Burgers’ Equation

April 21,2019

Abstract

This paper covers some topics about Burgers equation. Starting from a traffic flow model, Burgers
equation emerges. It is then solved by Cole-Hopf transformation before giving asymptotic results of the
exact solution. Finally, the Input-to-State Stability(ISS) properties of Burgers equation are analyzed, and
numerical experiments concludes this course project.

A simple model of traffic flow

Consider a fleet of cars driving on a highway, and let p(x,t),v(z,t) denote the density and the velocity

respectively. For any interval [a, b] on the road, the total number of cars in this segment is f; px, t)dx.
Therefore, from time ¢ to ¢ + At, we have

b b t+At t+At
/ plx,t + At)dx f/ p(z, t)dx :/ p(a,t)v(a,t)dtf/ p(b, t)v(b, t)dt
Ja a t t
= p(a, t1)v(a,t1)At — p(b,ta)v(b,t2)At. (Mean Value Theorem)

Therefore,

dx = p(a,t1)v(a,t;) — p(b,ta)v(b, ta).

/b p(z,t + At) — p(x,t)
i At

Let At — 0, we have

b

b
/ prdx = p(a,t)v(a,t) — p(b,t)v(b,t) = —/ (pv)dx,

ie. .
/ [pt + (pv)z]dz = 0.
a
As a,b are arbitrary, we have

pt + (pv)z = 0. (continuity equation)

Assume that v = vpax(1— -2) - C ’%, where pnay is the maximum density, vyay is the maximum velocity,

Pmax

and C is a positive constant(this term is in order to reflect the fact that drivers would reduce their speed
for an increasing density ahead), then

P
Pt + Vmaxpz — 2 = ppz — Cpzz = 0.
Umax
Make
T = —2 + Upaxl
t=t ’

then

Pt(i"\a?\) = pz * (Vmax) + pp
pa(T,t) = pz-(=1)=—ps ,
Pz (.CC, t) = Pzz
hence, p; + 272 pp; — Cpzz = 0
Let , 9
p = Pniaxﬂ
Jj/ = 'Umaxx ’
t'=t
then

c
py + P Py = p1pyrgs, Where = —

max

When C = 0, we get the inviscid Burgers equation p}, + p'pl, = 0. For more information about Burgers’
equation and traffic flow model, refer to [1, 2].

A simplification of Navier-Stokes Equation

Consider the incompressible Navier-Stokes equation, see [3],

ov
p(a +Vv-VVv)=-Vp+vAv+F
where p is the density, v is the velocity, p is the pressure, v is the fluid viscosity and F is an external force.
Assume that there are no external forces, and the pressure term is negligible, then the Navier-Stokes
equation for 1D problem becomes the viscid Burgers equation, shown as

Up + Uy = [lgg, D

where p = s the kinematic viscosity.
When the viscosity 1 is zero, then equation (1) becomes the following inviscid Burgers equation, shown
as
us + utt, = 0. ()]

Cole-Hopf transformation and the exact solution
Consider now the viscid Burgers equation (1) with initial condition
u(z,0) = ug(x). 3

Define the Cole-Hopf transformation(see [4]), as

Wy

u = _2/13’ 4

then
2u(wiw, — wwgy) 4pw, (W — w?)

w3

and
2112 (2w — 3wweawy + WA Wers)

MWUgy = —

w3
Substituting these expressions into equation (1), we get

W (W — PWgg) = W(Wat — PWape) = W(W — PWag)y -
Therefore, if w(z, t) solves the heat equation

Wi — fWgqe = 0, (5)

then wu(z,t) given by transformation (4) solves the viscid Burgers equation (1).
As for the initial condition (3), the new variable w(x, t) must satisfy

Qﬂwwm((z’(;))) = uo()
ie. du(z,0) .
w(e0) ~ 2"

Integrating form both sides from O to «z,

_E 0

hence,

6
w(z,0) = e~ 2 Jo uo(s)ds

(7)
Note that the lower limit of the integral in (6) can be changed from 0 to any other convenient value. As
a result of the transformation, we only need to deal with the heat diffusion problem, satisfying equation
(5) and (7). With the heat kernel expression

1 2
E(x,t) = 2
(.I'a) \/We ,
we have
+oo
w(z,t) / w(&, 0)E(x — &,)d¢
+o0 t
-7 / o IS womin— 59 e
Nzl
1 +o0 .
VA /, _ e,
where

13 Tz — £)2
G($7t,§):/0 UO(n)dn+< 5) :

2t
It then follows that

ow

1 +oo xTr — _lqg
— = e 27 dE.
oz 2u/Amut J_o T
and the exact solution of Burgers initial value problem is obtained, which is

[+oo L‘fe_ﬁc(l"t’g) df
u(z,t) = =21

f"“’o e—ﬁG(ﬁatvf) d¢

(8)

Asymptotic behaviour of the solution

Suppose G(z,t,) has only one stationary point £,, with Taylor’s formula, we expand G(z,t,¢) and “’;5
at &, respectively,

1
G(Jj, t7 5) = G(J?, t? 50) + G/(x7 ta 50)(5 - 50) + §G/l(x7 ta 5)(5 - 50)2 +
1
= G(xat7£0) =+ §G//($,t,£)(§ - 50)2 + -
ro8 vl Ly ey
— =T () 60) +

Thus, asymptotically,

+ +
/ T - § 3G t) ge ., © - 80— - Gl(a,t.6o) / T G @O0 g
—00

— 00

The symbol ~ means in a limiting or asymptotic sense. Let 2% = ﬁ\G”(m, t,6)|(& — &)?, then dz =
"(x — 2
/1G7'(»tiy(& o) d¢, thus,

+oo
28 -36E@0) ge o, T80~ G r) pm
oo 1 t G (2,1, 8)]

“+oo 1 Apm
£V dE ~ ez Clatlo) [2HT
/ G(a,t,€) dE ~ e G (2, £, €)]

Therefore, we conclude that

u(z,t) ~ m—tﬁo as pu—0.

For this asymptotic estimation, refer to Method of Steepest Descent in [5, 6].

As G'(x,t,&) = uo (&) — ”C_tfo = 0, then the asymptotic solution may be rewritten as

u(x,t) = up(&o), = =& + uo(éo)t. ©)

Notice that this is the same solution we obtained with method of characteristics for the inviscid Burgers’
equation. This solution is only valid before t,, where ¢, denotes the breaking time of a gradient catastrophe.
In some cases, (9) gives multivalued solution after a sufficient time, and discontinuities or a shock wave
solution must be introduced.(Weak solution, shock wave solution, Rankine Hugoniot(jump) condition,
entropy condition). When this stage is reached, The explanation is that there are two stationary points
for G(z,t,£), denoted by & and &, with & > &, respectively. Then

x—tfl G (1, €1>|7%e—2%6‘(x,t751) + x—tfz G (2,1, &) 1o 3 G@,t82)
1 1
|G (x,t, 51)|—%e—2—“6‘(£,t,£1) + |G (x,t, 52)|_%€_T“G(x’t’£2)

u(x, t) ~ (10)

When G(z,t,&) # G(x,t, &), one or the other term of e~ G@:t8) i overwhelmingly large when p — 0.
Suppose when G(z,t,&1) < G(z,t,&2), we have

u(x,t) - .%'—tfl,

then when G(x,t,£1) > G(z,t, &),

u(xz,t) ~ x_t&'

The criteria of G(z,t,&1) S G(z, t, &) will determine the asymptotic solution for given («, t). The changeover
will occur at those (z,t) for which G(z,t,&1) = G(x,t,&2), i.e.

= (x—&)* _ [*
/0 uo(n)dn + o /O uo(n)dn +

(x —&)?
2t

As G'(z,t,&1) = 0 and G'(x,t, &) = 0, this condition may be rewritten as

&2
[= F(un(&r) + ua(€)is -).

This is exactly the shock fitting rule for determining the shock path, which can be derived from the jump
condition analytically, refer to [7].

Geometrically, it has a more intuitive explanation based on the equal area principle, refer to Figure 1 and
Figure 2.

Sho f]‘i
% =S4

_:i.-? -
PQ? w2 U BY

_xz U3t T4

%) 3B A

Figure 1: Two characteristics intersect on the shock path

Tine £=0 Time, 11,
P

Wol) &

e ____

5, 3

Figure 2: initial wave profile evolving into a multivalued wavelet

Input-to-State Stability(ISS) properties for Burgers Equation

Let us move on to another topic. Consider the following system for Burgers’ equation with Dirichlet bound-
ary conditions:

U(O’t) =0, u(la t) = d(t)a a1

Up — Py + VU, = uo(z,t) in (0,1) X Ry
u(z,0) = ugp(z),

5

where ¢ > 0,v > 0 are constants, d(t) is the disturbance on the boundary, which can represent ac-
tuation or sensing errors, and f(z,t) is the disturbance distributed over the domain. We assume that
feH®2([0,1),Ry),and d € H'+5(R,) for some 6 € (0, 1), where H represents the Holder space([8, 91).
For the existence and uniqueness of the solution to system (11), the following theorem holds.

Theorem 1. Assume that ug € H?T9([0,1]) with uo(0) = 0,up(1) = d(0), pug(0) + £(0,0) = 0 and
pug (1)+f(1,0) = d’'(0). For any T > 0, there exists a unique classical solution u € 20145 ([0,1]x [0, T]) C
C?1([0,1] x [0,T7]) of system (11).

The proof of this theorem follows from Theorem 6.1 in [8](pages 452-453). It is based on the lin-
earization of the considered system and the Leray-Schauder theorem on fixed points.

Before listing the well-posedness result of system (11), we begin with some concepts and definitions,
refer to [10, 11].

De Giorgi class Let 2 C R™ be an open bounded set, and v be a constant. The De Giorgi class
DG™ (9,) consists of functions v € W12(2) which satisfy, for every ball B,.(y) C Q, every0 < 1’ < r,
and k € R, the following inequality:

V(iu—k 2dx§+/ u—k Qdm,
/B T ey A G

where (v — k) = max{u — k,0}.

The main idea of De Giorgi iteration is to estimate |A|, the measure of {z € Q;u(x) > k}, and derive
|Ax| = 0 with some k for functions u in De Giorgi class. The following iteration given in [12] is useful.

Lemma 1. Suppose that ¢ is a non-negative decreasing function on [kg, c0) satisfying

B(h) < () P (k). Wh> k> ko,

where M > 0, > 0,8 > 1 are constants. Then the following holds

¢<k0 + ZO) = 0)

B—1

with ly = 25T Mo (ko) ="

Class K and Class K, A continuous function « : [0,a) — [0, 00) belongs to class K if « is strictly
increasing and «(0) = 0. If, in addition, a = oo and «(r) — oo as r — oo, then « is called a class Koo
function.

Class KL A continuous function S : [0,a) x [0,00) — [0,00) belongs to class KL if for each fixed
s, the mapping r — f(r, s) is a class K function, and for each fixed r, the mapping s — S(r,s) is
decreasing in s and 3(r,s) — 0 as s — oo.

Here are some examples of class K £ functions:
1. B(r,s) = 15,7 20,5 > 0;

2. ﬁ(rvs)=¢ﬁ,r20,szo.

~v1,72 € K such that the solution to (11) satisfies

G Bllzaon) < Bllluollze1),1) + 7 (max|d(s)])

> (.
+72([0’11€1jfé’t] |f(z,s)]), Vt=>0

A > 0 such that
B(l[uol Laco,1),t) < B (I[uol|aco,1y)e ™

in (12).

ISS and EISS System (11) is said to be Input-to-State Stable(ISS) in L%(q > 2) with respect to(w.r.t.)
boundary disturbances d(¢) and in-domain disturbances f(x,t), if there exist functions 8 € KL and

(12)

Moreover, it is said to be exponential input-to-state stable(EISS) if there exist 3’ € K, and a constant

In order to use the technique of splitting and the method of De Giorgi iteration in the investigation of the
ISS properties for the considered system, while guaranteeing the well-posedness of Theorem 1, we assume
the compatibility condition uy(0) = ug(0) = uo(1) = ugy (1) = d(0) = d’'(0) = £(0,0) = f(1,0) = 0 always

holds, then the ISS property for system (11) is stated in the following theorem.

Theorem 2. System (11) is EISS in L norm w.r.t boundary disturbances d(t) € #'*% (R, and in-domain

disturbances f(x,t) € H%2([0,1], Ry) satisfying sup |d(s)| + 1%‘—‘/5 sup _|f(x,s)| < £. And we have

Ry [0,1]x R+
2592
[|u(O < 2||uol|* +4max |d(s)]* + =5~ sup |f(z,s)*
[0,2) K 10,1]x[0,2]

Let w be the unique solution of the following system:

Wi — PWey + vww, = f(x,t) in (0,1) X Ry
w(0,t) = 0,w(1,t) =d(¢t),
w(z,0) = 0.

Then v = u — w is the unique solution of the following system:
Vp — WUy + vou, +v(wv), =0 in (0,1) X Ry

v(0,t) =0,v(1,t) =0,
v(x,0) = ug(x).

For system (13), the following estimate holds.

Lemma 2. Suppose that i > 0,v > 0. For every t > 0, one has

@ max |f(x,s)|.

max _|w(z,s)| < max|d(s)| +
[0,¢] W 0,1]1x[0,¢]

[0,1]x[0,t]
For system (14), we have the following estimate.

Lemma 3. Suppose that > 0,v > 0, and sup [d(t)| + 18;:/5

Ry [0,1]xRy

o, O < Juol|*.
Proof of Theorem 2:
Proof. Note that u = w + v, we get from Lemma 2 and Lemma 3 that:

a0l < 2[fw (-,)1 + 2l 1)

<2 2 42w,)2
< ([(),r11]13[)({],t] lw(z,s)])" + 2[|v(:,)|

184/2
L 18v2

< 2lJuol > + 2 d
< 2uol|* + @gi?|(sﬂ o [0,1]%[0,1]

Thus, the estimate holds and system (11) is EISS.

max |f(ac75)|)2

(13)

(14)

sup |f(z,t)] < ?)—’; For every t > 0, one has

Proof of Lemma 2:
Proof. For any ¢t > 0, let kg = max{r[rtl)a?d(s),()}, then (w(0,s) — k)+ = (w(l,s) — k)y = 0 for k > k.
ot
Let Ix(s fo — k)+)%dz, and suppose that I (ty) = r[%ai(I1(s). Due to I;,(0) = 0 and Ix(s) > 0,
t

we can assume that ¢y > 0 without loss of generality. Define n(z,s) = (w(x,s) — k)4 X[t,t,)(5), where
X[t1,t,] () is the character function on [t1,t,] with 0 < t; < t < to. For e sufficiently small , choose
t, = tg — €,ta = to, and multiply system (13) by 7, we get

1 to d 1 to 1
3| 5 =nrasasen [i = k). fPdeds
to to
1
—H// / wwy (w — k) ydxds </ / |f](w — k)dads.
to—e to 0

Note that
1/t0 d/l((wk))2dxds—1(1 (to) — Ii(to — €)) >0
2), dt), + = 5 Ukllo klto —¢€)) =20,
and .
lim/ /wwx(w—kz)erxds:O,
=07t to—e JO
we get

1 1
u/o |(w(@, to) = k)+)o[*dz S/O | (@, to)[(w (2, to) — k). da.

Using the fact that

b
1 1 2 1
([ldo)s <0)t (el + (0 - a)ljusl)} V21

when u € C([a, b]; R),refer to [13], and Pioncare’s inequality,see [14], we have

1
(/0 (wla.to) — k)2) Pdz)? <9 /| w(, o) — k) 4)a[2dz

/ |f (z, to)|(w(z, to) — k)sdz. (¥Vp > 2)

Let Ax(s) = {z € (0,1); w(x,s) > k}, and ¢, = sup |Ax(s)|,then
(0,t)

9

2l to) - B
A (to)

(/A) =) <

2 Pdx v x Ydx 7
M(/Ak(to)l(w(:c,to)—khl dz))(/Ak(to) |fx,t0))|9da)

(Holder’s Inequality)

IA

Thus,

(/Ak o) [(w(z,to) — k)4 |Pdx)? < (/Ak(to) |f (2, t0))|%dx)a

= |o©

9 1

< — q

= HlAk(tO)l [oﬁ?ffét]'f(m’sﬂ
9

< —_

< max 1796

Moreover, with the definition of I;(s), we get

I (o) < (/ [(w(z, to) — k)+|pd:1:)%)|Ak(t0)| » (Holder’s Inequality)
Ak(to)

<2 max |f(es))Pel
= poaxo koo

Recalling that I;(¢g) = I[%a? Ij(s), we have
.t

9 _a
Ti(s) < Tulto) < mawc [7(,5)) Gy ", (15)

On the other hand,noticing that |A;(s)| < Ax(s) when h > k, we have
Ii(s) Z/ (w(z,s) = k)4)?dz > (h— k)*|An(s)| (16)
Ah(s)
Then we infer from (15) and (16) that

(h— k2o < (2 max |f(,)20 7,

14 [0.1]x[0.¢]
i.e.
, e (2 omax |f(x,)|)%3_%
h= I h—k k

As p > 2, we have 3 — % > 1. By De Giorgi iteration in Lemma 1, we obtain

¢/€0+l0 = Sup |Ako+lo‘ =0,
[0,¢]

4

2
— 19 3 995p=
wherelo = 28555 mag 110 9)lon, * < 3257 g 17600l Then

w(z,s) < ko+lo

< max{maxd(s),0} + 225 max |f(z,s)|

[0,¢] w [0,1]x[0,1]
18
< max{r[%iﬁc d(s),0} + ;f [O7rlr]1§1[)67t] |f(z,8)] asp— oo.
In order to prove the lower boundedness of w(x,t), set w = —w, we have

— ,U/mmz + ruow, = _f(.'l'},t) in (O, 1) X R+
E(Oa t) = O7w(17 t) = _d(t)v
w(x,0) = 0.

Proceeding as above, the De Giorgi iteration gives

1
~w(z,) = w(z,5) < max{max —d(s),0} + 18v2 V2 max|f(@s)
Hence,
18v/2
< d _— .
omax lw(z, s)| < %?ﬁ(‘ (s)] + e |f(z,s)|
O
Proof of Lemma 3:
Proof. Multiplying System (14) by v and Integrating over (0, 1), we get
1 1 1 1
/ vvdx + ,u/ vidx + 1// viuyde + 1// (wv)vde =0
0 0 0 0
O

1 1 _ 1 1
Note that [v?v,dz = 0and [, (wv),vdz = wo?|3Z4 — [wovede = — [wov,dz, we deduce that

1d)) !
- . . <
5510 O + il 01 < v [fuvoda
v 2 2
<= ot ot
<5 omae fwl) (oI + flos(Dl)
v 18v/2
<— d —= s (1) 2
<G lmacld(s)| + == max £z)00 + [0
v 2
<2 o)+)
<pllva(-,t)||* (Poincare’s inequality)
Thus,
L2 <0
dt b)
hence,

o B < o, 0 = [Juol|*.

iISS System (11) is said to be ISS w.r.t. boundary disturbances d(¢) and integral input-to-state sta-
ble(iISS) w.r.t. in-domain disturbances f(z,t¢) in L?-norm(q > 2), if there exist functions § € KL, 0 €
Koo and 71,72 € K such that the solution to (11) satisfies

G B)llzoo,1) < Bllluollzoqo1),1) + 71 (max]d(s)]) an

+0([nllf)l)ds). ve=o

Theorem 3. System (11) is EISS in L* norm w.r.t boundary disturbances d(t) € H'T%(R.) satisfying

sup |d(t)| < £, and EiISS w.r.t in-domain disturbances f(x,t) € 04 ([0, 1], Ry), with the following estimate
teER,
foranyt > 0:

2 t
IWhﬂWSZWdF+mmMﬂ®P+f/IUR@W%-
[0,¢) € Jo

In order to prove Theorem 3, consider the following two systems:
W — PWey + vww, =0 in (0,1) x Ry
w(0,t) = 0,w(1,1) = d(t), (18)
w(z,0) = 0.
and
Vp — Wy + VOV, + v(wv +vw), = f(x,t) in (0,1) x Ry
v(0,t) = 0,v(1,t) =0, (19)
v(x,0) = ug(x).
where v = u — w.
For system (18), it is a special case of system (13). And for system (19), we have the following estimate:

Lemma 4. Suppose that ;1 > 0,v > 0, and sup |d(t)| < £. For every t > 0, one has
Ry

1 t
lo(61" < ||1Ao||2+g/0 1£(9)[Pds, Ve € (0,).

Based on the results of Lemma 2 and Lemma 4, the estimate in Theorem 3 holds.
Proof of Lemma 4:

10

Proof. Multiply system (19) by v and integrating over (0, 1), we get
1 1 1 1 1
/ vopdx + u/ v2da + 1// v dr + 1// (wv)vde = / flx, t)de.
0 0 0 0 0

1d
2dt
1 1
<v |wvvw|dz+/ f(z, t)vde
0 0

Then

oG O + pllva (-)]

<5 max |d(s)|([[o()| + |lva (-,)[?)

12

2 [0,t]
1 €

+ 5 lFCOIP + 5l DIF (Young's Inequalty)

<E 02 + lloa D) + LGOI + Sl)12

where we choose ¢ sufficiently small.

Thus,
d

1
SC IR < <7 BIP.

Integrating from 0 to ¢, we get
2 2 1 ! 2
oGO < ol O + = ; Lf (- 8)l[ds

1 t
<lhuoll+ ¢ [1175 s

Numerical experiments of Burgers Equation
In the section, we use finite differences and the Lax-Wendroff method(see [15]) to obtain the solution of

inviscid time-dependent Burgers equation. The source code written in matlab is in the end of this article.
Here we only give partial result of this method,shown as follows:

21-Apr-2019 14:29:01
FD1D_BURGERS_LAX:
MATLAB version
Solve the non-viscous time-dependent Burgers equation,
using the Lax-Wendroff method.
Equation to be solved:
du/dt + u * du/dx = 0
for x in [a, b], for t in [t_init, t_last]
with initial conditions:

u(x,o0) = u_init

and boundary conditions:

11

u(a,t) = u_a(t), ulb,t) = u_b(t)

-1.000000 <= X <= 1.000000

Number of nodes = 41

DX = 0.050000

0.000000 <= t <= 1.000000

Number of time steps = 80

DT = 0.012500

X:
-1.000000 -0.950000 -0.900000 -0.850000
-0.750000 -0.700000 -0.650000 -0.600000
-0.500000 -0.450000 -0.400000 -0.350000
-0.250000 -0.200000 -0.150000 -0.100000
0.000000 0.050000 0.100000 0.150000
0.250000 0.300000 0.350000 0.400000
0.500000 0.550000 0.600000 0.650000
0.750000 0.800000 0.850000 0.900000
1.000000

STEP = 0O

TIME = 0.000000

STABILTY = 0.125000

Step 80, Time 1.000000
15 T T T T T T T T T

-1 08 -0.6

-0.4

-0.2 0 0.2

Figure 3:

12

0.4 0.6 0.8 1

.800000
.550000
.300000
.050000
.200000
.450000
.700000
.950000

0.5
0.409666
.295167
0.155958
0
-0.155958
-0.295167
-0.409666

-0.5

o

STEP = 1
TIME = 0.012500
STABILTY = 0.125000

0.5
0.418014
0.302688
0.160634

5.98005e-19
-0.160634
-0.302688
-0.418014
-0.5

STEP = 2
TIME = 0.025000
STABILTY = 0.125000

0.5
0.426538
0.310505
0.165575

1.19612e-18
-0.165575
-0.310505
-0.426538
-0.5

STEP = 79
TIME = 0.987500
STABILTY = 0.284547

0.5
0.478441
-0.0601122
0.23613
1.63746e-15
-0.23613
0.0601122
-0.478441

0.48368
0.3888
0.269197
0.125666
-0.0318045
-0.185547
-0.32012
-0.429553

0.491773
0.39711
0.276327
0.129515
-0.032815
-0.190969
-0.327947
-0.437893

.497809
.405622
.283766
.133592
-0.0338904
-0.196683
-0.336053
-0.446381

O O O O

0.486051
-0.0459906
0.161666
-0.078433
-0.725162
-0.292521
-0.578412
-0.674504

0.466525
0.366932
0.242238
0.0947863
-0.063451
-0.214334
-0.344042
-0.448495

0.47473
0.375146
0.248889

0.0977389
-0.065452
-0.220416
-0.352098
-0.456785

.483033
.383591
.2556853
.100874
-0.0675796
-0.226805
-0.36041
-0.465196

O O O O

0.350438
0.540337
0.560493
1.01461
-0.355727
-1.13819
-0.882731
-0.5856817

13

0.448495
0.344042
0.214334
0.063451
-0.0947863
-0.242238
-0.366932
-0.466525

.456785
.352098
.220416
.065452
-0.0977389
-0.248889
-0.375146
-0.47473

O O O O

0.465196
0.36041
0.226805
0.0675796
-0.100874
-0.255853
-0.383591
-0.483033

0.585817
0.882731
1.13819
0.355727
-1.01461
-0.560493
-0.540337
-0.350438

0.429553
0.32012
0.185547
0.0318045
-0.125666
-0.269197
-0.3888
-0.48368

.437893
.327947
.190969

0.032815
-0.129515
-0.276327

-0.39711
-0.491773

oS O O

0.446381
0.336053
0.196683
0.0338904
-0.133592
-0.283766
-0.405622
-0.497809

.674504
.578412
.2925621
.725162
.078433
-0.161666
0.0459906
-0.486051

O O O OO

-0.5

STEP = 80
TIME = 1.000000
STABILTY = 0.285560

0.5
0.594191
0.0197099
0.256108
1.72333e-15
-0.256108
-0.0197099
-0.594191
-0.5

FD1D_BURGERS_LAX:

0.516579
-0.0579838
0.0872451
-0.306763
-0.744095
-0.62925
-0.779783
-0.696799

Normal end of execution.

0.32841
0.354658
0.265955
0.950214
-0.507699

-1.14224
-0.851096
-0.501757

14

0.501757 0.696799
0.851096 0.779783

1.14224 0.62925
0.507699 0.744095
-0.950214 0.306763
-0.265955 -0.0872451
-0.354658 0.0579838
-0.32841 -0.516579

References

[1]

(2]

(3]
(4]

[5]

(6]

(7]
(8]

(9]
[10]

[11]
[12]

[13]

[14]

[15]

Landajuela, Mikel. "Burgers equation." BCAM Internship: Basque center for applied mathematics
(2011).

Toshimitsu Musha, Hideyo Higuchi. Traffic Current Fluctuation and the Burgers Equation. Japanese
Journal of Applied Physics, Volume 17, Number 5,(1978).

Faber, T. E. Fluid Dynamics for Physicists. New York: Cambridge University Press, (1995).

Evans, Lawrence C. Partial Differential Equations: Second Edition. University of California, Berkeley,
(2010).

Herron, Isom H., and Michael R. Foster. Partial differential equations in fluid dynamics. Cambridge
University Press, (2008).

Logan, J. David. An introduction to nonlinear partial differential equations. Vol. 89. John Wiley &
Sons, (2008).

Whitham, Gerald Beresford. Linear and nonlinear waves. Vol. 42. John Wiley & Sons, (1974).

Ladyzhenskaia, Olga Aleksandrovna, Vsevolod Alekseevich Solonnikov, and Nina N. Ural’ceva. Linear
and quasi-linear equations of parabolic type. Vol. 23. American Mathematical Soc, (1968).

Driver, Bruce K. "Analysis tools with applications." Lecture Notes, (2003).

DiBenedetto, Emmanuele, and Ugo Gianazza. "Some properties of DeGiorgi classes." arXiv preprint
arXiv:1604.07699 (2016).

Terrell, William J. Stability and stabilization: an introduction. Princeton University Press, (2009).

Wu, Zhuoqun, Jingxue Yin, and Chunpeng Wang. Elliptic & parabolic equations. World Scientific,
(2006).

Zheng Jun, and Guchuan Zhu. "A De Giorgi iteration-based approach for the establishment of ISS
properties of a class of semi-linear parabolic PDEs with boundary and in-domain disturbances." arXiv
preprint arXiv:1710.09917 (2017).

Krstic, Miroslav. "On global stabilization of Burgers’ equation by boundary control." Systems & Con-
trol Letters 37, no. 3 (1999): 123-141.

Sod, Gary A. "A survey of several finite difference methods for systems of nonlinear hyperbolic con-
servation laws." Journal of computational physics 27, no. 1 (1978): 1-31.

15

Source code(Matlab)

function fdid_burgers_lax ()

Ttk s ks ok sk ok sk s e s s sk s sk s ok sk sk s s s s e s sk ok sk ks s ks s sk ks sk ks s ksl sk sk sk kok ok 8 0
T

%% FD1D_BURGERS_LAX solves the nonviscous Burgers equation using Lax-Wendroff.

% Discussion:

% The non-viscous time-dependent Burgers equation is:

h

) du/dt + u du/dx = 0

h

yA which can be written in conservative form as

h

% du/dt + 1/2 d/dx (u"2) =0

b

yA or

h

% du/dt + dF/dx = 0

h

yA For the Burgers equation, we define

h

yA F(x,t) = 1/2 u~2,

h A(x,t) = dF/dx = u

h

yA and then the Lax-Wendroff method approximates the solution
% using the iteration:

h

% u(x,t+dt) = u(t) - dt dF/dx + 1/2 dt~2 d/dx A dF/dx

h

% which can be written:

b

% u(x,t+dt) = u(x,t) - dt (F(x+dx,t) - F(x-dx,t)) / (2 * dx)
% + 1/2 dt~2/dx"2 (A(x+dx/2,t) * (F(x+dx,t) - F(x,t))
% - A(x-dx/2,t) * (F(x,t) - F(x-dx,t))
b

yA where we approximate:

h

% A(x+dx/2,t) = 1/2 (u(x+dx,t) + u(x,t))

% A(x-dx/2,t) = 1/2 (u(x,t) + u(x-dx,t))

h

% There is a stability condition that applies here, which requires that
h

% dt *max (abs (u)) / dx <=1

% Licensing:

% This code is distributed under the GNU LGPL license.
% Modified:

yA 21 August 2010

% Author:

% John Burkardt

16

Parameters:
None

timestamp ();

fprintf (1, ’\n’);

fprintf (1, ’FD1D_BURGERS_LAX:\n’);

fprintf (1, > MATLAB version\n’);

fprintf (1, > Solve the non-viscous time-dependent Burgers equation,\n’);
fprintf (1, > using the Lax-Wendroff method.\n’);

fprintf (1, ’\n’);

fprintf (1, > Equation to be solved:\n’);

fprintf (1, ’\n’);

fprintf (1, ? du/dt + u * du/dx = O\n’);

fprintf (1, ’\n’);

fprintf (1, > for x in [a, b], for t in [t_init, t_last]l\n’);
fprintf (1, ’\n’);

fprintf (1, > with initial conditions:\n’);

fprintf (1, ’\n’);

fprintf (1, ? u(x,o0) = u_init\n’);

fprintf (1, ’\n’);

fprintf (1, > and boundary conditions:\n’);

fprintf (1, ’\n’);

fprintf (1, ? u(a,t) = u_a(t), u(b,t) = u_b(t)\n’);

Set and report the problem parameters.

n = 41;

a = -1.0;

b = +1.0;

dx =(b-a)/ (n-1);
step_num = 80;

t_init = 0.0;

t_last = 1.0;

dt = (t_last - t_init) / step_num;

fprintf (1, ’\n’);

fprintf (1, * %f <= X <= %f\n’, a, b);

fprintf (1, > Number of nodes = %d\n’, n);

fprintf (1, > DX = %f\n’, dx);

fprintf (1, ’\n’);

fprintf (1, ? %f <=t <= %f\n’, t_init, t_last);
fprintf (1, > Number of time steps = %d\n’, step_num);
fprintf (1, > DT = %f\n’, dt);

x = r8vec_even (n, a, b);

fprintf (1, ’\n’);
fprintf (1, > X:\n’);
fprintf (1, ’\n’);
for ilo =1 : 5 : n

ihi = min (ilo + 4, n);
for i = ilo : ihi

fprintf (1, *> %16f’, x(i,1));
end

17

h
h

h
h
h

fprintf (1, ’\n’);
end

Set the initial condition,
and apply boundary conditions to first and last entries.

step = 0;

t = t_init;

un(1:n,1) = u_init (n, x, t);
un(1,1) =u_,a (x(1,1), t);
un(n,1) = u_b (x(n,1), t);

stability = (dt / dx) * max (abs (un(l:n,1)));
report (step, step_num, n, x, t, un, stability);

if (true)

plot (x, un);

grid (’on’);

title (sprintf (’Step %d, Time %f’, step, t));
end

March in time.

cl = -
c2 =

o

.5 xdt / dx);
.5k dt"2 / dx"2);

|

|
~ ~
o

for step = 1 : step_num

t = ((step_num - step) * t_init
+ (step) * t_last)
/ (step_num)

uo(l:n,1) = un(i:n,1);

un(2:n-1,1) = wo(2:n-1,1) ...
- (dt / dx) * (uwo(3:n,1)."2 - uwo(1:n-2,1).72)
+ 0.5 % (dt"2 / dx~2) * (0.5 * (uo(3:n,1) + uwo(2:n-1,1))
.* (uwo(3:n,1).72 - uwo(2:n-1,1).72)
- 0.5 % (uwo(2:n-1,1) + wo(1:n-2,1))
.+ (uwo(2:n-1,1)."2 - wo(1:n-2,1).72));

b

un(1,1) = u_,a (x(1,1), t);
un(n,1) = u_b (x(n,1), t)

stability = (dt / dx) * max (abs (un(l:n,1)));
report (step, step_num, n, x, t, un, stability);

if (true)

plot (x, un);

grid (’on’);

title (sprintf (’Step %d, Time %f’, step, t));
end

end

Terminate.

18

fprintf (1, ’\n’);

fprintf (1, ’FD1D_BURGERS_LAX:\n’);

fprintf (1, > Normal end of execution.\n’);

return
end
function a = r8vec_even (n, alo, ahi)
O o ok ok ok ok sk sk sk sk ok ok ok o o o o o ok ok ok sk sk sk sk sk ok ok ok ok ok ok o o ko ok ok sk sk sk sk sk ok ok ok o o o o o ok ok ok sk sk ok sk ok ok ok ok ok ok ko ko kkk ok 80
h
%% RBVEC_EVEN returns N real values, evenly spaced between ALO and AHI.
% Licensing:
% This code is distributed under the GNU LGPL license.
% Modified:
% 24 January 2004
% Author:
% John Burkardt
% Parameters:
% Input, integer N, the number of values.
% Input, real ALO, AHI, the low and high values.
yA Output, real A(N), N evenly spaced values.
% Normally, A(1) = ALO and A(N) = AHI.
% However, if N = 1, then A(1) = 0.5%x(ALO+AHI).

if (n==1)

a(1,1) = 0.5 * (alo + ahi);
else
a(1:n,1) = ((n-1:-1:0) * alo + (0:n-1) * ahi) / (n -1);

end

return
end
function report (step, step_num, n, x, t, u, stability)
O ke ok ok ok ok ok sk sk sk sk sk sk ok o o o o o o ok ok ok ok sk sk sk sk sk ok ok ok ok o o o o o ok ok ok ok sk sk sk sk sk oo o o o o o o ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ke k §)
pA
%% REPORT prints or plots or saves the data at the current time step.
% Licensing:

% This code is distributed under the GNU LGPL license.

% Modified:

19

) 18 August 2010
% Author:

% John Burkardt
% Parameters:

% Input, integer STEP, the index of the current step,
yA between 0 and STEP_NUM.

yA Input, integer STEP_NUM, the number of steps to take.

% Input, integer N, the number of nodes.

yA

% Input, real X(N), the coordinates of the nodes.
yA

% Input, real T, the current time.

% Input, real U(N), the initial values U(X,T).

% Input, real STABILITY, the stability factor, which should be
h no greater than 1.

fprintf (1, ’\n’);

fprintf (1, > STEP = %d\n’, step);

fprintf (1, > TIME = %f\n’, t);

fprintf (1, > STABILTY = %f\n’, stability)
fprintf (1, ’\n’);

for ilo =1 : 5 : n

ihi = min (ilo + 4, n);
for i = ilo : ihi
fprintf (1, * %14g’, u(i));
end
fprintf (1, ’\n’);
end
return
end
function ua = u_a (x, t)
O sk ok ok ok o ok sk sk sk sk sk sk sk o o o o o o o ok ok ok sk sk s sk sk oo o ok o o o o ok ok ok ok ok sk sk sk sk sk oo o o o o o o ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok o e k ko ke ok §)
yA
%% U_A sets the boundary condition for U at A.
% Licensing:
% This code is distributed under the GNU LGPL license.
% Modified:
yA 18 August 2010

% Author:

% John Burkardt

20

% Parameters:
% Input, real X, T, the position and time.

% Output, real UA, the prescribed value of U(X,T).

return
end
function ub = u_b (x, t)
O s o ok ok ok ok ok sk sk sk sk ok ok ok o o o o o ok ok ok sk sk sk sk sk ok ok ok ok ok ok o o ke ok ok ok sk sk sk sk sk ok ok ok o o o o o ok ok ok sk sk ok sk ok ok okok ok ok kR kR kk ok k 80
yA
%% U_B sets the boundary condition for U at B.
% Licensing:
% This code is distributed under the GNU LGPL license.
% Modified:
% 18 August 2010
% Author:
% John Burkardt
% Parameters:
% Input, real X, T, the position and time.
% Output, real UB, the prescribed value of U(X,T).
ub = - 0.5;
return
end
function u = u_init (n, x, t)
Ok o ok ok ok koo ok ok ok ok ok o o o o o ok ok ok sk sk sk sk ok ok ok ok ok ok o o o ok ok ok sk sk ok sk sk ok ok ok o o o o o ko ok ok sk sk sk ok ok ok ok ok ok ok Rk kR ko k 80
%
%% U_INIT sets the initial condition for U.
% Licensing:
% This code is distributed under the GNU LGPL license.
% Modified:
yA 18 August 2010

% Author:

% John Burkardt

21

% Parameters:

% Input, integer N, the number of nodes.

h

% Input, real X(N), the coordinates of the nodes.
yA

% Input, real T, the current time.

% Qutput, real U(N), the initial values U(X,T).

ua = u_a (x(1,1), t);
ub = u_b (x(n,1), t);
q=2.0%* (ua - ub) / pi;
r=(ua+ub)/ 2.0;

% S can be varied. It is the slope of the initial condition at the midpoint.

s = 1.0;
u(l:n,1) = (2 * x(1:n,1) - x(n,1) - x(1,1))
/ (X(nsl) - X(lyl));
u(l:n,1) = - q * atan (s * u(l:n,1)) + r;
return
end

function timestamp ()
ok sk ok ko ok sk o sk o ok o K o o sk o ok o ok o K ok o sk o K o o o o ok o ok o K o o ok o sk o ok o K ok sk o sk o K o K ok sk o ok o K ok K ok o sk ok ok ok K ok o ok ok ok ok 8 0)
h
%% TIMESTAMP prints the current YMDHMS date as a timestamp.
% Licensing:
% This code is distributed under the GNU LGPL license.
% Modified:
yA 14 February 2003
% Author:
% John Burkardt
t = now;
c = datevec (t);

s = datestr (c, 0);
fprintf (1, *%s\n’, s);

return
end

22

