MATH 581 ASSIGNMENT 2

DUE THURSDAY FEBRUARY 14

- 1. Let $\varphi \in \mathscr{D}(\mathbb{R}), \varphi \neq 0$, and $\varphi(0) = 0$. In each of the following cases, decide if $\varphi_j \to 0$ as $j \to \infty$ in $\mathscr{D}(\mathbb{R})$. Does it hold $\varphi_j \to 0$ pointwise or uniformly?
 - (a) $\varphi_j(x) = j^{-1}\varphi(x-j);$
 - (b) $\varphi_j(x) = j^{-n}\varphi(jx)$, where n > 0 is an integer.
- 2. In each case, show that f defines a distribution on \mathbb{R}^2 , and find its order.
 - (a) $f(\varphi) = \int_{\mathbb{R}^2} |x|^{-1} e^{|x|^2} \varphi(x) dx;$
 - (b) $f(\varphi) = \int_{\mathbb{R}} \varphi(s,0) ds;$
 - (c) $f(\varphi) = \int_0^1 \partial_1 \varphi(0, s) \mathrm{d}s.$
- 3. Compute the following derivatives in the sense of distributions.
 - (a) $\partial_x |x|;$
 - (b) $\partial_x \log |x|;$

(c) $\partial_2 f$, where $f \in \mathscr{D}'(\mathbb{R}^2)$ is the distribution from (b) of the previous exercise.

- 4. Prove the following.
 - (a) $\partial_j(au) = (\partial_j a)u + a(\partial_j u)$ for $a \in C^{\infty}(\Omega)$ and $u \in \mathscr{D}'(\Omega)$.
 - (b) There is no distribution on \mathbb{R} such that its restriction to $\mathbb{R} \setminus \{0\}$ is $e^{1/x}$.
- 5. If u is the characteristic function of the unit ball in \mathbb{R}^n , compute $x \cdot \nabla u$.
- 6. Let $\omega \subset \mathbb{R}$ be an open interval, and $u \in \mathscr{D}'(\omega)$. Let $0 \leq k \leq \infty$.
 - (a) Show that if u' = 0 then u is a constant function.
 - (b) Show that if u' = f with $f \in C^k(\omega)$, then $u \in C^{k+1}(\omega)$.
 - (c) Show that if u' + au = f with $a \in C^{\infty}(\omega)$ and $f \in C^{k}(\omega)$, then $u \in C^{k+1}(\omega)$.
- 7. Find the limits $n \to \infty$ of the following sequences in $\mathscr{D}'(\mathbb{R})$.
 - a) $n\phi(nx)$, where ϕ is a nonnegative continuous function whose integral over \mathbb{R} is finite.
 - b) $n^k \sin nx$, where k > 0 is a constant.
 - c) $x^{-1}\sin nx$.
- 8. For each of the following functions, determine if it is a tempered distribution, and if so compute its Fourier transform.
 - (a) $x \sin x$,
 - (b) $\frac{1}{x}\sin x$,
 - (c) $e^{i|x|^2}$,
 - (d) $x\vartheta(x)$, where ϑ is the Heaviside step function,
- 9. Give an example of $u \in \mathscr{C}(\mathbb{R}^n)$ such that $\varphi \mapsto \int u\varphi$ is a tempered distribution and that there is no polynomial p satisfying $|u(x)| \leq |p(x)|$ for all $x \in \mathbb{R}^n$.

Date: Winter 2019.