MATH 581 ASSIGNMENT 3

DUE TUESDAY MARCH 12

- 1. Derive the analogue of the Kirchhoff formula for the solution of the Cauchy problem for the homogenous wave equation in \mathbb{R}^n , for general spatial dimension n.
- 2. Consider the variable coefficient wave equation

$$\partial_t^2 u - \sum_{i,k=1}^n a_{ik} \partial_i \partial_k u = 0,$$

where $[a_{ik}(x)]$ is a symmetric, positive definite matrix, depending smoothly on $x \in \mathbb{R}^n$. Suppose that $Q \subset \mathbb{R}^{n+1} \subset \mathbb{R}^n \times (0,T)$ is a domain, and introduce the notations

$$S_t = \overline{Q} \cap (\mathbb{R}^n \times \{t\}), \qquad \partial^* Q = \partial Q \setminus (S_0 \cup S_T).$$

By using the multiplier method, establish a local energy inequality of the form

$$E(S_T) \le E(S_0),$$

where

$$E(S) = \frac{1}{2} \int_{S} \left(|\partial_{t}u|^{2} + \sum_{ik} a_{ik}(\partial_{i}u)(\partial_{k}u) \right),$$

under a suitable condition on the lateral boundary $\partial^* Q$. What is the local speed of information propagation?

3. Let $\Omega \subset \mathbb{R}^n$ be an unbounded domain with C^1 boundary, and let $\phi, \psi \in C^{\infty}(\Omega) \cap C_0(\overline{\Omega})$. Here $C_0(\overline{\Omega})$ indicates the class of functions with homogenous Dirichlet boundary condition, and note that there is no growth restriction on ϕ and ψ at ∞ . Show that there exists a unique smooth solution to the initial-boundary value problem

$$\Box u + u = 0 \quad \text{in} \quad \Omega \times \mathbb{R}$$
$$u(\cdot, 0) = \phi,$$
$$\partial_t u(\cdot, 0) = \psi.$$

- 4. Consider the Cauchy problem
 - $\Box u = 0 \quad \text{in} \quad \mathbb{R}^3 \times \mathbb{R},$ $u(\cdot, 0) = 0,$ $\partial_t u(\cdot, 0) = \psi,$

and denote the map $\psi \to \partial_t u(\cdot, t)$ by $W'(t) : \mathscr{D}(\mathbb{R}^3) \to \mathscr{D}(\mathbb{R}^3)$. Show that W'(t) cannot be extended to a bounded operator $W'(t) : L^p(\mathbb{R}^3) \to L^p(\mathbb{R}^3)$ for any $p \neq 2$ and t > 0.

Date: Winter 2019.

DUE TUESDAY MARCH 12

- 5. Let p be a nontrivial polynomial of n variables, and let f be a real analytic function in a neighbourhood of $0 \in \mathbb{R}^n$.
 - a) Prove that the set $\{\xi \in \mathbb{R}^n : p(\xi) = 0\}$ is closed and of measure zero.
 - b) Show that there is a neighbourhood of $0 \in \mathbb{R}^n$, on which the equation $p(\partial)u = f$ has a solution. Supposing that $p(\xi) = \sum_{\alpha} a_{\alpha} \xi^{\alpha}$, here the operator $p(\partial)$ is given by

$$p(\partial) = \sum_{\alpha} a_{\alpha} \partial^{\alpha}$$

c) Extend this local solvability result to linear operators with analytic coefficients. That is, assuming that $\{a_{\alpha}\}$ is a finite collection of real analytic functions in a neighbourhood of $0 \in \mathbb{R}^n$, with the property that $p(\xi) = \sum_{\alpha} a_{\alpha}(0)\xi^{\alpha}$ is a nontrivial polynomial, show that the equation

$$\sum_{\alpha} a_{\alpha} \partial^{\alpha} u = f,$$

has a solution on a neighbourhood of $0 \in \mathbb{R}^n$.

- 6. Let p be a nontrivial polynomial of n variables, and let H ⊂ ℝⁿ be a (closed) half-space.
 a) Show that if u ∈ C[∞](ℝⁿ) satisfies p(∂)u = 0 in ℝⁿ and supp u ⊂ H, and if the boundary of H is noncharacteristic for the constant coefficient operator p(∂), then u ≡ 0. Provide a counterexample when ∂H is characteristic and p is a nonconstant homogeneous polynomial.
 - b) Show that if we require that u is compactly supported, then the noncharacteristic condition on ∂H can be dropped, i.e., prove that if $u \in C_c^{\infty}(\mathbb{R}^n)$ satisfies $p(\partial)u = 0$ in \mathbb{R}^n then $u \equiv 0$. Imply that if $u \in C_c^{\infty}(\mathbb{R}^n)$ then $\operatorname{supp} u$ is contained in the convex hull of $\operatorname{supp} p(\partial)u$.

 $\mathbf{2}$