
KPP REACTION-DIFFUSION EQUATIONS

THOMAS TENDRON

Abstract. We consider a class of quasilinear parabolic partial differential equations and
study the spreading properties of solutions to these equations. We are specifically interested
in the formation of travelling waves. We also consider front-like solutions to the Cauchy
problem. We first follow a paper by Nadin and Rossi ([1]) for nonlinearities that depend on
time and on the solution. In a second part, we follow a paper by Nadin ([2]) and consider
nonlinearities depending on space and on the solution. For both types of nonlinearities, we
also study the solutions to the equation in a random environment.
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1. Introduction

In this note, we will be concerned with spreading properties of solutions to certain quasi-
linear reaction-diffusion equations. Specifically, we will look at equations of the form

(1) ∂tu(x, t)−∆u(x, t) = f(x, t, u), x ∈ RN , t ∈ R

with positivity, boundedness and regularity assumptions on the reaction f .
Let us first motivate the discussion by presenting a brief history of the subject and some

background material on the homogeneous case, namely when f = f(u). One of the simplest
nonlinearities studied is

(2) f(u) = u− u2

which was first derived in 1937 by Fisher ([3]) in the context of population genetics, based on
heuristic arguments. Fisher looked for special solutions of (1), with the simple nonlinearity
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(2), having the constant shape of a wave and travelling with some constant velocity. In the
(1 + 1)-dimensional case, this translates into the requirement that

∂tu = −c∂xu

Now, it is easy to solve ∂tu+ c∂xu = 0 using the method of characteristics:
ṫ(s) = 1

ẋ(s) = c

u̇(x(s), t(s)) = 0

⇒


t(s) = s+ t0

x(s) = cs+ x0

u(x(s), t(s)) = u0

so for t0 = 0 and u0 = φ(x0) for any function φ, we obtain
t = s

x = cs+ x0 = ct+ x0 ⇔ x0 = x− ct
u(x, t) = φ(x0) = φ(x− ct)

So the notion of transition wave is essentially that of a solution of the form u(t, x) = φ(x−ct).
In the context studied by Fisher, the solution u(t, x) represents the frequency of some mutant
gene at time t and at position x. In 1937, Kolomogorov, Petrovskii and Piskounov studied
the same model as Fisher, but with a more general nonlinearity f = f(x, t, u) satisfying
some boundedness and regularity conditions ([4]). They introduced mathematical rigour
in the study of these equations. In particular, they showed by a now standard iteration
argument that the Cauchy problem for (1), with N = 1, has a unique solution. (Theorem
1, [4]) They also discussed monotonicity properties of solutions with respect to space, time
and the nonlinearity. In 1975, Aronson and Weinberger investigated front propagation in
the multidimensional case for the homogeneous reaction f = f(u). ([5]) They showed the
existence of plane wave solutions in any direction e ∈ SN−1 (Theorem 4.1, [5]) and they
discussed the so-called hair-trigger effect, which essentially identifies the constant solution
u ≡ 0 as an unstable state, and the constant solution u ≡ 1 as a stable state by showing that
a solution u of the Cauchy problem with any non-trivial initial data 0 ≤ u0 ≤ 1 will blow-up
to 1 as t→∞ (Corollary 3.1, [5]).

In our case, we will focus on reactions satisfying the conditions identified by Kolmogorov,
Petrovskii and Piskounov. In section 2, we will show that in the time-heterogeneous case
f = f(t, u), given any e ∈ SN−1, there exists a solution u with the profile u(·, t) having the
shape of a wave decaying from 1 to 0 in direction e for any t. Such solutions are called
transition waves. We will then apply this existence result to obtain the existence of random
transition waves for the time-heterogeneous case in a random environment. One can then
ask whether a general solution to the Cauchy problem will automatically possess some of
the defining spreading properties of a transition wave. It is indeed the case, and it will be
the purpose of the end of section 3 to make the notion of front-like solution precise. This
corresponds to a paper by Nadin and Rossi in 2012 ([1]). In section 3, we will continue with
the study of the asymptotic behavior of solutions to the Cauchy problem, but this time in the
space-heterogeneous case f = f(x, u) in a random environment. Following a paper by Nadin
in 2015 ([2]), we will study how randomness of the coefficient and reaction affect the spreading
speed of a solution. Specifically, we will derive an inequality showing that heterogeneity
increases the propagation speed, and we will show that refining the environment, that is
making the change of variable x 7→ x

L
for L > 0 small, slows down the propagation.
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We now give the precise assumptions regarding the reaction term in (1). The nonlinearity
f = f(x, t, u) in equation (1) is assumed to be KPP monostable. Namely, f satisfies the
following conditions:

(1) f(x, t, ·) is Lipschitz continuous in [0, 1] and of class C1 in a neighborhood of 0,
uniformly with respect to (x, t) ∈ RN × R

(2) for a.e. (x, t) ∈ RN × R, f(x, t, 0) = f(x, t, 1) = 0
(3) ∀u ∈ (0, 1), ess inf(x,t)∈RN×R f(x, t, u) > 0

(4) for a.e. (x, t, u) ∈ RN × R× [0, 1], f(x, t, u) ≤ µ(x, t)u, where µ(x, t) := ∂f
∂u

∣∣
u=0

(x, t)

We will make use of the strong maximum principle for quasilinear parabolic equations of
second order. ([8], Theorem 2 page 3)

Theorem 1.1. (Strong maximum principle) Let P be the parabolic operator in divergence
form defined by

Pu = −ut + divA(x, t, u,∇u) +B(x, t, u)

Suppose that A is continuously differentiable with respect to its last two arguments and B is
Lipschitz continuous with respect to its last argument. Let Ω ⊂ RN+1 be a nonempty open
connected set. Suppose that u attains its nonnegative maximum on Ω at some point (x0, t0)
in the interior of Ω, then we have u(x, t) = u(x0, t0) for all (x, t) ∈ Ω.

We also recall the comparison principle for quasilinear parabolic differential equations. It
is a special case of Theorem 1 in [6].

Theorem 1.2. (Comparison principle) Let P be the parabolic operator defined by

Pu = −ut + ∆u+ f(x, t, u)

Suppose that f is Lipschitz continuous with respect to its last argument. Let Q = Ω×(0, T ) ⊂
RN+1 be a nonempty open connected set. If u, v ∈ C2,1(Q) (two derivatives in space and one
in time) are functions such that Pu ≥ Pv in Q and u(x, 0) ≤ v(x, 0) on Ω, then u ≤ v in Q.

2. Propagation phenomena in the time-heterogeneous case

We restrict our attention to the time heterogeneous case: f = f(t, u). It is further assumed
that f satisfies

(5) f(·, u) ∈ L∞(R), for all u ∈ [0, 1]
(6) ∃C > 0,∃γ, δ ∈ (0, 1] such that for a.e. (t, u) ∈ R × [0, δ], we have f(t, u) ≥ µ(t)u −

Cu1+γ

This last assumption provides a lower bound for f(t, u) when u is close to 0. It is used in
the proof of the existence result below.
The notion of solution considered in the paper is that of a strong LN+1-solution. Namely,
define for any compact set K ⊂ RN × R the space

W 2,1
N+1(K) := {u ∈ LN+1(K) : ∂tu, ∂xiu, ∂xixju ∈ LN+1(K),∀i, j ∈ {1, . . . , N}}

Then, we want to find u ∈ W 2,1
N+1,loc(R

N × R) such that

(3) ∂tu−∆u = f(t, u), for a.e. x ∈ RN , t ∈ R

The authors define the least mean g of a function g ∈ L∞(R) by

g := sup
T>0

inf
t∈R

1

T

∫ t+T

t

g(s)ds
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The results use the notion of almost planar generalized transition wave defined as follows.
An (almost planar) generalized transition wave in the direction e ∈ SN−1 of equation (1.1)

is a solution u which can be written as u(x, t) = φ(x · e−
∫ t

0
c(s)ds, t), where c ∈ L∞(R) and

φ : R× R→ [0, 1] satisfies limz→−∞ φ(z, t) = 1 and limz→∞ φ(z, t) = 0. The functions φ and
c are respectively called the profile and the speed of the generalized transition wave u. If u
is a generalized transition wave, then its profile φ satisfies

(4)

{
∂tφ− ∂zzφ− c(t)∂zφ = f(t, φ), z ∈ R, t ∈ R

limz→−∞ φ(z, t) = 1 and limz→∞ φ(z, t) = 0 uniformly in t ∈ R

The main result is the following.

Theorem 2.1. Assume that f satisfies the conditions described in the introduction and let
e ∈ SN−1.

(1) For all γ > 2
√
µ, there exists a generalized transition wave u in direction e with a

speed c such that c = γ and a profile φ which is decreasing with respect to z.
(2) There exists no generalized transition wave u in direction e with a speed c such that

c < 2
√
µ.

2.1. Existence of transition waves.

Lemma 2.2. Under the assumptions of Theorem 1, for all γ > 2
√
µ, there exists a function

c ∈ L∞(R) with c = γ, such that (2.1) admits some uniformly continuous generalized sub and
supersolutions φ(z, t), φ(z) satisfying

(1) φ(∞) = 0, φ(−∞, t) = 1 uniformly in t ∈ R, and φ is nonincreasing in R
(2) 0 ≤ φ < φ ≤ 1 uniformly in t ∈ R, ∀z ∈ R, inft∈R(φ − φ)(z, t) > 0 and ∀τ ,

limz→∞
φ(z+τ)
φ(z,t)

< 1 uniformly in t ∈ R

(3) ∃ξ ∈ R, inft∈R φ(ξ, t) > 0

Condition 1 says that φ and φ behave like transition waves. Condition 2 means that φ
and φ are ordered and asymptotically close to each other, but distinct. Lastly, condition 3
ensures that the subsolution is not identically equal to zero.

Proof. Since f is KPP, a solution to the linearization of problem (3) near 0 gives a super
solution of (3). The linearized problem is

(5)

{
∂tφ− ∂zzφ− c(t)∂zφ = µ(t)φ, z ∈ R, t ∈ R

limz→−∞ φ(z, t) = 1 and limz→∞ φ(z, t) = 0 uniformly in t ∈ R

Fix γ > 2
√
µ. We choose a speed c = c(t) so that there is an exponential solution of the

form ψ(z) = e−κz for the linear problem (5). We have by direct computation

0 = ∂tφ− ∂zzφ− c(t)∂zφ− µ(t)φ = (−κ2 + κc(t)− µ(t))e−κz

⇒ −κ2 + κc(t)− µ(t) = 0

⇒ c(t) =
µ(t)

κ
+ κ
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We impose the condition c = γ. Namely, by an equivalent definition of the least mean of c
and linearity of the integral

γ = lim
T→∞

inf
t∈R

1

T

∫ t+T

t

(
µ(s)

κ
+ κ

)
ds =

µ

κ
+ κ

We solve for κ in −κ2 + κc− µ = 0. Since γ > 2
√
µ, we obtain two positive real roots:

κ =
γ ±

√
γ2 − 4µ

2

Define κ to be the smallest root, i.e.

κ :=
γ −

√
γ2 − 4µ

2

By extending f(t, ·) linearly outside [0, 1], since ψ ≥ 0, we can assume that ψ is a global
supersolution. Set φ(z) = min(ψ(z), 1). We note in particular that the form c = κ +
κ−1µ of the speed naturally appears when choosing a speed for which such a ψ exists. The
construction of the subsolution φ is a bit harder and relies on an equivalent definition of the
least mean, and on assumption (6) on f given in the introduction. By assumption (6) on f ,
we know that we can find C > 0, γ, δ ∈ (0, 1] such that for a.e. (t, u) ∈ R× [0, δ], we have

(6) f(t, u) ≥ µ(t)u− Cu1+γ

It is therefore enough to find a function A ∈ W 1,∞(R) and a constant h > κ such that the
function ϕ(z) := ψ(z)− eA(t)−hz satisfies

(7) ∂tϕ− ∂zzϕ− c(t)∂zϕ ≤ µ(t)ϕ− Cϕ1+γ, for a.e. z > 0, t ∈ R

The authors prove the following variational characterization of the least mean of a function
B ∈ L∞(R):

(8) B = sup
A∈W 1,∞(R)

ess inf
t∈R

(A′ +B)(t)

Computing the partial derivatives of ϕ explicitely gives

∂tϕ− ∂zzϕ− c(t)∂zϕ− µ(t)ϕ(t) = [−A′(t) + h2 − c(t)h+ µ(t)]eA(t)−hz

so it is enough to show that

(9) A′(t) +B(t) ≥ Cϕ1+γehz−A(t), for a.e. z > 0, t ∈ R

where

B(t) := −h2 + c(t)h− µ(t)

Choosing h ∈ (κ, (1 + γ)κ) and using ϕ ≤ ψ gives

(10) ϕ1+γehz−A(t) ≤ e−κ(1+γ)z+hz−A(t) = e−A(t)+(h−κ(1+γ))z ≤ e−A(t), ∀z > 0, t ∈ R

So if we can show ess infR(A′ + B) > 0 for some A ∈ W 1,∞(R), then up to adding a positive
constant to A and using (10), equation (9) holds. By equation (8), it suffices to show that
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B > 0. But

B = lim
T→∞

inf
t∈R

1

T

∫ t+T

t

(
−h2 + c(s)h− µ(s)

)
ds

= lim
T→∞

inf
t∈R

1

T

∫ t+T

t

(
−h2 + c(s)h− µ(s)

)
ds(as c(s) = µ(s)

κ
+ κ)

= lim
T→∞

inf
t∈R

1

T

∫ t+T

t

h

(
κ− h+ µ(s)

(
1

κ
− 1

h

))
ds

= h

(
κ− h+ µ

(
1

κ
− 1

h

))
(linearity of the integral)

= −h2 + γh− µ(since γ = c = µ
κ

+ κ)

Since κ is the smallest root of −x2 + xγ − µ = 0, we can choose h ∈ (κ, (1 + γ)κ) such that

B > 0. So, there exists A ∈ W 1,∞(R) such that (9) holds. Moreover, we can add a constant
α < 0 to A(t) so that ϕ < δ. So, ϕ is a subsolution of (3) in (0,∞) × R. Since ϕ ≥ 0 if

and only if −κz ≥ A(t) − hz, i.e. if and only if −κz ≥ A(t)
h−κ , α can be chosen so that ϕ ≤ 0

for z < 0. Hence, by the arbitrariness of the extension of f(t, u) for u < 0, it follows that
φ(z, t) := max(ϕ(z, t), 0) is a generalized subsolution of (3). The only property of φ, φ that
is not immediate from the construction is: for any τ > 0, we obtain

lim
z→∞

φ(x+ τ)

φ(z, t)
= lim

z→∞

e−κτ−κz

e−κz − eA(t)−hz = lim
z→∞

e−κτ

1− eA(t)−(h−κ)z
= e−κτ < 1

�

Proof. (of (1) of Theorem 2.1) Fix γ > 2
√
µ. We want to construct a generalized transition

wave in direction e ∈ SN−1 with speed c satisfying c = γ and a profile φ decreasing with
respect to z. The authors obtain existence of a solution by considering for each n ∈ N the
solution φn of the problem{

∂tφ− ∂zzφ− c(t)∂zφ = f(t, φ) z ∈ R, t > −n
φ(z,−n) = φ(z) z ∈ R

Note that such solutions φn exists by a paper by Amann ([10]).By the comparison principle,
we obtain φ ≤ φn ≤ φ so in particular φn is nonincreasing since φ is nonincreasing by lemma
1. Indeed, suppose by contradiction that ∃z0 > 0 such that φn(z+ z0, t)−φn(z, t) > 0. Since
(z, t) 7→ φn(z + z0, t) − φn(z, t) solves the PDE with initial condition φ(z + z0) − φ(z) ≤ 0,
then the comparison principle implies that φn(z + z0, t) − φn(z, t) ≤ 0. Contradiction. Let
K be a compact subset of R× R. Since

sup
n∈N
‖φn‖W 2,1

p (K) ≤ ‖φ‖W 2,1
p (K) <∞

andW 2,1
p (K) is a reflexive Banach space (i.e. every bounded sequence has a weakly convergent

subsequence), it follows that there exists φ ∈ W 2,1
p (K) such that φn ⇀ φ in W 2,1

p (K). Thus,
it follows by continuity of the embedding that φn ⇀ φ in C(K). Moreover, we have by
the Rellich-Kondrachov embedding theorem ([10], Theorem 6.2. page 144) that for any
p ∈ (N,∞), W 2,1

p (K) is compactly embedded in C(K). Now, let (φnk)k∈N be any subsequence
of (φn)n∈N. By compactness of the embedding and the equivalence of compactness and
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sequential compactness, there exists a subsequence (φnkl )l∈N of (φnk)k∈N such that φnkl → φ

in C(K) where we have used the uniqueness of the weak limit φ in C(K). By arbitrariness of
(φnk)k∈N, it follows that φn → φ in C(K), and φ is a nonincreasing solution of the problem

∂tφ− ∂zzφ− c(t)∂zφ = f(t, φ)z ∈ R, t ∈ R

which statisfies φ ≤ φ ≤ φ. The rest of the proof consists of showing the two remaining
properties of a transition wave: φ is decreasing as a function of z, and φ(−∞, t) = 1 uniformly
in t. The first one holds by the parabolic strong maximum principle. Indeed, since φ is
nonincreasing, we have φ(z+z0, t)−φ(z, t) ≤ 0 for all z0 > 0, for all z ∈ R, t ∈ R. Suppose by
contradiction that φ is not decreasing. Then, there is z0 > 0 such that φ(z+z0, t)−φ(z, t) = 0.
But then, by the parabolic strong maximum principle, we infer φ(z + z0, t)− φ(z, t) = 0 for
all z ∈ R, t ∈ R., so φ is constant, which is a contradiction. The second property, namely
φ(−∞, t) = 1 uniformly in t, is shown by using a change of coordinate system, similar
arguments as above, and direct computation. Define

θ := lim
z→−∞

inf
t∈R

φ(z, t)

We wish to show that θ = 1. Consider a sequence (tn)n≥1 ⊂ (0,∞) such that limn→∞ φ(−n, tn) =
θ. Define the functions

vn(z, t) := φ

(
z − n−

∫ tn+1

tn

c(s)ds, t+ tn

)
A simple computation shows that

∂tvn − ∂zzvn = f(t+ tn, vn), z ∈ R, t ∈ R

Moreover, we have

lim
n→∞

vn(0, 0) = lim
n→∞

φ

(
−n−

∫ tn+1

tn

c(s)ds, tn

)
= lim

n→∞
φ(−n, tn) = θ

and

(11) lim inf
n→∞

vn(z, t) ≥ θ

locally uniformly in (z, t) ∈ R2. Now, by the exact same method as detailed above when
we used the Rellich-Kondrachov embedding theorem and sequential compactness, we obtain
that (vn)n≥1 converges weakly in W 2,1

p,loc(R
2) and strongly in L∞loc(R

2) to some function v which
satisfies

(12) ∂tv − ∂zzv = g(z, t), a.e. z ∈ R, t ∈ R

where g is, up to a subsequence, the weak limit in Lploc(R
2) of f(t + tn, vn). Moreover, by

(11) and construction of v, θ is the minimum value of v and v(0, 0) = θ. So, by the strong
minimum principle, v ≡ θ in R × (−∞, 0]. So by (12), g ≡ 0 in R × (−∞, 0), hence for a.e.
(z, t) ∈ R × (−∞, 0). By Lipschitz continuity of f(t, ·), there exists a constant c > 0 such
that

|f(t, θ)− f(t, vn)| ≤ c|θ − vn|
So we obtain

ess inf
s∈R

f(s, θ) ≤ ess inf
s∈R

f(s, vn) + c|θ − vn| ≤ g(z, t) + c|θ − vn|
n→∞→ g(z, t) ≡ 0
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for a.e. z ∈ R, t ∈ (−∞, 0). Since, f is KPP, we conclude that f(t, θ) = 0 for all t ∈ R so
either θ = 0 or θ = 1. Take ξ ∈ R from (3) of lemma 2.2. Then, since φ is decreasing as in
its first argument and φ ≥ φ by construction, we obtain

θ = lim
z→−∞

φ(z, t) ≥ inf
t∈R

φ(ξ, t) ≥ inf
t∈R

φ(ξ, t) > 0

so θ = 1. �

2.2. Nonexistence of transition waves.

Proof. (of (2) of Theorem 2.1) To prove the non-existence of transition waves with speed
c = c(t) with least mean satisfying c < 2

√
µ, we proceed by contradiction. Assume that there

exists such a transition wave solution u. We will derive the contradiction that c ≥ 2
√
µ. To

reach the contradiction, we use the definition of least mean, the assumption that f(t, ·) is C1

near 0, and a technical lemma to construct subsolutions un that propagate with speed less
than 2

√
µ and then compare these subsolutions with the transition wave u.

Specifically, based on an auxiliary result from the paper [12], and on very similar techniques
as in the proof of our lemma 2.2, the authors show the existence of a family of uniformly
continuous subsolutions (vn)n≥1 of

∂tv −∆v = (µ(t+ tn)− ε)v

for ε > 0 small enough, such that the subsolutions satisfy

(13)


inf0≤t<ηT,|x|≤γt vn(x, t) > C

vn(x, 0) = 0 |x| > R

0 ≤ vn ≤ 1 some C > 0

where T > 0, η ∈ N ∪ {∞}, and γ > 0 are chosen in terms of tn, and tn is such that

(14)
1

nT

∫ tn+nT

tn

c(s)ds < c+ 2ε

which is possible by definition of the least mean. let σ > 0 be obtained by the regularity
assumption on f near 0: f(t, ω) ≥ (µ(t) − ε)ω for all ω ∈ [0, σ]. So, we obtain a sequence
(un)n≥1 of uniformly continuous subsolutions of the problem

∂tu−∆u = f(t, u)

of the form un(x, t) = σvn(x, t − tn). Since u is assumed to be a transition wave, for any
R > 0, there is L > 0 large enough so that

inf
|x|<R

u(x− Le+ e

∫ t

0

c(s)ds, t) > σ

for all t ∈ R so we may assume that for all n ∈ N and x ∈ R, we have

u(x− Le+ e

∫ t

0

c(s)ds, t) ≥ un(x, t)

An application of the comparison principle and taking the lim inf show that

lim inf
n→∞

u(γnnTe+ e

∫ tn

0

c(s)ds, tn + nT ) ≥ lim inf
n→∞

un(γnnT, tn + nT ) ≥ σC > 0
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by (13). So by properties of the profile of a transition wave, the argument must be finite,
with

∞ > lim sup
n→∞

(
γnnT +

∫ tn

0

c(s)ds

)
> lim sup

n→∞

(
γnnT +

∫ tn+nT

tn

c(s)ds

)
(as c ≥ 0)

> lim sup
n→∞

(
2
√
µ− 2ε− c− 3ε

)
nT(by (14))

which implies that 2
√
µ− 2ε− c− 3ε ≤ 0 after rearranging and letting ε→ 0 that c ≥ 2

√
µ.

Contradiction. �

2.3. Application to transition waves in random environment. Let (Ω,F ,P) be a
probability space, and consider the reaction-diffusion equation with random nonlinear term

(15) ∂tu−∆u = f(t, ω, u), x ∈ R, t ∈ R, ω ∈ Ω

Assume that f satisfies all the conditions listed in the introduction. Moreover, suppose that

∀t ∈ R, u 7→ f(t,ω,u)
u

is nonincreasing in [1 − δ, 1] for some δ = δ(ω) ∈ (0, 1), and f is a
stationary ergodic random function with respect to t. This last condition means that there
exists a group (πt)t∈R of transformations of Ω such that the following hold:

• (πt)t∈R are measure-preserving: ∀t ∈ R, ∀A ∈ F , we have P(A) = P(π−1
t (A)) (even

when πt(A) 6= A)
• stationarity: ∀(t, s, ω, u) ∈ R× R× Ω× [0, 1], f(t+ s, ω, u) = f(t, πsω, u)
• ergodicity: for all A ∈ F , if πtA = A for all t ∈ R, then P(A) = 0 or 1.

Intuitively, stationarity of f means that f will have the same statistical properties no matter
when we look:

E[f(t, ·)] =

∫
Ω

f(t, ω)dP(ω) =

∫
Ω

f(0, πtω)dP(ω) = E[f(0, ·)]

We think of ergodicity in terms of the ergodic theorems, namely averages taken in t equal
averages taken in ω. The next theorem relies on the definition of random transition wave
(introduced by Shen in [9]) in the direction e ∈ SN−1 of equation (15). Such a solution is a
function u : RN × R× Ω→ [0, 1] which satisfies:

• ∃c̃ : Ω→ R,∃φ̃ : R× Ω→ [0, 1] bounded measurable functions such that

u(x, t, ω) = φ̃(x.e−
∫ t

0

c̃(πsω)ds, πtω) for all (x, t, ω) ∈ RN × R× Ω

• For almost every ω ∈ Ω, (x, t) 7→ u(x, t, ω) is a solution of (15)

• For almost every ω ∈ Ω, limz→−∞ φ̃(z, ω) = 1 and limz→∞ φ̃(z, ω) = 0

Theorem 2.3. Let e ∈ SN−1. Under the previous hypotheses, for all γ > 2
√
µ, there

exists a random transition wave u in direction e with random transition speed c̃ such that
c(t, ω) := c̃(πtω) has least mean γ, and a random profile φ̃ which is decreasing with respect to
z. Moreover for all γ < 2

√
µ, there doesn’t exist any random transition wave u in direction

e with random transition speed c̃ such that c(t, ω) := c̃(πtω) has least mean γ.

We note first that for this statement to make sense, we would like that µ is P-almost surely
constant. It is indeed the case, as shown in the following lemma.
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Lemma 2.4. Let g̃ ∈ L∞(Ω,R) and define

G(ω) = sup
T>0

inf
t∈R

1

T

∫ t+T

t

g̃(πsω)ds

Then G is constant on a set of probability 1. We call this constant value the least mean of
the random stationary ergodic function g defined by g(t, ω) := g̃(πtω) and we denote it g.

Proof. Fix any ε > 0. Define Aε = {ω ∈ Ω : G(ω) < ess infΩG + ε} ∈ F . Then, P(Aε) > 0
since we take the essential infimum with respect to P, and we have a strict inequality. We
easily compute that G(πrω) = G(ω) for all r ∈ R. Indeed, we have

G(πrω) = sup
T>0

inf
t∈R

1

T

∫ t+T

t

g̃(πsπrω)ds

= sup
T>0

inf
t∈R

1

T

∫ t+T

t

g̃(πs+rω)ds(group property)

= sup
T>0

inf
t∈R

1

T

∫ t+r+T

t+r

g̃(πsω)ds

= sup
T>0

inf
t∈R

1

T

∫ t+T

t

g̃(πsω)ds

= G(ω)

So πrAε = Aε for all r ∈ R. So, by ergodicity P(Aε) = 0 or 1. But we already have that
P(Aε) > 0, so P(Aε) = 1. Letting ε→ 0, we obtain G ≡ ess infΩG P-a.s.. �

Proof. (of Theorem 2.3) First note that as a direct corollary of Theorem 2.1, we obtain the
nonexistence for γ < 2

√
µ in the random environment. So, it remains to prove the existence

of random transition waves in the case γ > 2
√
µ. The proof is divided into three steps.

We already know by Theorem 2.1. that we can find a deterministic transition wave for each
ω ∈ A0, where A0 is the set of full probability obtained in Lemma 2.4.. So, in some sens we
would like to concatenate all these transition waves to obtain a random transition wave. In
order to achieve this, we will derive a general (deterministic) uniqueness result for the profile
of transition waves.

Step 1: Let c ∈ L∞(R) and f be KPP. Let I be an open interval and ϕ, ψ be respectively a
sub and a supersolution of

(16) ∂tφ− ∂zzφ− c(t)∂zφ = f(t, φ), z ∈ I, t ∈ R

which are uniformly continuous and satisfy 0 ≤ ϕ ≤ ψ ≤ 1 in I ∈ R. In this context,
we have

J := {z ∈ I : inf
t∈R

(ϕ− ψ)(z, t) = 0}

is either empty or coincides with I.
As usual, it is enough to show that J is both open and closed in the topology of

I. Let (zn)n ⊂ J be such that zn → z in I as n → ∞. Then, we have by uniform
continuity of φ and ψ

inf
t∈R

(ϕ− ψ)(z, t) = lim
n→∞

inf
t∈R

(ϕ− ψ)(zn, t) = 0

so z ∈ J . This proves that J is closed. We show that J is open. Let z0 ∈ J . So,
we can take a minimizing sequence (tn)n with limn→∞(ϕ − ψ)(z0, tn) = 0. For each
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n, take Φn(z, t) := (ψ − ϕ)(z, t + tn). By direct computation, since ψ and ϕ are
respectively a sub and a supersolution of (16), we obtain

∂tΦn − ∂zzΦn − c(t+ tn)∂zΦn − ζ(z, t+ tn)Φn ≥ 0

for a.e. z ∈ I, t ∈ R, where

ζ(z, t) :=
f(t, ψ)− f(t, ϕ)

ψ − ϕ
≤ ‖f(t, ·)‖Lip <∞

since f(t, ·) is Lipschitz continuous. So ζ ∈ L∞(I × R). Take δ > 0 such that
[z0 − δ, z0 + δ] ⊂ I. By the parabolic weak Harnack inequality (Theorem 7.22, [11]),
there are constants p, C > 0 such that for all n

‖Φn‖Lp((z0−δ,z0+δ)×(−2,−1)) ≤ C inf
(z0−δ,z0+δ)×(−1,0)

Φn ≤ CΦn(z0, 0)

But the right-hand side goes to 0 as n → ∞ by choice of (tn)n so we obtain that
Φn → 0 in Lp((z0 − δ, z0 + δ) × (−2,−1)) as n → ∞. Now, by uniform continuity
of ψ and ϕ and the definition of Φn, we immediately obtain equicontinuity of (Φn)n,
and we have uniform boundedness by uniform continuity on a bounded domain, so
by the Arzela-Ascoli theorem, it follows that, up to subsequences, Φn → 0 uniformly
in (z0 − δ, z0 + δ)× (−2,−1) as n→∞. So, (z0 − δ, z0 + δ) ⊂ J . Hence, J is open.

Step 2: The next step is to use the strong maximum principle-type result from step 1 to derive
a uniqueness result. We have seen this kind of argument before so we just state the
result:
Assume that c ∈ L∞(R) and that f is KPP with the extra assumption listed at the
beggining of this section. Let φ, ψ be a subsolution and a positive supersolution of the
equation (4) for the profile which are uniformly continuous and satisfy 0 ≤ ψ, ϕ ≤ 1,

ψ(·, t) is nonincreasing, and ∀τ > 0, limR→∞ supz>r,t∈R
ϕ(z,t)

ψ(z−τ,t) < 1. Then, ϕ ≤ ψ in

R2.
Step 3: We can now conclude by using step 2. Fix ω ∈ A0. Then, by Theorem 2.1, i.e. the

existence of deterministic generalized transition waves, we obtain a solution φ(z, t, ω)
with speed c(t, ω) satisfying c(·, ω) = γ > 2

√
µ. It is easily seen that the conditions

of the uniqueness result from step 2 are satisfied for φs(z, t, ω) := φ(z, t− s, πsω) and
φ(z, t, ω). So, we obtain

∀(z, t, s, ω) ∈ R× R× R× Ω, φ(z, s+ t, ω) = φ(z, t, πsω)

namely φ(z, t, ω) is stationary ergodic with respect to t, so φ̃(z, ω) := φ(z, 0, ω) and
c̃(ω) := c(0, ω) are the profile and the speed of a random transition wave.

�

2.4. Front-like solutions. Finally, we have the following result which approximately de-
scribes the level set {x ∈ RN : u(x, t) = 1

2
} as t→∞.

Theorem 2.5. (Spreading properties) Let f satisfy the hypotheses listed in the introduction
and let u0 ∈ C(RN) be such that 0 ≤ u0 ≤ 1, u0 6= 0. Then, the solution u of the Cauchy
problem {

∂tu−∆u = f(t, u) x ∈ RN , t > 0

u(x, 0) = u0(x) x ∈ RN
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satisfies

∀γ < 2
√
µ

+
, lim
t→∞

inf
|x|<γt

u(x, t) = 1

where µ
+

:= supT>0 inft>0
1
T

∫ t+T
t

g(s)ds and if in addition u0 is compactly supported, then

∀σ > 0,

lim
t→∞

sup
|x|≥2
√
t
∫ t
0 µ(s)ds+σt

u(x, t) = 0

Proof. To illustrate the proof technique, we prove only the second case. The proof of the first
case is similar in spirit, and uses techniques already shown in the proof of Theorem 2.1 above.
Since u0 is assumed to be compactly supported, we can find R > 0 such that supp(u0) ⊂ BR.
For every κ > 0 and e ∈ SN−1, we define

vκ,e(x, t) := exp

(
−κ(x · e−R− κt) +

∫ t

0

µ(s)ds

)
Direct computation gives

∂tvκ,e −∆vκ,e − µ(t)vκ,e = 0, x ∈ RN , t > 0

and for all x ∈ BR,

x · e−R < 0

so

−κ(x · e−R− κt) > 0

Therefore, since also µ(t) ≥ 0 for all t > 0, we obtain

vκ,e(x, t) > 1

Since f is KPP, the functions vκ,e are supersolutions of ∂tu−∆u = f(t, u). Since, vκ,e(x, t) > 1
for all x ∈ BR and supp(u0) ⊂ BR, then vκ,e ≥ u0, hence we obtain by the comparison
principle that vκ,e ≥ u everywhere. Let σ > 0 be arbitrary. Let x ∈ RN and t > 0 be such

that |x| ≥ 2
√
t
∫ t

0
µ(s)ds+ σt. Take e = x

|x| and κ = |x|−R
2t

. Then, u(x, t) ≤ vκ,e(x, t) implies

(17) u(x, t) ≤ exp

(
−(|x| −R)2

4t
+

∫ t

0

µ(s)ds

)
Take t > R

σ
. Then,

|x| −R ≥ 2

√
t

∫ t

0

µ(s)ds+ σt−R > 0
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so (17) becomes

u(x, t) ≤ exp

−
(

2
√
t
∫ t

0
µ(s)ds+ σt−R

)2

4t
+

∫ t

0

µ(s)ds


≤ exp

−σt−R
t

√
t

∫ t

0

µ(s)ds− (σt−R)2

4t


= exp

−σ2t

4
− R2

4t
− σ

√
t

∫ t

0

µ(s)ds+R

√
t−1

∫ t

0

µ(s)ds+
σR

2t


where the right-hand tends to 0 as t→∞. So,

lim
t→∞

sup
|x|≥2
√
t
∫ t
0 µ(s)ds+σt

u(x, t) = 0

Since σ > 0 was arbitrary, we have obtained the result. �

Theorem 2.5 gives us bounds on the location of the level set {x ∈ RN : u(x, t) = 1
2
} as

t → ∞. It is natural to ask how these bounds vary with respect to the nonlinearity f and
with respect to a coefficients matrix A if we consider the more general operator div(A∇u)
instead of simply ∆. This has not been studied for the time-heterogeneous equation yet, so
we consider instead the space-heterogeneous case.

3. Relation between spreading speed and coefficient and reaction in the
space heterogeneous case in random environment

Since less is known about the time-heterogeneous case, we consider instead the space
heterogeneous case.{

∂tu− ∂x(a(x, ω)∂xu) = f(x, ω, u) in (0,∞)× R× Ω

u(0, x, ω) = u0(x) on {0} × R× Ω

where (Ω,F ,P) is a probability space and we assume that the derivative of the reaction
rate (x, ω) ∈ R × Ω 7→ fs(x, ω, 0) and the diffusion coefficient a : R × Ω → (0,∞) are
random stationary ergodic functions, infx∈R a(x, ω) > 0 almost surely, and a, a′, f and
µ(x, ω) := fs(x, ω, 0) are P-almost surely uniformly continuous and bounded with respect to
x uniformly in s. Moreover, f is assumed to be KPP P-almost surely. The problem is to find
a speed w∗ = w∗(a, f) > 0 such that the solution u = u(t, x, ω) of our problem satisfies for
a.e. ω ∈ Ω: {

limt→∞ infx∈[0,wt) |u(t, x, ω)− 1| = 0 w ∈ (0, w∗)

limt→∞ supx≥wt u(t, x, ω) = 0 w > w∗

This corresponds to studying the level sets of u(t, ·, ω) as t → ∞. It is known that such a
speed w∗ exists ([13]). We are interested in the relation between w∗ and a and f . Note that
this section relies heavily on results from a previous paper by Berestycki and Nadin ([13]).
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3.1. A variational formula. As before, let µ(x, ω) := fs(x, ω, 0). Assume that u has the
form u(x, t, ω; γ) = eγtφγ(x, ω). Computing the linearized version of the PDE gives the new
problem:

(a(x, ω)φ′γ)
′ + µ(x, ω)φγ = γφγ

So we consider the linear second order elliptic operator

Lω0φ = (a(x, ω)φ′)′ + µ(x, ω)φ

Define the more general operator Lωpφ := e−pxLω0 (epxφ) for p ∈ R and φ ∈ C2(R). After a
basic computation, we see

Lωpφ = (a(x, ω)φ′)′ − 2pa(x, ω)φ′ + (p2a(x, ω)φ′ − pa(x, ω′) + µ(x, ω))φ

Define the generalized principle eigenvalues of the operator Lωp as follows

kp
ω
(a, µ) := inf{λ ∈ R : ∃φ ∈ A s.t. Lωpφ ≤ λφ}

kp
ω(a, µ) := sup{λ ∈ R : ∃φ ∈ A s.t. Lωpφ ≥ λφ}

where

A := {f ∈ C(R) : f > 0 in R,
f ′

f
∈ L∞(R), lim

|x|→∞

ln f(x)

|x|
= 0}

We quote a useful lemma from [13].

Lemma 3.1. (1) kωp (a, µ) ≥ kω0 (a, µ) for all p ∈ R and ω ∈ Ω

(2) kωp (a, µ) = kωp (a, µ) P-a.s.

(3) if kωp (a, µ) > Λω
1 (a, µ), then kp(a, µ) := kωp (a, µ) = kωp (a, µ) is a classical principle

eigenvalue (i.e. there exists φ ∈ A such that Lωpφ = kωp (a, µ)φ in R) in which case we
have the variational formula

w∗(a, f) = min
p>0

kp(a, µ)

p

where

Λω
1 (a, µ) = sup

α∈H1(R)\{0}

∫
R (−a(x, ω)α′(x)2 + µ(x, ω)α(x)2) dx∫

R α(x)2dx

Proposition 3.2. We show that

kp(a, µ) = inf
θ∈B

k0(a, µ+ a(θ + p)2), P− a.s.

where B := {θ : R× Ω→ R measurable in ω ∈ Ω, θ(·, ω) ∈ L∞(R), θ, stationary ,E[θ] = 0}.

Proof. It is easily shown (by contradiction) that functions f ∈ A satisfy in particular

(18) lim inf
R→∞

f(R)∫ R
0
f(x)dx

= 0

Let ε > 0. By definition of kωp (a, µ), we can choose p ∈ R, ω ∈ Ω and φ ∈ A such that

Lωpφ ≥ (kp(a, µ)− ε)φ in R

We show that if θ ∈ B, then ψ(x) := φ(x)e
∫ x
0 θ(y,ω)dy is in A:
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• We have

lnψ(x)

|x|
=

lnφ(x)

|x|
+

∫ x
0
θ(y, ω)dy

|x|
→ E[θ(x, ·)] = 0 as |x| → ∞

by the Birkhoff ergodic theorem for continuous processes and since φ ∈ A.

• We have by direct computation: ψ′(x)
ψ(x)

= φ′(x)
φ(x)

+ θ(x, ω) ∈ L∞(R) and ψ > 0 in R since

φ > 0 in R

Therefore, by multiplying Lωpφ ≥ (kp(a, µ) − ε)φ by ψ, integrating over x ∈ (−R,R), using
(18) and integration by parts, we obtain

(kp(a, µ)− ε)
∫ R

−R
ψ2dx ≤ (o(1) + Λω

1 (a, µ+ a(p+ θ)2))

∫ R

−R
ψ2dx

so we have almost surely

kp(a, µ)− ε ≤ o(1) + Λω
1 (a, µ+ a(p+ θ)2)

Using a result from the previous paper [13], we know that

k0(a, µ+ a(p+ θ)2) = Λω
1 (a, µ+ a(p+ θ)2)

so taking the infimum over θ ∈ B, we conclude that

kp(a, µ) ≤ inf
θ∈B

k0(a, µ+ a(θ + p)2)

almost surely.
We can obtain the converse inequality

kp(a, µ) ≥ inf
θ∈B

k0(a, µ+ a(θ + p)2)

using similar techniques. More precisely, take p ∈ R and a set Ω1 ⊂ Ω of probability 1 as in
pat (3) of lemma 3.1. and such that k0(a, µ) = Λω

1 (a, µ). Then, assuming kp(a, µ) > k0(a, µ)
and using that kp(a, µ) = k−p(a, µ) by lemma 3.2. in [2], we can take φ, ψ ∈ A such that

Lωpφ = kp(a, µ)φ in R

and

Lω−pψ = kp(a, µ)ψ in R

Let α :=
√
φψ ∈ A and

θ := − φ
′

2φ
+
ψ′

2ψ

By Corollary 3.4. in [2], we obtain

θ(x+ y, ω) = θ(x, πyω), ∀(x, y, ω) ∈ R× R× Ω1

so θ is a random stationary ergodic functions and we can apply the Birkhoff ergodic theorem
to conclude that for all ω ∈ Ω1,

E[θ] = lim
x→∞

1

x

∫ x

0

θ(y, ω)dy = lim
x→∞

1

x

[
−1

2
ln(φ(y, ω)) +

1

2
ln(ψ(y, ω))

]x
0

= 0

since functions in A are stricly positive in R. This proves that θ ∈ B. We have by direct
computation

(aα′)′ = −(µ+ |p+ θ|2a− kp(a, µ))α
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So, we have constructed a principal eigenfunction α ∈ A. By proposition 2.2. from [13], We
obtain

kp(a, µ) = kω0 (a, µ+ |p+ θ|2a) = k
ω

0 (a, µ+ |p+ θ|2a)

But by the first part of the proof

kp(a, µ) ≤ inf
θ̃∈B

k0(a, µ+ a(θ̃ + p)2)

so θ minimizes the infimum on the right-hand side. By convexity of p 7→ kp(a, µ) ([13]), there
exists p+ ≥ 0 such that kp(a, µ) = k0(a, µ) for p ∈ [0, p+] and kp(a, µ) > k0(a, µ) for p > p+.
Take p > p+ and let t = p+

p
∈ [0, 1) and θ ∈ B such that k0(a, µ+ |p+ θ|2a) = kp(a, µ). Since

µ 7→ kp(a, µ) is convex ([13]), we obtain

k0(a, µ+ |p+ + tθ|2a) = k0(a, µ+ (1− t2)0 + t2|p+ θ|2a)

≤ (1− t2)k0(a, µ+ 0) + t2k0(a, µ+ |p+ θ|2a)

= (1− t2)k0(a, µ) + t2kp(a, µ)

Taking the infimum, we obtain

inf
θ∈B

k0(a, µ+ |p+ + tθ|2a) ≤ (1− t2)k0(a, µ) + t2kp(a, µ)

Letting p→ p+, so t→ 1, we obtain

inf
θ∈B

k0(a, µ+ |p+ + tθ|2a) ≤ kp+(a, µ) = k0(a, µ)

It remains to consider the case p ∈ (0, p+). Take t = p
p+
∈ [0, 1). Exactly as above,

inf
θ∈B

k0(a, µ+ |p+ + tθ|2a) ≤ k0(a, µ) = kp(a, µ)

almost surely. �

3.2. Refining the environment slows down the propagation. Define the rescaled co-
efficient and reaction aL(x, ω) = a( x

L
, ω) and fL(x, ω, s) = f( x

L
, ω, s) for all (x, ω, s) ∈

R× Ω× [0, 1]. We will show that:

Theorem 3.3. (Dependence with respect to the scaling of the coefficient and reaction) The
function

L > 0 7→ w∗(aL, fL)

is nondecreasing.

We start by interpreting the result. Write L = 1
M

for M > 0. We imagine putting a
grid on the spacetime domain. Taking L > 0 smaller and smaller (hence M > 0 larger and
larger) is equivalent to refining the grid. So the fact that function M > 0 7→ w∗(a 1

M
, f 1

M
) is

nonincreasing means that fragmentation of the environment slows down the propagation.

Proof. For all L > 0, a straightforward computation gives kp(aL, µL) = 1
L2kpL(a, L2µ) for all

p ∈ R. Let L > 1. By a Proposition 3.2, we have

kLp(a, L
2µ) = inf

θ∈B
kω0 (a, a(θ + Lp)2 + L2µ), P− a.s.
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Since L 7→ k0(a, L2d) is concave for all bounded uniformly continuous function d (Proposition
3.6 in [14]), we obtain

kLp(a, L
2µ) ≥ inf

θ
L
∈B
kω0 (a, L2(a

(
θ

L
+ p

)2

+ µ))

≥ L2 inf
θ
L
∈B
kω0 (a, a

(
θ

L
+ p

)2

+ µ)

≥ L2kp(a, µ)

Hence, by the computations above, we obtain

ω∗(aL, fL) = min
p>0

kp(aL, µL)

p

= min
p>0

kLp(a, L
2µ)

L2p

≥ min
p>0

kp(a, µ)

p

= ω∗(a, f)

But the calculations leading to
ω∗(aL, fL) ≥ ω∗(a, f)

work for any a and f . Therefore, take any L1 ≥ L2 > 0 and define L := L1

L2
> 1, ã := aL2 and

f̃ = fL2 . We obtain

ω∗(aL1 , fL1) = w∗(ãL, f̃L) ≥ ω∗(ã, f̃) = w∗(aL2 , fL2)

Hence L > 0 7→ w∗(aL, fL) is nondecreasing. �

3.3. Heterogeneity increases the spreading speed. We want to compare heterogeneous
and homogenized coefficients and reactions. We show that heterogeneity speeds up the
propagation.

Theorem 3.4.

w∗(a, f) ≥ w∗(E

[
1

a

]−1

,E[f ])

Proof. We first show that k0(a, µ) ≥ E[µ]. We take Ω1 ⊂ Ω as in lemma 3.1 and λ k
ω

0 (a, µ).
By definition of k

ω

0 (a, µ), we can find φ ∈ A such that Lω0φ ≤ λφ in R, i.e.

(a(x, ω)φ′)′ + µ(x, ω)φ ≤ λφ in R

Dividing by φ > 0 since φ ∈ A and integrating by parts over (−R,R) with h1 = 1
φ

and

dh2 = (a(x, ω)φ′)′dx gives

2Rλ ≥
∫ R

−R

(a(x, ω)φ′)′

φ
dx+

∫ R

−R
µ(x, ω)dx

≥ a(R,ω)
φ′(R)

φ(R)
− a(−R,ω)

φ′(−R)

φ(−R)
+

∫ R

−R

a(x, ω)(φ′(x))2

(φ(x))2
dx+

∫ R

−R
µ(x, ω)dx(IBP)

≥ a(R,ω)
φ′(R)

φ(R)
− a(−R,ω)

φ′(−R)

φ(−R)
+

∫ R

−R
µ(x, ω)dx(as a > 0)
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Dividing by 2R, letting R→∞ and using the Birkhoff ergodic theorem, i.e. that

lim
R→∞

1

2R

∫ R

−R
µ(x, ω)dx = E[µ]

almost surely, we obtain, as φ′

φ
∈ L∞(R) since φ ∈ A, λ ≥ E[µ]. By arbitrariness of λ ≥

k
ω

0 (a, µ) and as k0(a, µ) = k
ω

0 (a, µ) by choice of ω ∈ Ω1, it follows that

(19) k0(a, µ) ≥ E[µ]

By Proposition 3.2, we can choose for almost every ω ∈ Ω as sequence (θn)n≥1 ⊂ B such that

kω0 (a, a|p+ θn|2 + µ) ≤ kωp (a, µ) +
1

n

On the other hand, by equttion (19), for each n ≥ 1, there exists Ωn ⊂ Ω with full probability
such that

kω0 (a, a|p+ θn|2 + µ) ≥ E[a|p+ θn|2 + µ] = E[ã|p+ θn(x, ·)|2 + µ̃]

where a(x, ω) = ã(πxω) and µ(x, ω) = µ̃(πxω), where we are using that a and µ are random
stationary ergodic. So, for all ω ∈

⋂
n≥1 Ωn, i.e. for a.e. ω ∈ Ω and for all n ≥ 1, we have

obtained

kωp (a, µ) +
1

n
≥ E[ã|p+ θn(x, ·)|2 + µ̃] ≥ inf

θ∈B
E[ã|p+ θ(x, ·)|2] + E[µ̃]

so letting n→∞,

(20) kωp (a, µ) ≥ inf
θ∈B

E[ã|p+ θ(x, ·)|2] + E[µ̃]

Consider the set B̃ = {θ̃ ∈ L2(Ω) : E[θ̃] = 0}. There is a one-to-one correspondence between

the sets {θ(x, ·) : θ ∈ B} and {θ̃ ∈ L∞(Ω : E[θ̃] = 0)} given by θ(x, ω) = θ̃(πxω). Moreover,
this set is clearly dense in B̃ so for a.e. ω ∈ Ω, we obtain from (20)

(21) kωp (a, µ) ≥ inf
θ̃∈B̃

E[ã|p+ θ(x, ·)|2] + E[µ̃]

We minimize the function B̃ 3 θ̃ 7→ E[ã|p+θ̃|2] and find a unique minimizer θ̃0 = p
(

1
E[1/ã]ã

− 1
)

.

Therefore by linearity of expectation

inf
θ̃∈B̃

E[ã|p+ θ̃|2] = E[ã|p+ θ̃0|2] = E

[
ãp2

ã2E[1/ã]2

]
=

p2

E[1/ã]2
E[1/ã] =

p2

E[1/ã]

so by equation (21), we obtain

kωp (a, µ) ≥ inf
θ̃∈B̃

E[ã|p+ θ(x, ·)|2] + E[µ̃] =
p2

E[1/ã]
+ E[µ̃]

almost surely, and therefore by lemma 3.1.,

w∗(a, µ) = min
p>0

kp(a, µ)

p
≥ min

p>0

(
E[µ̃]

p
+

p

E[1/ã]

)
= 2

√
E[µ̃]

E[1/ã]
= w∗(E[1/a]−1,E[f ])

where we have used that a and µ are stationary ergodic. �
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3.4. Statement of further results.

• Dependence with respect to the diffusion: if µ(x, ω) is constant in (x, ω), then

κ 7→ w∗(κa, f)

is increasing.
• Dependence with respect to the reaction: if fs(x, ω, 0) ≤ gs(x, ω, 0) for all x ∈ R for

a.e. ω ∈ Ω, then
w∗(a, f) ≤ w∗(a, g)
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