D \rangle^s u$ of u is defined by

$$\langle D \rangle^s \hat{u}(\xi) = \langle \xi \rangle^s \hat{u}(\xi) \equiv (1 + |\xi|^2)^{s/2} \hat{u}(\xi)$$

Prove the following.

- (a) $\langle D \rangle^s : H^s(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a Hilbert space isometry.
- (b) For $k \ge 0$ integer, $H^k(\mathbb{R}^n) = W^{k,2}(\mathbb{R}^n)$.
- (c) $\mathscr{D}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.
- (d) The (topological) dual of $H^{s}(\mathbb{R}^{n})$ is isometric to $H^{-s}(\mathbb{R}^{n})$.
- (e) The trace operator $\gamma: \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^{n-1})$ defined by

$$(\gamma u)(x_1,\ldots,x_{n-1}) = u(x_1,\ldots,x_{n-1},0),$$

has a unique extension to a bounded linear operator $\gamma: H^s(\mathbb{R}^n) \to H^{s-\frac{1}{2}}(\mathbb{R}^{n-1}).$