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Abstract. The classical Monge–Ampère equation has a well established regularity the-

ory. A generalized form of the Monge–Ampère equation appears in the study of opti-

mal transportation with quadratic cost whose regularity results follow from regularity
theory of the classical equation. In the study of the optimal transport problem with

arbitrary cost functions, a Monge–Ampère type equation also occurs naturally. We
demonstrate throughout the connection between optimal transportation theory and the

Monge–Ampère equation following closely a paper of Alessio Figalli and Guido De Philip-

pis [14].
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1. The Classical Monge–Ampère Equation

We begin by stating and motivating the classical Monge–Ampère equation.

Definition 1.1. (Classical Monge–Ampère Equation) Let Ω ⊆ Rn be open and f : Ω×R×
Rn → R+ be given. The classical Monge–Ampère equation is given by

(1.1) detD2u = f(x, u,∇u) in Ω,

where u : Ω→ R is taken to be convex and D2u is the Hessian matrix of u.

Recalling that the determinant of a matrix is the product of its eigenvalues, the Monge–
Ampère equation can be characterized as a prescription on the eigenvalues of the Hessian of
its solutions. We note, moreover that this particular equation occurs in a variety contexts.
We provide a striking case where this problem surfaces and refer the reader to [1] for other
interesting applications.

Example 1.2. (Prescribed Gaussian Curvature) Let u be a solution to (1.1) with
f(x,∇u) = K(x)(1+ |∇u|2)(n+2)/2 where K(x) is an arbitrary function. Then the Gaussian
curvature of the graph of u at (x, u(x)) is equal to K(x).

The prescription that u be convex in (1.1) may appear arbitrary, however this condition
is natural in the study of the Monge–Ampère equation as discussed in the following remark.

Remark 1.3. (Imposed Convexity of u and Degenerate Ellipticity) Suppose u is a C∞ solu-
tion to (1.1) for f ∈ C∞ strictly positive such that f = detD2u > 0. Let e ∈ Sn−1 be arbi-
trary, then ∂e(detD2u) = det(D2u)uij∂ijue = fe via Jacobi’s identity. Here uij = (D2u)−1

ij

and repeated indices are summed over. Hence,

(1.2)
fe
f

= uij∂ijue

such that elliptic regularity estimates on ue can be obtained if uij is at least positive semi–
definite. Notably, if u is convex, D2u is positive semi–definite per [16, Thm. 4.5 p.27],
hence so too is uij . However, unless one can establish the bounds Id

C ≤ D2u ≤ IdC, for

some constant C we have no a priori estimates on the eigenvalues of uij , so they may be
arbitrarily small. If the prior bounds can be established, (1.2) becomes uniformly elliptic,
since Id

C ≤ uij ≤ IdC. We note that imposing f > 0 means we only need the bound

|D2u| ≤ C as the product of the eigenvalues of D2u will be strictly greater than zero and
thus the eigenvalues need only be bounded from above.

1.1. Alexandrov solutions to the Monge–Ampère Equation. We wish to introduce
the notion of a weak solution to the Monge–Ampère equation. To this effect, we first recall
the definition of the subdifferential of a function.

Definition 1.4. (Subdifferential of a Function) Given f : Ω→ R convex for Ω ⊆ Rn open
and convex, the subdifferential of f at x ∈ Ω is given by

∂f(x) = {x∗ ∈ Rn : f(z) ≥ f(x) + 〈x∗, z − x〉 ∀ z ∈ Ω}.

Now, we define the Monge–Ampère measure which will lead naturally to the desired weak
formulation.

Definition 1.5. (Monge–Ampère Measure) The Monge–Ampère measure of a convex func-
tion u : Ω→ R for Ω open and convex is a Borel measure defined by µu(E) = |∂u(E)| ∀ E ⊆
Ω Borel. Where | · | denotes the Lebesgue measure and ∂u(E) = ∪x∈E∂u(x).
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In light of the above definition, let u ∈ C2(Ω) be as in the statement of Definition 1.5.
It is a standard result that ∂u(x) = {∇u(x)} for every point where ∇u is defined (c.f. [16,
Thm. 25.1 p.242]). Hence, µu(E) = |∇u(E)| =

∫
Ω
1∇u(E)dx =

∫
E

detD2u(x) dx for any

E ⊆ Ω Borel via a change of variables and, therefore µu = detD2u(x) dx in Ω as Borel
measures. Notably, this term gives us the left hand side of (1.1). In the sequel, we will drop
the dx as it is understood that the equality is in the sense of Borel measures.

As noted above, this definition leads naturally to a generalized formulation of the Monge–
Ampère equation and we wish to make precise the notion of a weak solution and study their
properties.

Definition 1.6. (Alexandrov Solutions) Let Ω ⊆ Rn be open and convex and µ be a Borel
measure on Ω. Then the convex function u : Ω→ R is an Alexandrov solution to detD2u = µ
if µ = µu in the sense of Borel measures. If µ(x) = f(x)dx we say that u solves detD2u = f
in the weak sense.

Of note is that the Monge–Ampère measure admits the following important properties.

Proposition 1.7. (Weak∗ Convergence of Monge–Ampère Measure) Let (uk) be a sequence
of convex functions converging locally uniformly to u then µuk → µu weakly∗.

The above proposition is discussed in [11, Lem. 1.2.3 p.8].

Lemma 1.8. (Monotonicity of Monge–Ampère Measure) Let E be open and bounded, u, v
be convex functions satisfying u = v on ∂E and u ≤ v in E then ∂u(E) ⊇ ∂v(E) thus
µu(E) ≥ µv(E).

Proof. Let x ∈ E be arbitrary and let p ∈ ∂v(x). Then z 7→ v(x) + 〈p, (z − x)〉 is a non–
vertical supporting hyperplane [16, Line 1 p.215] to v at x. Since u ≤ v in E, ∃ α such
that y 7→ α + p · (y − x) is a non–vertical supporting hyperplane to u at some x̄ ∈ Ē. If
x̄ ∈ ∂E we have that α = v(x) since u and v agree on ∂E and therefore u(x) = v(x).
Otherwise, p ∈ ∂u(E) =⇒ ∂v(E) ⊆ ∂u(E) and by the monotonicity of Lebesgue measure,
µv(E) ≤ µu(E). �

We now focus on demonstrating existence and uniqueness of Alexandrov solutions to the
Dirichlet problem.

Definition 1.9. (Dirichlet Problem) Let Ω ⊆ Rn be a convex domain, the associated
Dirichlet problem to the generalized Monge–Ampère equation is given by

(1.3)

{
detD2u = µ in Ω

u = 0 on ∂Ω

To prove these properties, we will make use of a maximum principle as well as a compar-
ison principle for Alexandrov solutions.

Theorem 1.10. (Alexandrov Maximum Principle) Let Ω ⊆ Rn be an open, bounded, and
convex domain. Let u : Ω→ R be convex, if u = 0 on ∂Ω then

|u(x)|n ≤ Cn(diam Ω)n−1 dist(x, ∂Ω)|∂u(Ω)| ∀ x ∈ Ω,

where Cn is a constant depending only on the dimension.

Proof. Let (x, u(x)) be a point on the graph of u and let Cx(y) be a cone with vertex
(x, u(x)) which takes on the value 0 on its base Ω. By the convexity of u and since Cx
is a cone, u(y) ≤ Cx(y) for any y ∈ Ω thus by monotonicity (Lemma 1.8), |∂Cx(x)| ≤
|∂Cx(Ω)| ≤ |∂u(Ω)|.
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Let p be a vector such that |p| < |u(x)|/ diam Ω and consider a plane of slope p. This
plane supports Cx at some ȳ ∈ Ω and hence is also supporting at x, the vertex of Cx such
that ∂Cx(x) ⊇ B(0, |u(x)|/diam Ω).

Let x̄ ∈ ∂Ω be such that dist(x, ∂Ω) = |x − x̄| and let q be a vector having the same
direction as (x̄−x) with |q| < |u(x)|/ dist (x, ∂ω). Then the plane u(x) + q · (y−x) supports
Cx at x, i.e.

q =
x̄− x
|x̄− x|

|u(x)|
|dist (x, ∂Ω)|

∈ ∂Cx(x)

By convexity of ∂Cx(x), the cone C generated by q and B(0, |u(x)|/ diam(Ω)) is such that
C ⊆ ∂Cx(x). Therefore by monotonicity of Lebesgue measure and an inequality on |C|

|∂u(Ω)| ≥ |∂Cx(Ω)| ≥ |∂Cx(x)| ≥ |C| ≥ |u(x)|n

Cn(diam Ω)n−1 dist(x, ∂Ω)
.

�

Lemma 1.11. (Comparison Principle) Let Ω ⊆ Rn be open, bounded and convex. Let u, v
be convex functions on Ω such that u ≥ v on ∂Ω and detD2u ≤ detD2v in Ω in the sense
of Borel measures. Then u ≥ v in Ω.

Proof. Assume without loss of generality that detD2u < detD2v (this is true up to setting
v = v + ε(|x − x0|2 − diam(Ω)2) and taking ε to 0). Suppose E = {u < v} 6= ∅ then
by monotonicity of Monge–Ampère measure, µu(E) ≥ µv(E) which contradicts the initial
assumption. �

A direct consequence of this lemma is the uniqueness of Alexandrov solutions to the
Dirichlet problem. Indeed given two solutions u, v to (1.3), we have that u = v = 0 on ∂Ω
and detD2u = detD2v = µ in Ω. Whence by the comparison principle, u = v in Ω. We
now have the following stability result (see [11, Lemma 5.3.1 p.96]) which will allow us to
prove existence of solutions.

Theorem 1.12. (Stability of Alexandrov Solutions to the Dirichlet Problem) Let Ωk ⊆ Rn
be a family of convex domains with associated convex Alexandrov solutions uk : Ωk → R
(i.e. uk solves (1.3) on Ωk with µ = µk) then if Ωk → Ω in Hausdorff distance (Ω convex)
and the µk satisfy supk µk(Ωk) < +∞ with µk → µ in the weak∗ topology for µ a Borel
measure. Then uk → u uniformly where u is a solution to (1.3).

The existence of Alexandrov solutions will be demonstrated in a method analogous to
the method of Perron.

Theorem 1.13. (Existence of Alexandrov Solutions) Let Ω ⊆ Rn be a bounded open convex
domain and µ be a nonnegative Borel measure in Ω. Then there exists an Alexandrov
solution of (1.3).

Proof. Let µk =
∑k
i=1 αiδxi , αi ≥ 0 be a family of atomic measures converging weakly∗ to

µ here δxi refers to the Dirac delta distribution centred at xi. Define S[µk] = {v : Ω→ R :
v is convex, v = 0 on ∂Ω, detD2v ≥ µk}. Note that S[µk] is non–empty as the function

−A
∑k
i=1 Cxi for Cx the conical one–homogeneous function taking value −1 at x and 0 on

∂Ω and A > 0 sufficiently large is an element of S[µk].
This set is closed under suprema per Proposition 1.7 and we have that the maximum of

any two elements of S[µk] is also in S[µk], so we define uk = supv∈S[µk] v ∈ S[µk] in analogy
with Perron’s method.
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It remains to be seen if uk satisfies the Monge–Ampère equation on Ωk with appropriate
source term µk such that the prior stability result can be applied.

To this effect, we show that detD2uk is a measure concentrated on {x1, . . . , xk}. Suppose
not, then ∃ x̄ ∈ Ω\{x1, . . . , xk} and p ∈ Rn such that p ∈ ∂u(x̄)\∂u({x1, . . . , xk}). Therefore
(by definition of the subdifferential) uk(xj) > u(x̄)+p ·(xj− x̄) ∀j ∈ {1, . . . , k} and taking
ũk(x) = max{uk(x), uk(x̄) + p · (y − x̄) + δ} ∈ S[µk] with δ > 0 sufficiently small yields a
larger subsolution, contradicting the assumption that uk is the supremum.

Now, we show that detD2uk = µk. Assume this is not the case, then we have by the

previous step that detD2uk =
∑k
i=1 βiδxi with βi ≥ αi and βj > αj for some j ∈ {1, . . . , k}.

We note that ∂u(xj) is a convex set with non–zero volume, hence its interior is nonempty
and ∃ p ∈ int(∂u(xj)). Assume without loss of generality that p = 0 (up to subtracting p · y
from uk) and define

ūk(x) =

{
uk(x) uk > uk(xj) + δ

(1− δ)uk(x) + δ(uk(xj) + δ) uk ≤ uk(xj) + δ

for δ > 0 sufficiently small that ūk is a larger subsolution, a contradiction as before.
Finally, uk = 0 on ∂Ω since uk(x) ≥ −C dist(x, ∂Ω)1/n as a consequence of Theorem

1.10. �

Under the assumptions of the above theorem, the existence and uniqueness of Alexandrov
solutions to the Dirichlet problem have been demonstrated.

1.2. Existence of Smooth Classical Solutions. We now wish to show the existence of
smooth solutions to the Dirichlet problem for the classical Monge–Ampère equation:

(1.4)

{
detD2u = f in Ω

u = 0 on ∂Ω
.

To this effect, we wish to establish a C0 estimate of the Hessian of solutions to this
problem. Note that not all domains will permit regularity up to the boundary, hence we
establish the notion of a uniformly convex domain as it is precisely the type of domain on
which this desirable property can be obtained.

Definition 1.14. (Uniformly Convex Domain) A domain Ω is called uniformly convex if ∃
R > 0 such that Ω ⊆ BR(x0 +Rνx0

) ∀ x0 ∈ ∂Ω where νx0
denotes the interior normal to Ω

at x0.

We now establish out C0 estimate on the Hessian.

Theorem 1.15. (C0 estimate on Hessian) Let Ω ⊆ Rn be a C3 uniformly convex domain
and u be a solution of (1.4) with f ∈ C2(Ω̄) and λ ≤ f ≤ 1/λ. Then ∃ a constant C
depending only on Ω, λ, ||f ||C2(Ω̄) such that∣∣∣∣D2u

∣∣∣∣
C0(Ω̄)

≤ C

Proof. We obtain first a C0 estimate on u via barrier construction. By the comparison
principle, it suffices to let v(x) = λ−1/n(|x−x1|2−R2) for x1 and R satisfying Ω ⊆ BR(x1)
to obtain a uniform lower bound on u.

Now, a C1 estimate. By convexity, supΩ|∇u| = sup∂Ω|∇u|, so we only need an estimate
on the boundary. Recalling that u = 0 on ∂Ω demonstrates that any tangential derivative
is zero, so only estimates of the normal derivative are necessary.
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To this effect, let x0 ∈ ∂Ω be arbitrary and construct the barriers v±(x) =
λ∓1/n(|x − x±|2 − R2

±) for x± = x0 + R±νx0
and 0 < R− < R+ < ∞ chosen such that

BR−(x−) ⊆ Ω ⊆ BR+(x+). Therefore, v+ ≤ u ≤ v− and −C ≤ ∂νu(x0) ≤ −1/C for some
C

Finally, a C2 estimate. Given a unit vector e, consider log detD2u = log f and define
the derivative in the direction of e as L(ue) = uij(ue)ij = (log f)e and the second derivative
is uij(uee)ij − uilukj(ue)ij(ue)lk = (log f)ee. Since u is convex, uilukj(ue)ij(ue)lk ≥ 0, so
L(uee) ≥ (log f)ee ≥ −C, for C depending only on f .

Now, L(u) = uijuij = n so we have L(uee + Mu) ≥ 0 for M sufficiently large. By the
maximum principle therefore, supΩ(uee +Mu) ≤ sup∂Ω(uee +Mu).

Since u is bounded, we only need to estimate D2u on the boundary. Assume 0 ∈ ∂Ω
and that ∂Ω = {(x1, . . . , xn) : xn =

∑n−1
α=1

κα
2 x

2
α + O(|x|3)} for some κα > 0 locally. By

smoothness and uniform convexity of Ω, 1/C ≤ κα ≤ C, so uαα(0) = −καun(0), uαβ(0) =
0 ∀ α 6= β ∈ {1, . . . , n− 1}.

By our estimate on the normal derivative then Idn−1/C ≤ (uαβ(0))α,β∈{1,...,n−1} ≤
CIdn−1. Then, noting that

f = detD2u = Mnn(D2u)unn +
∑n−1
α=1M

αn(D2u)uαn with M ijD2u denoting the cofactor
of uij ; this and the upper bound on uαβ(0) will give an upper bound on unn(0) once a bound
for uαn(0) is found for α ∈ {1, . . . , n− 1}.

To this effect, consider the rotational derivative operator Rαn = xα∂n − xn∂α, α ∈
{1, . . . , n−1}. By invariance of derivatives with respect to rotation, differentiating log detD2u =
log f yields L(Rαnu) = uij(Rαnu)ij = Rαn(log f).

So, multiplying the prior equation by κα and using the notation L(uε) = uij(uε)ij =
(log f)ε as before yields |L((1− καxn)uα + καxαun)| ≤ C. Since u = 0 on ∂Ω, the uniform
convexity of Ω and the bound on |∇u| give us |(1 − καxn)uα + καxαun| ≤ −A|x|2 + Bxn
for a suitable choice of A, B, depending on Ω.

By the the AM–GM inequality, L(−A|x|2 +Bxn) = −A
∑
i u

ii ≤ − nA
(detD2u)1/n

≤ − nA
λ1/n

and choosing A large enough yields |(1−καxn)uα+καxαun| ≤ −A|x|2 +Bxn in Ω. Dividing
through by xn and taking xn → 0 yields |uαn|(0) ≤ C for C depending only on Ω and f . �

The prior estimates yield the following existence result.

Theorem 1.16. Let Ω be a C3 uniformly convex domain. Then ∀ f ∈ C2(Ω̄) with λ ≤ f ≤
1/λ there exists a C2,α(Ω̄) solution of (1.4).

Proof. The proof relies on the method of continuity. We provide an outline of this method
and refer the reader to a more complete treatment in [10, Chap. 17.2 p.446]. Suppose ū is
a smooth and convex solution to (1.4) with associated source f̄(x), we wish to find from ū
a solution u with associated source f(x). To this effect, define ft = (1− t)f̄ + tf, t ∈ [0, 1]
and consider the one–parameter family of problems{

detD2ut = ft in Ω

ut = 0 on ∂Ω

Now, assume f, f̄ are smooth and consider

C = {u ∈ C2,α(Ω̄) convex : u = 0 on ∂Ω}.

Finally, we define the map

F : C × [0, 1]→ C0,α(Ω̄) (u, t) 7→ detD2u− ft
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and wish to demonstrate that Γ = {t ∈ [0, 1] : ∃ ut ∈ C withF(ut, t) = 0} is both open and
closed in [0, 1].

The Fréchet differential of F with respect to u is given by the linearized Monge–Ampère
equation

(1.5) DuF(u, t)[h] = det(D2u)uijhij , h = 0 on ∂Ω,

We note that F is continuously differentiable at every point of Γ. If u is bounded in C2,α

as shown in Theorem 1.15 and f is bounded from below by λ then the smallest eigenvalue
D2u is bounded uniformly away from zero and the linearized operator becomes uniformly
elliptic with C0,α coefficients. Therefore, classical Schauder’s theory yields invertibility of
DuF(u, t) such that the Implicit Function Theorem in Banach spaces [10, Thm. 17.6 p.447]
can be implied yielding the openness of Γ.

As it pertains to the closedness of Γ, since the linearized equation is uniformly elliptic
we obtain by the Evans–Krylov theorem [10, Thm. 17.26

′
p.481] that u ∈ C2,α(Ω̄) and

therefore by the Arzelà–Ascoli theorem Γ is also closed. In particular setting t = 1 in Γ
demonstrates the existence of a solution that is C2,α up to the boundary. �

1.3. Interior Regularity for Alexandrov Solutions to the Dirichlet Problem. We
now wish to discuss results pertaining to the interior regularity of weak solutions to the
Dirichlet problem.

Theorem 1.17. (Pogorelov Interior Estimate) Let u ∈ C4(Ω) be an Alexandrov solution
of (1.3) with µ(x) = f(x)dx, f ∈ C2(Ω) and λ ≥ f ≥ 1/λ. Then ∃ C depending on λ and
||f ||C2 such that

|u(x)|u11(x) exp

(
u2

1

2

)
≤ C

∣∣∣∣∣∣∣∣exp(
u2

1

2
)(1 + |u1|+ |u|)

∣∣∣∣∣∣∣∣
L∞(Ω)

∀ x ∈ Ω.

Where u1(x) = ∂1u(x) and so on.

Proof. By convexity, we note that u ≤ 0 in Ω thus we define w = (−u)u11e
(u1)2

2 and if x0

is a maximal point of w in Ω̄ we have that x0 ∈ Ω since u = 0 on ∂Ω. We now change
coordinate systems to x

′
= Ax with detA = 1 leaving x1 invariant and such that uij is

diagonal at x0.
We note that (logw)i = ui

u + u11i

u11
+ u1u1i and (logw)ij =

uij
u −

uiuj
u2 +

u11ij

u11
− u11iu11j

u2
11

+

u1ju1i + u1u1ij . Since x0 is a local max, at this point, (logw)i = 0 and 0 ≥ (logw)ij and
uij is nonnegative so 0 ≥ uij(logw)ij at x0.

Noting that uijuij = n, uij(ue)ij = (log f)e and uij(uee)ij−uilukj(ue)ij(ue)lk = (log f)ee
using the notation of the proof of Theorem 1.15 and noting that ue = u in our case yields

0 ≥ n
u −

uijuiuj
u2 + (log f)11

u11
+

uilukjuijulk
u11

− uiju11iu11j

u2
11

+ uiju1ju1i + (log f)1u1 where we have

multiplied through by uij .

We consider first the middle term
uilukju1iju1kl

u11
− uiju11iu11j

u2
11

− uijuiuj
u2 and note that by a

prior calculation, uiu = −u11i

u11
−u1u1i so the middle tem is equal to

uilukju1iju1kl

u11
− uiju11iu11j

u2
11

−

uij
(
u11i

u11
+ u1u1i

)(
u11j

u11
+ u1u1j

)
, since both uij and uij are diagonal at x0, this term is

greater than −u11
(
u111

u11
+ u1u11

)2

= − u2
1

u2u11
. Such that 0 ≥ n

u + (log f)11
u11

+ uiju1ju1i +

(log f)1u1 − u2
1

u2u11
.
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Since uij is diagonal we get 0 ≥ n
u+ (log f)11

u11
+u11+(log f)1u1− u2

1

u2u11
such that multiplying

by u2u11e
u2
1 gives us 0 ≥ nuu11e

u2
1 +(log f)11u

2eu
2
1 +u2u2

11e
u2
1 +(log f)1u1u

2u11e
u2
1−u2

1e
u2
1 =

−nwe
u21
2 + (log f)11u

2eu
2
1 +w2 − (log f)1u1uwe

u21
2 − u2

1e
u2
1 = w2 − (n+ u1u(log f)1)we

u21
2 +

eu
2
1((log f)11u

2 − u2
1) ≥ w2 − Cwe

u21
2 (1 + |u1|u) − Ceu2

1(u2 + u2
1) which yields the desired

bound for C = C(f, λ). �

Definition 1.18. (Strictly Convex Functions) A convex function u is called strictly convex
in Ω if ∀ x ∈ Ω and p ∈ ∂u(x)

u(z) > u(x) + p · (z − x) ∀ z ∈ Ω\{x}.
In particular stictly convex functions are characterized by the property that any of their
supporting planes touches their graph precisely once.

Theorem 1.19. (Regularity for Strictly Convex Solutions) Let u : Ω → R be a convex
Alexandrov solution of detD2u = f for f ∈ C2(Ω) and λ ≤ f ≤ 1/λ. Assume u is strictly

convex in Ω
′ ⊆ Ω. Then u ∈ C2(Ω

′
).

Proof. Let x0 ∈ Ω
′
, p ∈ ∂u(x0) and consider the section of u at height t defined via

S(x, p, t) = {y ∈ Ω : u(y) ≤ u(x) + p · (y − x) + t}. Since u is strictly convex, we choose

t > 0 small enough that S(x, p, t) b Ω
′
. Then, consider Sε, a sequence of smooth uniformly

convex sets converging to S(x0, p, t) and apply Theorem 1.16 to get vε ∈ C2,α(Sε) satisfying{
detD2vε = f ∗ ρε in Sε

vε = 0 on ∂Sε

by Schauder’s theory vε ∈ C∞(Sε) so by Theorem 1.17, |D2vε| ≤ C in S(x0, p, t/2) for ε
sufficiently small. Since Sε → S(x0, p, t) and u(x) = u(x0) + p · x + t on ∂S(x0, p, t), by
uniqueness of weak solutions we have that vε+u(x0)+p·x+t→ u uniformly as ε→ 0, hence
|D2u| ≤ C in S(x0, p, t/2). This makes the linearized Monge–Ampère equation uniformly
elliptic as we have discussed before such that u ∈ C2(S(x0, p, t/4)). Since x0 is arbitrary we

have u ∈ C2(Ω
′
) as desired. �

1.4. Regularity of Alexandrov Solutions Without Imposed Boundary Conditions.
We now wish to study regularity results for Alexandrov solutions to (1.1). The following
result is due to Caffarelli (c.f. [4]).

Theorem 1.20. (Regularity for Strictly Convex Weak Solutions) Let u : Ω→ R be a strictly

convex Alexandrov solution of detD2u = f satisfying λ ≤ f ≤ 1/λ. Then u ∈ C1,α
loc (Ω) for

some universal α. Precisely ∀ Ω
′
b Ω ∃ C depending on λ,Ω

′
and the modulus of strict

convexity of u such that

sup

x, y ∈ Ω
′

x 6= y

|∇u(x)−∇u(y)|
|x− y|α

≤ C.

The intuition behind the proof of this theorem hinges on the following lemma.

Lemma 1.21. (John’s Lemma) Let V ⊆ Rn be a bounded convex set with non–empty
interior. Then ∃! ellipsoid E of maximal volume contained in V . Moreover,

E ⊆ V ⊆ nE
where nE denotes dilation of E by a factor n.
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We recall the notion of a normalized convex set, as solutions to the Monge–Ampère
equation on such sets exhibit some useful properties.

Definition 1.22. (Normalized Convex Set) A convex set E is normalized provided B1 ⊆
E ⊆ nB1

The utility of John’s lemma is that one can take any bounded open convex set Ω and
transform it into a normalized convex set A(Ω) via an affine transformation A, and in
particular if u is such that λ ≤ detD2u ≤ 1/λ in Ω, u = 0 on ∂Ω then if A normalizes Ω,

v = (detA)
2
nu ◦A−1 satisfies λ ≤ detD2v ≤ 1/λ in Ω, v = 0 on ∂Ω.

As aforementioned solutions to the Monge–Ampère equation on normalized convex sets
have some useful properties, as discussed in the following theorem.

Theorem 1.23. Let Ω be a normalized convex set and u be a solution of detD2u = f
with λ ≤ f ≤ 1/λ. Then ∃ positive constants α = α(n, λ) and C = C(n, λ) such that
||u||C1,α (B1/2) ≤ C

The proof of the above theorem hinges essentially on the ability to show that solutions of
the Monge–Ampère equation in this context on normalized convex domains have a universal
modulus of strict convexity. To this effect, the following proposition of Caffarelli (c.f. [2]).

Proposition 1.24. Let u be a solution of λ ≤ detD2u ≤ 1/λ in a convex set Ω and
` : Rn → R be a linear function supporting u at x̄ ∈ Ω. If W = {x ∈ Ω : u(x) = `(x)}
contains more than one point then it cannot have an extremal point in Ω i.e. every point
of W lies on an open line segment joining two points of W .

That is, if the boundary conditions forbid u from coinciding with an affine function
along a segment crossing Ω then u is strictly convex as it touches any of its supporting
planes exactly once. By the weak∗ convergence property of the Monge–Ampère measure
(Proposition 1.7) and the fact that the family of normalized convex domains is compact we
have that for a normalized convex set Ω, the class of solutions is compact with respect to
uniform convergence and therefore share a universal modulus of strict convexity.

Now, combining all of the prior results yields the following lemma which will allow us to
prove Theorem 1.20.

Lemma 1.25. Let Ω be a normalized convex set, v be a solution of detD2v = f with
λ ≤ f ≤ 1/λ. Let x0 be a minimum point for u ∈ Ω and ∀ β ∈ (0, 1] let the cone with vertex
(x0, v(x0)) and base {v = (1− β) min v} × {(1− β) min v} be denoted by Cβ ⊆ Rn+1. If hβ
is the function whose graph is given by Cβ ∃ a universal constant δ0 > 0 such that

h1/2 ≤ (1− δ0)h1

Proof. (Proof of Theorem 1.20) We use throughout the notation of Lemma 1.25. Let k ∈ N
be arbitrary and consider Ωk = {u ≤ (1 − 2−k) minu}. Renormalizing the convex set Ωk
through an affine map Ak, applying Lemma 1.25 to v = (detAk)2/nu ◦ Ak and transfering
the information back to u, one deduces that h2−(k+1) ≤ (1− δ0)h2−k . Iterating this estimate
yields h2−k ≤ (1−δ0)kh1∀k ∈ N. Then we get that v ∈ C1,α in the sense that u(y)−u(x0) ≤
C|y − x0|1+α. Now for every x ∈ Ω

′
b Ω and p ∈ ∂u(x), repeat the same argument with

u(y)−p·(y−x) in lieu of u and replacing Ω with S(x, p, t) for t small satisfying S(x, p, t) b Ω
and taking a renormalization of S. Then u(y)−u(x)−p · (y−x) ≤ C|y−x|1+α ∀p ∈ ∂u(x).

Since x ∈ Ω
′

is arbitrary the above estimate is shown in [8, Lemma 3.1 p.4411] to yield

u ∈ C1,α
loc .
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�

If the source term f is assumed to be Hölder continuous, Caffarelli further improved this
result in [3] to read as follows.

Theorem 1.26. Let Ω be a normalized convex set and u be an Alexandrov solution of
detD2u = f with λ ≤ f ≤ 1/λ and f ∈ C0,α(Ω). Then ||u||C2,α(B1/2) ≤ C for some C

depending on n, λ and ||f ||C0,α(B1).

The proof of the above is provided in [3] and is based on the fact that if f is locally close
to a constant, u is locally close to a solution of detD2u = c for c constant. We have already
established interior estimates for this type of solution and approximation via interpolation
yields the requires bound on ||u||C2,α (B1/2). A similar reasoning yields the following result
with more details provided in [3].

Theorem 1.27. Let Ω be a normalized convex set and u be a solution of detD2u = f .
Then ∀ p > 1, ∃ δ(p) and C = C(p) such that if ||f − 1||∞ ≤ δ(p) then ||u||W 2,p(B1/2) ≤ C.

If one localizes this result as in the proof of Theorem 1.20 for strictly convex solutions u
with f continuous one obtains that u ∈W 2,p

loc (Ω) ∀ p <∞. One can refine this result to the
following as discussed in [15].

Theorem 1.28. Let Ω be a normalized convex set and u be an Alexandrov solution of
detD2u = f such that λ ≤ f ≤ 1/λ. Then ∃ ε = ε(n, λ) and C = C(n, λ) such that
||u||W 2,1+ε(B1/2) ≤ C.

We have throughout this section discussed the general regularity theory of both classical
and weak solutions to the Monge–Ampère equation. We now wish to establish the connection
between this equation and the problems studied in optimal transportation theory.
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2. Optimal Transportation and the Monge–Ampère Equation

The Monge–Ampère equation appears naturally in the context of optimal transportation
theory. One can therefore derive regularity and existence results for the problems of optimal
transportation using the theory established hitherto an vice–versa. We therefore provide
a brief introduction of the basic concepts of optimal transportation before elaborating on
these connections.

2.1. A Brief Primer to Optimal Transportation Theory.

Definition 2.1. (Monge Problem and Optimal Transport Map) Given two probability
measures µ, ν on the measurable spaces X,Y respectively and a cost function c : X × Y →
[0,∞]. The Monge Problem consists of solving

(MP) inf

{∫
X

c(x, T (x))dµ(x) : T]µ = ν, T : X → Y measurable

}
.

Where T]µ = ν denotes that the pushforward of µ through T equals ν. This means that
∀ A ⊆ Y measurable, µ(T−1(A)) = ν(A)). The optimal transport map is the arg–min of
this problem provided it exists.

We now define a relaxation of the Monge problem introduced by Kantorovich.

Definition 2.2. (Kantorovich Problem and Optimal Transport Plans) Given two prob-
ability measures µ, ν on the measurable spaces X,Y respectively and a cost function c :
X × Y → [0,∞]. The Kantorovich Problem consists of solving

(KP) inf

{∫
X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}
.

Where Π(µ, ν)={probability measures γ on X × Y : (πx)]γ = µ, (πy)]γ = ν}. Here, πx
and πy are the projections of X × Y onto X and Y respectively. Of course the arg–min of
this expression, if it exists, is referred to as the optimal transport plan.

Note that if γ is of the form (id, T )]µ for T : X → Y measurable we get that ∀ A ⊆
X measurable, µ((id, T−1)(π−1

x (A))) = µ(A) so the condition (πx)]γ = µ is realized. More-
over, (πy)]γ = ν =⇒ ∀B ⊆ Y measurable, µ((id, T−1)(π−1

y (B))) = µ(T−1(B)) = ν(B) so,
in particular, T]µ = ν and T is an optimal transport map as the functionals being minimized
in (MP) and (KP) are identical when γ takes on this particular form.

The Kantorovich problem is said to be a relaxation of the Monge problem in this respect,
as if a problem is solvable in the Monge framework, one deduces a solution in the Kantorovich
framework as in the above discussion. However, in some contexts, the Monge problem admits
no solutions, but the Kantorovich problem does. The canonical example of this behaviour
is when µ is a Dirac mass and ν is not. Thus, no measurable map can push µ onto ν, but
one can form measures admitting µ and ν as marginals.

Next, we introduce the so–called dual problem which we shall show in the sequel to be
equivalent to the Kantorovich problem under certain assumptions.

Definition 2.3. (Dual Problem) Given two probability measures µ, ν on the measurable
spaces X,Y respectively and a cost function c : X×Y → [0,∞]. The Dual Problem consists
of solving

(DP) sup

{∫
X

ϕ(x) dµ(x) +

∫
Y

ψ(y) dν(y) : ϕ ∈ Cb(X), ψ ∈ Cb(Y ) and ϕ+ ψ ≤ c
}
.

We note that taking ϕ ∈ L1(X) and ψ ∈ L1(Y ) yields an identical problem.
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Another useful definition will be that of the convex conjugate or Legendre–Fenchel trans-
formation.

Definition 2.4. (Convex Conjugate) Let X be a normed vector space and X∗ be its dual
space then the convex conjugate of f : X → R̄ denoted f∗ : X∗ → R̄ is given by f∗(x∗) =
supx∈X{〈x∗, x〉 − f(x)} where 〈·, ·〉 : X∗ ×X → R denotes the duality pairing.

We now state a fundamental result of convex analysis which we shall use to prove the
equivalence of (DP) and (KP). The proof of which can be found in [19, Cor. 2.8.5 p.125].

Theorem 2.5. (Fenchel–Rockafellar Duality) Let X be a Fréchet space, f and g be lower
semicontinuous functions from X to R̄ such that ∃ x ∈ X such that f(x), g(x) <∞. Then
infx∈X{f + g} = maxx∗∈X∗{−f∗(−x∗)− g∗(x∗)}

We now have all of the machinery required to prove that the Kantorovich problem and
the dual problem are equivalent following the treatment in [17, Thm. 1.3 p.19].

Theorem 2.6. ((KP)=(DP)) Suppose X and Y are compact and the cost function c :
X × Y → R̄ is continuous then (KP)=(DP) and an optimal transport plan γ exists.

Proof. Let Γ = Cb(X × Y ) normed with ||·||∞. We have by Riesz’s representation theorem
that Γ∗ = R(X × Y ) the space of regular Radon measures on X × Y normed by total
variation. For u ∈ Γ define

ξ(u) =

{
0 if u(x, y) ≥ −c(x, y)

+∞ o.w.
ζ(u) =

{∫
X
ϕ dµ(x) +

∫
Y
ψ dν(y) if u(x, y) = ϕ(x) + ψ(y)

+∞ o.w.

We note that − infΓ{ξ + ζ} = (DP), hence we compute the convex conjugates of ξ and ζ in
order to apply Fenchel–Rockafellar duality. Let η ∈ R(X × Y ) be arbitrary, then

ξ∗(−η) = sup
u∈Γ

{
−
∫
X×Y

u(x, y) dη : u(x, y) ≥ −c(x, y)

}
= sup
u∈Γ

{∫
X×Y

u(x, y) dη : u(x, y) ≤ c(x, y)

}
.

Remark that if η is negative then ∃ u ∈ Γ nonpositive s.t.
∫
X×Y u dη > 0 then, taking

un = nu and taking the limit as n → ∞ yields ξ∗(−η) = ∞. If η is nonnegative then
ξ∗(−η) =

∫
X×Y c dη due to the constraint on u. Hence,

ξ∗(−η) =

{∫
X×Y c dη if η ∈ R+(X × Y )

+∞ o.w.

Where R+(X × Y ) denotes the set of all nonnegative Radon measures. Similarly,

ζ∗(η) = sup
u∈Γ

{∫
X×Y

u(x, y) dη −
∫
X

ϕ(x) dµ(x)−
∫
Y

ψ(y) dν(y) : u(x, y) = ϕ(x) + ψ(y)

}
= sup
u∈Γ

{∫
X×Y

(ϕ(x) + ψ(y)) dη −
∫
X

ϕ(x) dµ(x)−
∫
Y

ψ(y) dν(y)

}
Notably, if η is such that

∫
X×Y (ϕ(x) + ψ(y)) dη 6=

∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y) for some

ϕ(x), ψ(y) then by rescaling, ζ∗(η) =∞. Hence,

ζ∗(η) =

{
0 if

∫
X×Y (ϕ(x) + ψ(y)) dη =

∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y) ∀ ϕ,ψ

+∞ o.w.
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and therefore by Fenchel–Rockafellar duality, infΓ{ξ + ζ} = maxR{−ξ∗(−η) − ζ∗(η)} and
(DP)=− infΓ{ξ + ζ} = −maxR{−ξ∗(−η)− ζ∗(η)} = minR{ξ∗(−η) + ζ∗(η)}
= minΠ(µ,ν){

∫
X×Y c dη} = (KP) where we recall that Π(µ, ν) denotes the set of all proba-

bility measures admitting µ and ν as marginals on X and Y respectively and notably there
exists a solution to (KP). �

A more careful approach using this argument is found in [17, Thm. 1.3 p.19] allows us t
generalize this result to the case where X and Y are Polish spaces.

2.2. Returning to the Monge–Ampère Equation. We now derive a characterization
of optimal transport maps in terms of a Jacobian equation.

Remark 2.7. (Associated Jacobian Equation) Let X,Y ⊆ Rn, µ(x) = f(x)dx, ν(y) =
g(y)dy, T : X → Y a sufficiently smooth transport map and χ ∈ D(Rn). Then the condition
T]µ = ν yields ∫

χ(T (x))dµ(x) =

∫
χ(y)dµ(T−1(x)) =

∫
χ(y)dν(y).

So inputting the explicit form of µ and ν, we have∫
χ(T (x))f(x)dx =

∫
χ(y)g(y)dy.

Taking the change of variables y = T (x) on the right hand side yields∫
χ(T (x))f(x)dx =

∫
χ(T (x))g(T (x))|det(DT (x))|dx.

Here D denotes the Jacobian of T (x). Since χ was chosen to be arbitrary we recover the
following Jacobian equation,

f(x) = g(T (x))|det(DT (x))| a.e. in X.

We note that the above Jacobian equation is close to the form of a Monge–Ampère
equation, but we must still do some work to recover it.

Definition 2.8. (c–convexity and c–transform) ψ : X → R ∪ {+∞} is c–convex if

(2.1) ψ(x) = sup
y∈Y
{ψc(y)− c(x, y)} ,

where ψc : Y → R ∪ {−∞} is the c–transform of ψ given by

ψc(y) = inf
x∈X
{ψ(x) + c(x, y)} .

With this definition in mind we can establish an equivalent problem to (DP) in terms of
a c–convex function and its c–transform.

Remark 2.9. (Alternative formulation of the Dual Problem)
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The dual problem can be rewritten as a minimization problem over c–convex functions,
notably.

sup

{∫
X

ϕ dµ(x) +

∫
Y

ψ dν(y) : ϕ ∈ Cb(X), ψ ∈ Cb(Y ) and ϕ+ ψ ≤ c
}

=

sup

{
−
∫
X

α dµ(x) +

∫
Y

β dν(y) : α ∈ Cb(X), β ∈ Cb(Y ) and β − α ≤ c
}

=

sup

{
−
∫
X

α dµ(x) +

∫
Y

β dν(y) : α ∈ Cb(X), β ∈ Cb(Y ) and β ≤ c+ α

}
=

sup

{
−
∫
X

α dµ(x) +

∫
Y

αc dν(y) : α ∈ Cb(X) and αc − α ≤ c
}
.

In particular, by the duality result, we have that for the optimal transport plan γ,
∫
X×Y cdγ =

−
∫
X
α dµ(x) +

∫
Y
αc dν(y) =

∫
X×Y (αc(y) − α(x)) dγ such that c(x, y) = αc(y) − α(x) γ–

almost surely for (x, y) ∈ supp(γ). Thus without loss of generality, the dual problem can be
taken to be the supremum over ϕ c–convex and its c–transform.

We now take the opportunity to introduce some conditions on the cost function that will
be useful in the sequel.

Remark 2.10. (Conditions on Cost) Let X,Y ⊆ Rn we enumerate some conditions that will
be useful in the analysis of general cost functions

(C0) The cost function c : X × Y → R is C4 and ||c||C4(X×Y ) <∞.

(C1) ∀ x ∈ X, Y 3 y 7→ Dxc(x, y) ∈ Rn is injective. Also known as the twist condition
in the optimal transport literature.

(C2) ∀ y ∈ Y , X 3 x 7→ Dyc(x, y) ∈ Rn is injective.
(C3) det(Dxyc)(x, y) 6= 0 ∀ (x, y) ∈ X × Y .

Definition 2.11. (c-exponential) If c satisfies (C0)–(C2) then ∀ x ∈ X, y ∈ Y, p ∈ Rn we
define the c–exponential map as

(2.2) c–expx(p) = y ⇐⇒ p = −Dxc(x, y)

Theorem 2.12. (Characterization of Optimal Transport Maps for General Costs) Suppose
c : X × Y → R satisfies (C0)-(C1) and f , g are two positive probability densities on X and
Y , two open and bounded sets respectively, then ∃ u : X → R c–convex such that the unique
optimal transport map sending f onto g us given by T (x) = c– exp(∇u(x)). Moreover, if

(C2) holds then T is injective fdx a.e, |det(DT (x))| = f(x)
g(T (x)) and the inverse of T is the

unique optimal transport map sending g onto f .

Proof. From the above remark, if γ denotes the optimal transport plan then there is a c–
convex function ϕ such that for any (x0, y0) ∈ supp(γ), the function ϕ(x) + c(x, y0) attains
a minimum at x0 (as ϕc(y0) = ϕ(x) + c(x, y0)). Notably, ϕ is the supremum of the family
of uniformly Lipschitz functions c(·, y) + λy and hence is Lipschitz, yielding differentiability
almost everywhere. Thus ∇ϕ(x0) + Dxc(x0, y0) = 0 =⇒ ∇ϕ(x0) = −Dxc(x0, y0) =⇒
c– expx(∇ϕ(x0)) = y0 and notably, we have constructed a representation for an optimal
transport map taking x0 to y0. Hence, T (x) = c– expx(∇ϕ(x)) is an optimal transport

map as was desired. Suppose ∃ another optimal transport map T̃ (x), we noted before that

γ = (Id, T )]µ and γ̃ = (Id, T̃ )]µ are the corresponding optimal transport plans, letting µ
denote fdx. By linearity of Π(µ, ν) we have that 1

2 (γ + γ̃) is also optimal and is notably
concentrated on the same graph as γ and γ̃ thus γ = γ̃ fdx almost everywhere. Whence,
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the Jacobian equation yields |det(DT (x))| = f(x)
g(T (x)) and T is invertible provided (C2) is

satisfied due to the uniqueness of minimizers in the optimal transport problem. �

2.3. The Quadratic Cost on Rd. We will now study a specific cost function that admits
some straightforward regularity results, namely the case of the quadratic cost c(x, y) =
|x−y|2

2 .
We first wish to write the quadratic cost in an alternative form that will be relevant in

the sequel.

Remark 2.13. (Equivalent Cost) Let S denote a transport map taking µ onto ν for µ, ν
probability measures on Rd. Then, the condition S]µ = ν yields∫

Rn

|S(x)|2

2
dµ(x) =

∫
Rn

|y|2

2
dν(y).

We now expand the expression for quadratic cost at y = S(x),∫
Rn

|x− S(x)|2

2
dµ(x) =

∫
Rn

|x|2

2
dµ(x) +

∫
Rn

|y|2

2
dν(y)−

∫
Rn

(x · S(x))dµ(x).

We note that the only term on the right hand side that depends on the transport map
chosen is the rightmose one, hence the folloring minimization problems are euquivalent:

min
S]µ=ν

∫
Rn

|x− S(x)|2

2
dµ(x) and min

S]µ=ν

∫
Rn

(−x · S(x))dµ(x).

All in all, we have that the quadratic cost |x−y|/2 is equivalent to the cost c(x, y) = −x ·y.

Theorem 2.14. (Existence and Uniqueness of Optimal Transport Maps for the Quadratic
Cost) Let µ, ν be compactly supported probability measures on Rn and c = |x−y|2/2. Suppose
µ is absolutely continuous with respect to the Lebesgue measure then ∃ a unique optimal
transport map T from µ to ν of the form T = ∇u for u convex. Moreover, if µ(dx) = fdx
and ν(dy) = gdy then T is differentiable µ–a.e. and

(2.3) |det(DT (x))| = f(x)

g(T (x))
for µ–a.e. x ∈ Rn.

Proof. All that is required is to compute c–exp(∇u(x)) and to apply Theorem 2.12 to get
the desired result. As noted above, the quadratic cost is equivalent to −x · y and one has
that −Dx(−x · y) = y hence c–expx is simply the identity map, thus T = ∇u. Whence we
get the desired results since c–convexity is equivalent to convexity for the quadratic cost,
as can be seen from the definition (with cost −x · y, c–convex functions are defined as a
supremum of linear functions and are thus convex). �

We now recall a useful property of convex functions and refer to [18, Thm. 14.25 p.402 ]
for the proof.

Theorem 2.15. (Differentiability of Convex Functions) Let Ω ⊆ Rn be convex and open
and u : Ω → R be convex. Then for a.e. x ∈ Ω, u is differentiable at x and ∃ a symmetric
matrix D2u(x) such that

u(y) = u(x) +∇u(x) · (y − x) +
1

2
D2u(x)(y − x) · (y − x) + o(|y − x|2)

and at such points, ∇u is differentiable

∇u(y) = ∇u(x) +D2u(x) · (y − x) + o(|y − x|) ∀ y ∈ dom(∇u)
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Having discussed the relevant preliminary results we can now examine the Monge–Ampère
equation that arises in the context of optimal transport and discuss regularity in this context.

Definition 2.16. (Brenier Solution to the Monge–Ampère Equation) Let X,Y ⊆ Rn be
bounded, smooth and open, µ(x) = f(x)dx, ν(y) = g(y)dy be probability measures with
supp f ⊆ X and supp g ⊆ Y . Moreover, let f > 0 on X and g < ∞ on Y . Then Theorem
2.14 implies T (x) = ∇u(x) is the unique optimal transport map of µ onto ν for the quadratic
cost where u is convex, hence substituting T (x) into (2.3) yields

(2.4) |detD2u(x)| = f(x)

g(∇u(x))
fdx–a.e.

which is well defined almost everywhere since by Theorem 2.15, ∇u is differentiable a.e.
and due to the bounds on f and g. Therefore this is a Monge–Ampère type equation with
boundary conditions ∇u(X) = T (X) = Y induced by the condition T]µ = ν. A function u
satisfying (2.4) is called a Brenier solution.

We note that a convex function u is an Alexandrov solution to (2.4) if ∂u(x) = f(x)
g(∇u(x))

in measure. In particular, ∀ E ⊆ X Borel we have that |∂u(E)| =
∫
E

f(x)
g(∇u(x))dx. Hence

∂u(x) preserves Lebesgue measure up to some multiplicative constant depending on u, f , g
and E and we denote this property |E| ∼ |∂u(E)|.

We wish to determine when Brenier solutions will exhibit the same regularity properties
as their Alexandrov counterparts.

Note that a Brenier solution u is an Alexandrov solution for a.e. x ∈ X by definition,
hence the control offered by Alexandrov solutions is mimicked only by Brenier solutions
at points where u is twice differentiable. It is therefore possible that the Monge–Ampère
measure may still exhibit some singular behaviors. In particular, since ∂u(X) ⊇ ∇u(X) =
Y , we can only guarantee that |E| ∼ |∂u(E)∩ Y | and thus we don’t have full control of the
Monge–Ampère measure of u.

However, if ∂u(E) ⊆ Y we have the same type of control offered by Alexandrov solutions
and the notion of solution is identical, thus we can utilize the regularity results established
for Alexandrov solutions. To this effect, the following theorem.

Theorem 2.17. (Regularity Results for Quadratic Cost) Let X,Y ⊆ Rn be bounded and
open, let f : X → R+ and g : Y → R+ be probability densities which are bounded away from
0 and ∞ on X and Y respectively. Let T = ∇u : X → Y be the unique optimal transport
map sending f onto g for the quadratic cost. Let Y be convex then we have

(i) T ∈ C0,α
loc (X) ∩W 1,1+ε

loc (X);

(ii) If f ∈ Ck,βloc (X) and g ∈ Ck,βloc (Y ) for some β ∈ (0, 1) then T ∈ Ck+1,β
loc (X);

(iii) If f ∈ Ck,β(X̄), g ∈ Ck,β(Ȳ ) and X,Y are smooth and uniformly convex then
T : X̄ → Ȳ ∈ CK+1,β(X̄) and is a diffeomorphism.

We precede the proof of this theorem by the following definition of a construction that
will be useful only in the proof.

Definition 2.18. (Convex Hull) Given V ⊆ Rn the convex hull of V denoted conv(V ) is
given by ∩{U convex : V ⊆ U}.
Proof. (Theorem 2.17) The proof hinges on the property discussed in the preliminary notes
to this theorem. Notably, we will show that for Y convex we have that ∀ E ⊆ X ∂u(E) ⊆ Y
and therefore that Brenier solutions are also Alexandrov.
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By definition of the subdifferential we have that ∀ A ⊆ X, ∂u(A) ⊇ ∇u(A ∩ dom(∇u)).
Whence, by the area formula (c.f. [9, Cor. 3.2.20 p.256]),

µu(A) = |∂u(A)| ≥ |∇u(A ∩ dom(∇u))| =
∫
A

detD2u(x)dx =

∫
A

f(x)

g(∇u(x))
dx

Next, if ∂u(A) ⊆ Y up to a set of measure 0, we have that A∩dom(∇u) ⊆ (∇u)−1(∂u(A))
since ∇u(A) ⊆ ∂u(A) by definition. Moreover,

(∇u)−1(∂u(A) ∩ Y )\A
⊆ (∇u)−1 ({y ∈ Y : ∃ x1 6= x2 : y ∈ ∂u(x1) ∩ ∂u(x2)})
⊆ (∇u)−1 ({points s.t. u∗ is not differentiable ∩ Y })

The first inclusion follows from the fact that if z ∈ ∇u)−1(∂u(A)∩Y ), then ∃ z̄ such that
u is differentiable at z̄ and ∇u(z̄) ∈ ∂u(A)∩Y , so notably (∇u)−1u(A)∩Y \A is simply the
set Γ = {z 6∈ A : u is differentiable at z and ∇u(z) ∈ ∂u(A)∩Y } so this set does not include
any point in A where u is differentiable. Therefore, ∀ x1 ∈ Γ, ∇u(x1) ∈ ∂u(x1)∩ ∂u(x2) for
x2 ∈ A and hence x1 6= x2 since x1 6∈ A. As such the first inclusion holds.

The second inclusion can be deduced by letting y ∈ ∂u(x1) ∩ ∂u(x2). Recalling the
definition of the subdifferential, we have that ∂u(x1) = {p ∈ Rn : 〈p, x1〉 − u(x1) ≥ 〈p, x〉 −
u(x)} for any x. We note therefore that u∗(y) = 〈xi, y〉 − u(xi) for i = 1, 2 and that ∀ z,
u∗(z) ≥ 〈xi, z〉 − u(xi) by definition of the convex conjugate. So, in particular u∗(z) ≥
〈xi, z〉 + 〈xi, y − y〉 − u(xi) = u∗(y) + 〈xi, z − y〉, so if u∗ is differentiable, its derivative is
multiply defined by x1 and x2 which is absurd, whence the second inclusion.

Note that |(∇u)−1(∂u(A) ∩ Y )\A| = 0 since u∗ is convex [16, Line 9 p.104] i.e. hence
differentiable almost everywhere and by the fact that (∇u)](fdx) = gdy we have that the
last included set is of measure 0 Thus the first set in question is a subset of a set of measure
0 and hence is of measure 0.

Assume ∂u(A) ⊆ Y up to a set of measure 0 and f vanishes outside X then

(2.5) |∂u(A)| =
∫
∂u(A)

g(y)

g(y)
dy =

∫
(∇u)−1(∂u(A))

f(x)

g(∇u(x))
dx

since (∇u)](fdx) = gdy. Using the aforementioned propertyA∩dom(∇u) ⊆ (∇u)−1(∂u(A))
we have up to excision of a set of measure 0 that (∇u)−1(∂u(A)) = A∪ (∇u)−1(∂u(A))\A.
Thus (∇u)−1(∂u(A)) is the union of a measurable set and a set of mesure 0, so

|∂u(A)| =
∫
A

f(x)

g(∇u(x))
dx.

Note that {x ∈ X ∩dom(∇u) : ∇u(x) ∈ Y } is dense in X by the property that ∇u(X) =
Y . Moreover, we have the following result for convex functions per [7, Thm. 3.3.6 p.59]

∂u(x) = Conv ({p : ∃ xk ∈ dom∇u with xk → x and∇u(xk)→ p}) .

Hence, by density, ∂u(X) ⊆ Conv(Y ) = Ȳ by convexity of Y (conv(U) = U for U
convex).

Now, since ∂Y has 0 measure we are in the scenario to apply (2.3) yielding

|∂u(X)| =
∫
X

f(x)

g(∇u(x))
dx

Therefore, u is an Alexandrov solution. We note moreover that u is actually strictly convex
in X by [5, Lem. 3 p.102] such that Theorem 1.20 and Theorem 1.28 yield (i) and Theorem
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1.26 yields (ii), recalling that T (x) = ∇u(x) and that f(x)
g(∇u(x)) ∈ C

k,β
loc (X) if f ∈ Ck,βloc (X),

g ∈ Ck,βloc (Y ) and the bounds on f and g are satisfied. The boundary regularity is discussed
in [6]. �

The above theorem guarantees regularity of solutions provided Y is convex. This con-
dition is however rather restrictive and we wish to discuss what results can be derived if
convexity is not assumed.

Theorem 2.19. (Regularity Without Convexity on Target) Let X,Y, f, g and T be as above
save for the convexity assumption on Y . Then ∃ two relatively closed sets of measure zero
ΣX ⊆ X,ΣY ⊆ Y such that T : X\ΣX → Y \ΣY is a C0,α

loc diffeomorphism for α > 0. If

c ∈ CK+2,α
loc (X × Y ), f ∈ Ck,αloc (X), and g ∈ Ck,αloc (Y ) for some k ≥ 0 and α ∈ (0, 1), then

T : X\ΣX → Y \ΣY is a Ck+1,α
loc diffeomorphism.

Proof. If Y is not convex, there may exist x ∈ X such that ∂u(x) 6⊆ Y and as mentioned
before, at such points there is no control on the Monge–Ampère measure of u. We define
the regular set RegX = {x ∈ X : ∂u(x) ⊆ Y } and let ΣX = X\RegX . By the continuity
properties of the subdifferential [7, Prop. 3.3.4 p.57] and the fact that Y is open, RegX is
also open. Thus, the condition (∇u(x))](fdx) = gdy yields ∇u(x) ∈ Y for a.e. x ∈ X,
that is |ΣX | = 0. Then, following the proof of the previous theorem, u is a strictly convex
solution on RegX and the previous regularity results apply. �

Throughout this section, we have discussed the basics of optimal transportation theory
and have made the connection between the case of quadratic cost and the Monge–Ampère
equation.
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3. A Class of Monge–Ampère Type Equations

In the previous section, we determined that in the case of the quadratic cost, the Monge–
Ampère equation occurs naturally and guarantees some regularity properties on the corre-
sponding optimal transport maps. This result was demonstrated in Theorem 2.14 and we
have discussed a similar result in Theorem 2.12 for the case of more general cost functions
c(x, y) satisfying (C0)– (C2). Hence, for such a cost function we have that

|det(DT (x))| = f(x)

g(T (x))
a.e.,

and that T (x) = c–expx(∇u(x)). By the definition of c–expx, z 7→ u(z)+c(z, c–expx(∇u(x)))
attains a minimum at z = x for every point of x where u is differentiable. Hence, if u is
twice differentiable at x,

D2u(x) +Dxxc(x, c–expx(∇u(x))) ≥ 0.

Therefore, recalling that T (x) = c–expx(∇u(x)) =⇒ −Dxc(x, T (x)) = ∇u(x) yields
−Dxxc(x, T (x))−Dyxc(x, T (x))DT (x) = D2u(x) and taking the determinant on both sides,
we get

det(D2u(x) +Dxxc(x, c–expx(∇u(x))))

= |det(Dxyc(x, c–expx(∇u(x))))| f(x)

g(c–expx(∇u(x)))
.

which we recognize as a Monge–Ampère type equation of the form

(3.1) det(D2u−A(x,∇u)) = f(x,∇u)

with A(x,∇u(x)) = −Dxxc(x, c–expx(∇u(x))).
The regularity of optimal transport maps of this form is dependent on the properties of

A.

3.1. The MTW Condition and Smooth Solutions. A major breakthrough in regularity
theory for this type of problem was demonstrated in [13] and appears in the form of the
following tensor.

Definition 3.1. (Ma–Trudinger–Wang (MTW) Tensor) The MTW tensor S(x,y)(ξ, η) is
defined as

S(x,y)(ξ, η) = D2
pηpηA(x, p)[ξ, ξ]

=
∑

i,j,k,l,p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)cr,kcs,lξiξjηkηl ξ, η ∈ Rn.

Here, A is identical to that in (3.1). Moreover, the cost function c in all of this expression
is evaluated at (x, y) = (x, c– expx(p)) and we have used the following convention for brevity,
cj = ∂xjc, cjk = ∂xjxkc, i,j = ∂xiyjc, c

i,j = ∂xiyjc, c
i,j = (ci,j)

−1.

The following condition will play a pivotal role in the regularity theory for these general
costs.

Definition 3.2. (MTW Condition) Given K ≥ 0, the cost function c satisfies the MTW(K)
condition provided ∀ (x, y) ∈ (X × Y ) and ∀ ξ, η ∈ Rn,

(3.2) S(x,y)(ξ, η) ≥ K|ξ|2|η|2 whenever ξ ⊥ η

The MTW condition may appear unremarkable for the moment, however the following
result is a testament to its utility.
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Theorem 3.3. (Smoothness from the MTW Condition) Let c : X × Y → R satisfy (C0)–
(C3) and MTW(K) holds for K > 0. Moreover, let f, g be smooth and bounded away from
0,∞ on their respective supports X,Y . Also, suppose

(i) X and Y are smooth;
(ii) Dxc(x, Y ) is uniformly convex ∀ x ∈ X;

(iii) Dyc(X, y) is uniformly convex ∀ y ∈ Y ;

Then the optimal transport map sending f onto g is of the form T (x) = c– expx(∇u(x)) for
u ∈ C∞(X̄) and T : X̄ → Ȳ is a smooth diffeomorphism.

Proof. Assume u ∈ C4(X) is a solution of (3.1) with T (x) = c– expx(∇u(x)) and the
natural boundary conditions T (X) = Y . Hence, |∇u(x)| = |Dxc(x, T (x))| ≤ C, so u is
globally Lipschitz. Let wij = Dxixju+Dxixjc(x, c– expx(∇u(x))) which is positive definite
by c–convexity of u. Thus, (3.1) simplifies to det(wij) = f(x,∇u(x)). It will be simpler

to work with log det(wij) as notably ∂xk log det(wij) =
adj(w)ji
det(wij)

wij,k = wijwij,k via the

Jacobi identity and we have again used the convention wij = (wij)
−1 and wij,k = ∂xkwij .

Hence, letting ϕ(x) = f(x,∇u(x)) yields wijwij,k = ϕk. Taking another derivative yields
wijwij,kk−wiswjtwij,kwst,k = ϕkk or wijwij,kk = ϕkk+wstwijwij,kwst,k ≥ ϕkk so, inputting
the explicit form of wij yields

wij(uijk + cijk+cij,sTs,k) = ϕk

wij(uijkk + cijkk + 2cijk,sTs,k + cij,sTs,kk + cij,stTs,kTt,k) ≥ ϕkk

Now, we take x̄ ∈ X and let η be a cut–off function around x̄, define G : X × Sn−1 → R
(x, ξ) 7→ η(x)2wξξ for wξξ = wijξ

iξj . Note that wij is positive definite hence G > 0. We now
wish to demonstrate an upper bound on G and employ the same strategy as in Theorem
1.15.

Let x0 ∈ X and ξ0 ∈ Sn−1 be a point where G is maximal. We take rotation of coordinates
with ξ0 = e1 such that at x0, 0 = log(G)i =

w11,i

w11
+ 2ηiη and log(G)ij =

w11,ij

w11
+ 2

ηij
η −

6
ηiηj
η . Note that logG is nonpositive, hence 0 ≥ w11w

ij(logG)ij and differentiating ∇u =

−Dxc(x, T (x)) yields wijc
k,i = Tk,j notably |∇T | ≤ Cw11.

Combining these equations yields 0 ≥ wij [ck,lcij,kcl,st − cij,st]cs,pct,qwp1wq1 − C. One
can take a rotation of coordinates that leaves e1 invariant and assume that wij is di-
agonal at x0 to get wii[ck,lcii,kcl,st − cii,st]c

s,1ct,1w11w11 ≤ C. Now, apply MTW(K)

to ξ1 = (0,
√
w22, . . . ,

√
wnn) and ξ2 = (w11, 0, . . . , 0) yielding Kw2

11

∑n
i=2 w

ii ≤ C +

w11[ck,lc11,kcl,st − c11,st]c
s,1ct,1w11w11, so using (C0) and the fact that wij = w−1

ij gives

w2
11

∑n
i=2 w

ii ≤ C(1 + w11) such that the AM-GM inequality yields

1

n− 1

n∑
i=2

wii ≥

(
n∏
i=2

wii

)
≥ c0(w11)−1/(n−1) = c0(w11)1/(n−1)

for c0 = infx∈X h(x,∇u(x))−1/(n−1) > 0. We therefore obtain w11(x0)2+1/(n−1) ≤ C(1 +
w11(x0)) hence G(x, ξ) ≤ G(x0, ξ0) ≤ C for any (x, ξ) ∈ X × Sn−1. �

We note that this result can be used to proved boundary regularity for diffent Monge–
Ampère type equations.

Remark 3.4. (Boundary Regularity Results for MTW Condition) It has been shown in [13]
that the MTW condition is coordinate invariant. Hence if u solves det(D2u−A(x,∇u)) =
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f(x, u,∇u) with A satisfying the MTW condition then taking Φ to be a smooth diffeomor-

phism, u◦Φ satisfies the same equation with Ã satisfying the MTW condition in place of A.
Therefore to prove boundary regularity it is possible to simplify the problem using such a
diffeomorphism. This result also holds for a solution to the classical Monge–Ampère equa-
tion (A = 0 is MTW(0)) say u, then u ◦Φ satisfies the a similar equation with Ã satisfying
MTW(0) in lieu of A.

3.2. Geometry, Regularity and the MTW condition. The geometric interpretation
of the MTW condition stems from the work of Loeper (c.f. [12]). Recall that the convexity
of the subdifferential of a convex function was one of the main results used to prove the
regularity results for the classical Monge–Ampère equation. Moreover, recall that convex
sets are connected and thus a natural extension in this case is to study whether a modifica-
tion of the subdifferential for c–convex function is connected. To this effect, the following
definitions.

Definition 3.5. (c–segment) Let x̄ ∈ X, y0, y1 ∈ Y . Then the c–segment from y0 to y1

with base x̄ is given by

(3.3) [y0, y1]x̄ = {yt = c–expx̄((1− t)(c–expx̄)−1(y0) + t(c–expx̄)−1(y1)) | t ∈ [0, 1]}
Definition 3.6. (c–subdifferential) For a c–convex function ψ its c–subdifferential at x is

∂cψ(x) = {y ∈ Y : ψ(x) = ψc(y)− c(x, y)}
or equivalently

∂cψ(x) =
{
y ∈ Ȳ : ψ(z) ≥ −c(z, y) + c(x, y) + ψ(x) ∀ x ∈ X

}
Definition 3.7. (Fréchet Subdifferential) The Fréchet subdifferential of ψ at x is given by

(3.4) ∂−ψ(x) = {p ∈ Rn : ψ(z) ≥ u(x) + p · (z − x) + o(|z − x|)}
Notably, for ψ ∈ C1 if y ∈ ∂cψ(x) then −Dxc(x, y) ∈ ∂−c(x, y) and moreover ∂cψ(x) ⊆
c– expx(∂−ψ(x)).

With these definitions in mind and recalling the question of connectedness of the c–
subdifferential, the following theorem confirms that it is a necessary condition for smoothness
of optimal transport (see [12, Rmk. 3 p.257]).

Theorem 3.8. (Discontinuous Optimal Transport Maps) Suppose ∃ x̄ ∈ X and ψ : X →
R c–convex such that ∂cψ(x̄) is not connected. Then one can find f, g smooth positive
probability densities such that the optimal map is discontinuous.

With this negative result in mind, it remains to be seen if connectedness of the c–
subdifferential is sufficent to obtain smoothness. We therefore introduce some alternate
characterizations of this condition to see if we can establish a connection with the MTW
condition.

Theorem 3.9. (Characterizations of Connectedness of the c-subdifferential) The following
are equivalent

(i) For any c–convex ψ, ∀ x̄ ∈ X, ∂cψ(x̄) is connected
(ii) For any c–convex ψ, ∀ x̄ ∈ X, (c– expx̄)−1(∂cψ(x̄)) is convex and coincides with

∂−ψ(x̄)
(iii) ∀ x̄ ∈ X,∀ y0, y1 ∈ Y , if [y0, y1]x̄ = (yt)t∈[0,1] ⊆ Y then

c(x, yt)− c(x̄, yt) ≥ min{c(x, y0)− c(x̄, y0), c(x, y1)− c(x̄, y1)}
∀ x ∈ X, t ∈ [0, 1]
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(iv) ∀ x̄ ∈ X, y ∈ Y, η, ξ ∈ Rn with ξ ⊥ η

(3.5)
d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

c(c– expx̄(tξ), c– expx̄(p+ sη)) ≤ 0

for p = (c– expx̄)−1(y)

and if any of these conditions is not satisfied then C1 c–convex functions are not dense in
the set of Lipschitz c–convex functions.

Proof. (ii) =⇒ (i) Since (c– expx)−1(∂cψ(x)) is convex, it is also connected, whence ∂cψ(x)
is connected as well.
(i) =⇒ (ii) Let ψx̄,y0,y1 = max{−c(·, y0) + c(x̄, y0),−c(·, y1) + c(x̄, y1)}. Then
(c– expx̄)−1(∂cψx̄,y0,y1(x̄)) ⊆ [(c– expx̄)−1(y0), (c– expx̄)−1(y1)] which is a segment. Here,
connectedness and convexity are equivalent, so if (i) holds ∂cψx̄,y0,y1(x̄) = [y0, y1]x̄ =
c– expx̄(∂−ψx̄,y0,y1(x̄)). Generally, taking y0, y1 ∈ ∂cψ(x̄) one sees that ∂cψ(x̄) ⊇ ∂cψx̄,y0,y1(x̄) =
[y0, y1]x̄
(ii) ⇐⇒ (iii) Note that the equation in (iii) is equivalent to ∂cψx̄,y0,y1 = [y0, y1]x̄ thus the
same arguments above can be used.
(iii) =⇒ (iv) Take x̄ ∈ X, y ∈ Y such that y = c– expx̄(p). Take ξ, η perpendicular and
of norm 1 and define y0 = c– expx̄(p − εη) and y1 = c– expx̄(p + εη) for some ε > 0 and
h0(x) = c(x̄, y0)−c(x, y0), h1(x) = c(x̄, y1)−c(x, y1) and finally ψ = max{h0, h1} = ψx̄,y0,y1 .
Let γ(t) be a curve contained in the set {h0 = h1} for which γ(0) = x̄, γ̇(0) = ξ.

Since y ∈ [y0, y1]x̄ we get by (iii) that y ∈ ∂cψ(x̄) and therefore 1
2 [h0(x̄)+h1(x̄)]+c(x̄, y) =

ψ(x̄) + c(x̄, y) ≤ ψ(γ(t)) + c(γ(t), y) = 1
2 [h0(γ(t)) +h1(γ(t))] + c(γ(t), y) as h0 = h1 along γ.

Thus, 1
2 [c(γ(t), y0)+c(γ(t), y1)]−c(γ(t), y) ≤ 1

2 [c(x̄, y0)+c(x̄, y1)]−c(x̄, y) and the function on

the left hand side attains its minimum at t = 0, so d2

dt2

∣∣∣
t=0

(
1
2 [c(γ(t), y0) + c(γ(t), y1)]− c(γ(t), y)

)
≤

0. Since Dxc(x̄, y) = 1
2 [Dxc(x̄, y0) +Dxc(x̄, y1)] one obtains〈[

1

2
(Dxxc(x̄, y0) +Dxxc(x̄, y1))−Dxxc(x̄, y)

]
· ξ, ξ

〉
≤ 0.

Therefore 〈Dxxc(x̄, c– expx̄(p+ sη)) · ξ, ξ〉 is concave as a function of s, proving (iv). �

Remark 3.10. (Equivalence of Connectedness and MTW(0) Condition) By direct computa-
tion, one obtains that

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

c(c– expx̄(tξ), c– expx̄(p+ sη)) = S(x,y)(ξ, η)

Therefore by Theorem 3.9 we get that the MTW(0) condition is equivalent to connectedness
of the c–subdifferential of any c–convex function. Thus, since we have already shown in by
the results of Theorems 3.3 and 3.8; the MTW condition is necessary and sufficient for
smoothness of the optimal transport map.

Loeper further proved in [12] the following regularity results for cost functions satisfying
the MTW(K) condition. Notably, this gives us regularity of the optimal transport map as
well as the regularity of solutions to 3.1.

Theorem 3.11. (Regularity from MTW(K)) Let c : X × Y → R satisfy (C0)-(C3) and
MTW(K) for K > 0. Let f be bounded from above on X and g be bounded away from 0 on
Y and denote the optimal transport map T sending f onto g. Suppose Dxc(x, y) is convex
∀ x ∈ X. Then u ∈ C1,α(X) with α = 1/(4n− 1) hence Tu ∈ C0,α(X)
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This theorem was generalized in [14] to the following.

Theorem 3.12. (Regularity from MTW(0)) Let c : X × Y → R satisfy (C0)-(C3) and
MTW(0). Let f be bounded from above on X and g be bounded away from 0 and ∞ on
Y . Also, assume Dxc(x, Y ) and Dyc(X, y) are uniformly convex ∀ x ∈ X, y ∈ Y . Then

u ∈ C1,α
loc (X̄ ′) ∀ X ′ ⊆ X where f is uniformly bounded away from 0.

Throughout this section we have discussed the regularity of optimal transport maps
arising with more general cost functions. We have equally connected the regularity of these
maps to the regularity of solutions to a general family of Monge–Ampère type equations.
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