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De Giorgi-Nash-Moser’s regularity theorem

Theorem 1. Let u € W12(Q) be a weak solution of

Lu= Z aij (ai,j(x)éiu(x)) ~0 (1)

ij=1
assuming that the measurable and bounded coefficients a; ; satisfies the structural conditions,

n

AEP < Z i &€, lai;(@)] < A, (2)

i,j=1

for all x € Q, € € R™, with constants 0 < A < A < co. Then u is Héolder continuous in Q). More precisely, for
any w CC ), there exist some a € (0,1) and a constant C with

u(z) —u(y)] < Clo —yl|%, 3)

for all z,y € w. a depends on n, 4 and w, C in addition on Osc,,(u) := sup,,(u) — inf, (u).

Preliminary H' bound

Proposition 1. Let u € W12(Q) satisfying to the problem (1) on the ball By CC 2, then we have the following

gradient estimate
IVullp2(B, ) < Cr(n, A DllullL2(s,)., (4)

where C 1s a constant.

Proof. Choose 1 a cut-off function such that

77:1 m BI/Q,
0<np<1 in By, (5)
n=20 in BY.

for which V7 is bounded and || V7|1~ depends only on n. We can write the first intermediate estimate
1 n
/ |Vul|? §/ n?|Vul? < 7/ n? Z a; ;0;udju.
Bi/2 By A B =1
Then recalling that u satisfies Lu = 0 in By, we get from integration by parts that
2 - A
2 2
Y N SIS
/Bl )\ B, Z 1,0 J )\

ij=1 B
from which we can deduce after applying Cauchy-Schwarz inequality that

1

% A % A 2
([ orwae) <25 ([ 1wwn?) <o50entes ([ 1)
B4 By B,

After squaring the last inequality we obtain the gradient estimate

A 2
[ [ <a(5) 1ontt ([ k), ©)
Bi/2 B, A B;

where the constant C is given by C(n, A\, A) =4 (%)2 V|3 . O



L*>*® bound and Moser’s iterations

Definition 1 (Subsolution and supersolution). A function u € W2(Q) is called a weak subsolution (resp.
supersolution) of L, denoted Lu > 0 (resp. Lu < 0) if for all positive functions ¢ € Hé’z(Q), we have that

/ Zai,jaiuaj¢ <0, (7)
Qi
(resp > 0 for supersolution). All the inequality are assumed to hold except possibly on sets of measure zero.

Theorem 2 (DGNM L* bound). Let L satisfy (2) and u € W12(Q) be a positive subsolution of L, i.e. Lu >0
and u > 0. Then u satisfies

[ull Lo (B, ,2) < Ca(n, A, A)[ull2(By), (8)

where Cy is a constant.

Lemma 1. Under the hypotheses of theorem 2, and if we let 1/2 <r <r+w <1 then u satisfies
IVl z2(8,) < Ca(n, A\, Aw™HlullL2(s, ), (9)
where Cs is a constant.

Proof. Again choose a cut-off function 1 such that

n=1 in B,
0<n<1 in B, (10)
n=0 in B,
for which V) can be made bounded with |[Vn|[z~ < L. Then the proof follows the exact same steps as the one
done for proposition 1. O

Definition 2 (Sobolev conjugate). If 1 < p < n, the Sobolev conjugate of p is

* np
= . 11
P (11)
Note that . L1
—=——=, p'>p (12)
p p n

Theorem 3 (Gagliardo-Nirenberg-Sobolev inequality). Assume 1 < p < n. There exists a constant C, depend-
ing only on p and n, such that

ull o= mny < ClIVUllLo®n), (13)
for allu € CLR™).

Lemma 2. Under the hypotheses of theorem 2, and if we let 1/2 <r <r+w <1, then u satisfies

lull g2 B,y S w M ull 2B, ) (14)

Proof. Let 1 be a cut-off function satisfying to the following

n=1 in B,
0<n<1 in Briy, (15)
n=20 in B,

and for which V7 is bounded with || V]|~ < 5. Then combining the Gagliardo-Nirenberg-Sobolev inequality,
proposition [1] and lemma [1] applied to nu, we prove that

1 _
ellze g,y < ullzer (5,100 S IVORIL25 100 S 5oluli2, e + 1VUlL25, 10 S @ L2, ,0)-
O

Lemma 3. If 3 > 1 and u is a positive subsolution of equation (1) i.e. Lu > 0 and u > 0, then u® is also a
subsolution of equation (1).



Proof. Using the coercivity of L given in conditions (2) we have that

Luf = Z aj (al}jai(uﬁ)) = Z aj(ai,jﬁaiuuﬁ_l) = ﬁuﬁ_l Z 8j (ai,jaiu) + B(IB - 1)U’8_2 Z ai,jaiu(')ju,
N i, i, i,
> BuP T Lu+ A3(8 — 1)u’ 2| Vul?,

and recalling that u is positive and a subsolution of equation (1) we can conclude that Lu® > 0. O

From where applying lemma 2 to u” leads us to

HUHKZ%(BT - HUﬁ”Ln%"z(Br) Sw e s, = (Ow>71||““§2ﬁ(Br+w)’ (16)
which, if we let s = 5, gives the following result
Lemma 4. Under the hypotheses of theorem 2, if we let 1/2 <r <r+w <1 and p > 2, then u satisfies
lull o,y < (Cw™ P2 PlfullLos,.)- (17)

Let pe R, R >0, zg € Q and take u € LP(Br(x)) positive, we define then the function ¢ such that

&(p,R) = <]€3( )up> . (18)

=

Lemma 5.
lim @(p,R) = sup u:= P(oc0,R), (19)
p=ree B(zo,R)
lim &(p,R) = inf wu:=®(—o0,R). 20
im0 B) = infui= b0, ) (20)

Proof. The function &@(-, R) is monotonically increasing. Indeed, using Hoélder’s inequality we have that for any
p<p and u € LP (Q)

1

() < b (L) ([)" = ()" o

Moreover, by definition of the essential supremum we know that for any £ > 0 there exists § > 0 such that,

|Ac| :=|< € B(zo,R) :u(z) > sup u—e. p| >4 (22)
B(wzo,R)
Therefore we can bound @ below as follow
L 1 1
][ u? >11</ up>p>‘§P( sup u—¢€), (23)
B(zo,R) |B(zo, R)[V/P \ ) 4. B(zo,R)| "B(ao,R)
hence

lim &(p,R) > sup u—e. (24)

L B(zo,R)
Combining the results (21) and (24), we prove (19), and (20) follows immediately by replacing v with «=1. O
We are ready now to prove the DeGiorgi-Nash-Moser L*>° bound.

Proof. Consider a sequence of balls such that

B(0,1/2) C --- € B(0,rk4+1) C B(0,r) C --- C B(0,r9) = B(0,1) CC Q, (25)

ie. 1/2 <ry <1 for every k > 0. For instance, one can choose 7y = % + ﬁ so that rgy1 —ry = O(k%)

From here we use Moser’s technique which consist of iterating the result of lemma 4 in order to trap higher L?
norms,
lull ey > Aollull s,y > -+ 2 Ao+ Ax-allull ot s, (26)



where A, = (C(ry — rk_l)_1)<97k. Nonetheless, we remark that

N N
log(H Ag) = Z s "log(C(ry —me_1)), (27)
k=0 k=0
is the partial sum of a convergent series since
log(k
s " log(C(ry — k1)) = O ( ig )> . (28)

Hence, combining lemma 5 and the previous remark, we can take the limit in both sides of equation (26) and
prove that there exists a constant C' such that

||U/HL°°(B1/2) S C(n’)‘7A)||UHL2(Bl)‘ (29)
O

Moser-Harnack’s inequality

Theorem 4 (Moser-Harnack’s inequality). Let u be a positive weak solution to Lu=0 in a domain Q2 of R™,
and let w CC Q. Then

supu < cinfu (30)
w w

. . A
with ¢ depending on n, w,  and 5.

Theorem 5 (Weak Moser-Harnack’s inequality). If the elliptic operator L satisfies the conditions (2), u weak
solution of Lu=0 such that 0 < u <1 on By and

1
then,
é?/i“ >, (32)

where v depends on n, and %
Lemma 6. If u € W12(Q) is a weak solution of L and k is some real number, then the function v defined by
v = max(u, k)
is also a weak subsolution to L.
Corollary 1. Let u be a weak solution to Lu=0 on Q and let r > 0 and x € Q such that B,(xz) C 2, then
Osc u < (1—+) Osc u. (33)

B, /2(x) B ()

Proof. The key to this proof rely a scaling argument. Indeed, without lost of generality, since u is bounded, we
can assume that

inf u=0, supu=1 r=1,
B () B, (z)

Then using the weak Moser-Harnack’s inequality, we readily verify that

gjgué (1-7)=Q1-7) Qscu. (34)
O
Now we are able to prove the Holder regularity of weak solution to the problem (1).
Proposition 2. Let u: By — R satisfy (33). Then,
[ullca(,0) S NullLee(s,), (35)

for some a > 0 depending on ~



Proof. Let x,y € By /s, we define d = |v —y| and a = %\x + y|. Then, in order to establish a link u and d, we
can recursively apply the result from corollary 1 to get that

u(x < Osc u<(l—v) Oscu<- 1—7)F Osc u. 36
lu(z) — u(y)| 505 ( )Bd(a) <(1-7) pO%e (36)

We then choose k carefully such that § < 2¥d < 1. Then k = log,(4) + O(1) and

u(z) —u(y)] < (1 =7)* Osc u<(1—)" Oscu<2(1—)"lull L= ,)- (37)
31/2(‘1) Bi(a)

Also by being more precise in the constant in O(1), we see that we can safely say that k < logg(é) + 2 and so
(1—y)F <401 - ,y)logz(é) — 4 loga(1—7) (38)
Hence we conclude by letting a = a(y) = —logy(1 —7) = v + O(+?). O

Therefore, the proof of DeGiorgi-Nash-Moser’s theorem boils down to proving the weak Moser-Harnack’s
inequality. We will attack the proof using the same approach than the one for differential Harnack’s inequality
in the case of Laplace operator.

Lemma 7. Let u be a weak solution to Lu =0 and u >0 on By. Then |[Vlogu|r2s, ) < 1.

Proof. Choose 1 a cut-off function such that

T]:1 in B1/27
n=20 in BY.

Then, using the elliptic condition we have

| wgu < [ n2|v10gu|2:/ PIVaPu < 2[5 g, Sl 1 v S ias i,
Bi)s B, B

Blzgl 14,5=1

which gives when we integrate by parts that
A
[ wiogup <25 [ valivalut = [ niv|Viogul.
B2 A B1 B,

And again by Cauchy-Schwarz inequality

/ 7’|V log ul? 5/ WQIVIOgUI/ V%, (40)

B By B,

which let us conclude that [[Vlogul 2z, ,) < 1. O
Let w = —logu and v = w — log(10), the following Poincaré inequality will give us a bound on the L? norm

of w instead of the actual bound on Vw.

Lemma 8 (Poincaré inequality). Let H = {v <0} N B,.. For allv e WY(B,), we have

Cr?B |/
v} < - Voy | 41
/Br + |H| Br| +| ( )
Proof. Let u = vy, then by the usual Poincaré inequality we have
C C C|H
=S [ umapz G [ u-ar= GEL [ e (12)
B, T2 B, 7'1 T‘2|Br| B,

Moreover we also have by Poincaré inequality that
C|H
[ o= S -, (43)
B, 72| B, B,

and by adding the two previous inequalities we get

C|H| _ _ ClH|
2 _ 2 2 > 2 44
/B|V| _22|B|(/ fu— ) +/Jgr'“')—2r2|Br| [ (44)




Lemma 9. Let u be a weak solution to Lu =0 and u > 0 on By. Moreover, if u satisfies

)

1
|A == [{z € Bys : u(z) > 1/10}| > E‘Blp

then, Hw”L?(Bl/z) ,S 1.

Proof. The proof is a straight forward application of Poincaré inequality. Indeed we have

b ! 2
|wﬁ - | ws</ w—wﬁ s(/ Vwﬂ,
</B1/2 |B1/2|1/2 Bz B2 B2

and by hypotheses

)

1
|A] = ’{33 € By w(r) < log(lo)}‘ > 1—0’31/2

Therefore,

Nl

2
1 1
wP) s WeP) v s [ e [
(/31/2 By [B1/2*? /B, -4 |B1/2| Ja
< / |Vw|? | + ! / wy +1
By /o |‘Bl/2|1/2 By

1 1

2 2
< / |Vw|* | + / wi | +1,
By /o Bys

and using Poincaré’s inequality we prove that

2

(/ |w|2> 5(/ Vw|2> +1.
By /s By /o

Hence, we now have a L? bound on w and we can conclude witth the following lemme
Lemma 10. Let w = —logu, then w is a weak subsolution and satisfy Lw > 0.

Proof. The proof follows with a straight forward computation

— Z 8j(aija7; IOg ’LL) = — Z 8j (aij(‘?iufl) =Lu- ’LL71 + Z (%%] (@u)(aju)u*Q > 0.

Since, w = —logu > 0 because u < 1, using previous results we have the upper bound

|wllLo (B, ,5) S llwllLz2(s, ) S 1,

and the proof of the weak Harnack inequality follows by exponentiating the previous inequality.

(45)

(48)



