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Abstract In this text, we give a mostly self-contained treatment of a global compactness
result forp-Laplace equations with critical nonlinearities in RN . Namely, we will
prove a representation theorem for positive Palais-Smale sequences that was �rst
established by Meruci-Willem in 2010.
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1 Introduction

In these notes, we discuss some recent developments regarding the global compactness
of Palais-Smale sequences for p-Laplace equations with critical nonlinearities. More pre-
cisely, we shall investigate the limiting behaviour of minimizing sequences to energy
functionals for a large class of critical p-Laplace equations. In particular, we introduce an
argument used by Meruci-Willem [5] which simpli�es the approach taken by Struwe in
[8] and [9] for the p = 2 case. Put informally, the key step in this new argument will be
to focus on the dual space of D1,p (RN ), a homogeneous Sobolev space, rather than the
“averaged behaviour” of the given Palais-Smale sequence.

Global compactness results are now indispensable, and highly sought after tools, for
the analysis of partial di�erential equations. Indeed, they can be used to establish the exis-
tence of non-trivial solutions to various problems (e.g. blow-up solutions to Schrödinger
equations and solutions to Yamabe equations – see Palatucci-Pisante [6] for more details).
However, despite their numerous applications, these compactness results are interesting
in their own right. Fundamentally, they describe an asymptotic expansion of the Palais-
Smale sequence in the energy space D1,p (RN ), which we shall introduce shortly.

Henceforth, N ≥ 3 is an integer, µ > 0 is any real number, and Ω is a bounded
domain in RN having smooth boundary ∂Ω. Unless stated otherwise, we will assume
that 1 < p < N . We denote by p′ the conjugate Hölder exponent of p, and by p∗ the
Sobolev conjugate of p, i.e. p′ and p∗ satisfy:

1
p
+

1
p′
= 1 and p∗ :=

Np

N − p
. (1.1)

Note that p′ ∈ (1,∞) and that p∗ > p. Finally, ∆p stands for the p-Laplace operator:

∆pu := div
(
|∇u |p−2 ∇u

)
= ∇ ·

(
|∇u |p−2 ∇u

)
, (1.2)

which we interpret in the weak sense.1

Before proceeding further, we will require some machinery from functional analysis
and several simple preliminary tools.

1. Let U be an open set in RN and assume that u is a su�ciently regular function satisfying ∆pu = 0 in
U . Testing against φ ∈ C∞c (U ), an integration by parts shows that

0 =
∫
U
φ∆pu =

∫
U
φ div( |∇u |p−2 ∇u) = −

∫
U
|∇u |p−2 ∇u · ∇φ. (F.1)

In light of this, we say that u ∈ W 1,p (U ) satis�es ∆pu = 0 in U if the expression in (F.1) vanishes for all
φ ∈ C∞c (U ).
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1.1 The Setup

In what follows, X and Y each denote normed vector spaces over the real numbers and
A : X → Y denotes an operator, not necessarily linear. For the sake of convenience,
L (X ,Y ) is the real vector space of all bounded linear operators X → Y . If Y is complete,
then L (X ,Y ) is a Banach space. Let us now reiterate the notion of a Fréchet derivative:

De�nition 1. An operatorA : X → Y is said to be Fréchet di�erentiable at a point x ∈ X
if there exists a bounded linear operator DA(x ) : X → Y such that

lim
h→0
h∈X

‖A(x + h) −A(x ) − DA(x )h‖Y
‖h‖X

= 0.

The operatorDA(x ) is called the Fréchet derivative ofA at x . The operator valued operator

DA : X → L (X ,Y )

given by x 7→ DA(x ) is called the Fréchet derivative of A, whenever it exists. If this opera-
tor exists, we say that A is Fréchet di�erentiable on X . In the case that DA is continuous,
we write A ∈ C1(X ,Y ).

It is not hard to see that a Fréchet di�erentiable operator X → Y is automatically
continuous. Having given this de�nition, we are ready to formulate the setup of our
main result. For N ,p, µ and Ω as above, we are interested in solutions to the problem




−∆pu + a |u |
p−2u ≡ µ |u |p

∗−2u in Ω,

u ≥ 0 a.e. in Ω,

u ∈W
1,p

0 (Ω)

(1.3)

where a ∈ LN /p (RN ) is arbitrary, but �xed. Naturally, the above is simply the weak
formulation of the problem




−∆pu + a |u |
p−2u ≡ µ |u |p

∗−2u in Ω,

u ≥ 0 in Ω,

u ≡ 0 on ∂Ω

with the boundary condition interpreted in the trace sense. When studying the problem
above, solutions to the following limiting problem will arise naturally:




−∆pu ≡ µ |u |
p∗−2u in RN ,

u ≥ 0 a.e. in RN .
(1.4)
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Next, let us consider the functional onW
1,p

0 (Ω) given by:

ϕ : W 1,p
0 (Ω) → R, u 7→

∫
Ω

(
|∇u |p

p
+ a
|u |p

p
− µ
|u |p

∗

p∗

)
. (1.5)

Through elementary techniques, it can be shown thatϕ is Fréchet di�erentiable onW 1,p
0 (Ω)

(and hence continuous on this space) with derivative equal to

〈ϕ′(u),h〉 =

∫
Ω

(
|∇u |p−2 ∇u · ∇h + a |u |p−2uh − µ |u |p

∗−2uh
)
, (1.6)

for all u,h ∈W 1,p
0 (Ω). The function ϕ is the energy functional associated with (1.3), and

the functional-valued operator ϕ′ will be how we test to see whether or not a function
u ∈ W

1,p
0 (Ω) satis�es (1.3) in Ω. Much like in (F.1), u ∈ W

1,p
0 (Ω) will be called a weak

solution to the critical equation

−∆pu + a |u |
p−2u ≡ µ |u |p

∗−2u in Ω (1.7)

provided ϕ′(u) vanishes on all ofW 1,p
0 (Ω). On the other hand, to properly de�ne the en-

ergy functional associated to (1.4), we must �rst introduce the notion of a “homogeneous
Sobolev space”.

De�nition 2. Given an open set U ⊆ RN , we de�ne D1,p (U ) to be those functions
u ∈ Lp

∗

(U ) having weak derivatives in Lp (U ). More precisely,

D1,p (U ) :=
{
u ∈ Lp

∗

(U ) : ∇u ∈ Lp (RN ;RN )
}
.

We then equip D1,p (U ) with the natural seminorm

‖u‖ := ‖∇u‖Lp (U ) , ∀u ∈ D1,p (U ).

For general open sets U in RN , our de�nition makes D1,p (U ) into a real locally convex
topological vector space. When U = RN , it is easy to see that ‖·‖ is actually a norm on
D1,p (U ), and thus D1,p (RN ) is a real normed space. Finally, we denote by D1,p

0 (U ) the
closure of C∞c (U ) in D1,p (U ). Note also that W 1,p (RN ) is a subset of D1,p (RN ) by the
Sobolev embedding theorem.

Remark 1.1. A priori, it is not clear that D1,p (RN ) should be complete. After all, if (un ) is a
Cauchy sequence inD1,p (RN ), then (∇un ) is Cauchy (and thus convergent) in Lp (RN ;RN ).
However, it is not obvious that this forces (un ) to also be Cauchy in Lp

∗

(RN ), nor is it
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obvious that the would-be Lp
∗

(RN ) limit of (un ) is weakly di�erentiable. Consequently,
we encounter some di�culties when trying to show that (un ) converges to something
in D1,p (RN ), as the D1,p (RN )-norm tests only the convergence of the gradients. But,
by using a clever trick from Willem [10], we will later show that D1,p (RN ) is in fact a
re�exive Banach space.
Remark 1.2. Let U ⊂ RN be a bounded domain with C1-boundary. Then, the Sobolev
inequality forcesW 1,p (U ) ⊆ D1,p (U ). On the other hand, f ∈ Lp∗ (U ) implies f ∈ Lp (U ).
Hence, D1,p (U ) ⊆ W 1,p (U ). That is, W 1,p (U ) and D1,p (U ) consist of precisely the same
functions. However, they will not possess the same topology. Indeed, this is because the
Friedrich-Poincaré inequality may fail for those functions in W 1,p (Ω) having non-zero
trace.

When dealing with the limiting problem (1.4), we will be focused on weak solutions
belonging to the space D1,p (RN ). To formalize this, we introduce (as with problem (1.3))
an energy functional

ϕ∞ : D1,p (RN ) → R, u 7→

∫
RN

(
|∇u |p

p
− µ
|u |p

∗

p∗

)
.

This functional is Fréchet di�erentiable on D1,p (RN ) with derivative given by

〈ϕ′∞(u),h〉 =

∫
RN

(
|∇u |p−2 ∇u · ∇h − µ |u |p

∗−2uh
)
,

for u,h ∈ D1,p (RN ). As before, we will say that u ∈ D1,p (RN ) is a weak solution to the
limiting problem

−∆pu ≡ µ |u |
p∗−2u in Rn (1.8)

if ϕ′∞(u) = 0 on all of D1,p (RN ). Finally, we will also be treating solutions to the following
problem:




−∆pu ≡ µ |u |
p∗−2u in a halfspace H,

u ≥ 0 a.e. in H,
u ∈ D1,p

0 (H),

(1.9)

which has a similar weak interpretation. To state our main result, we need only one last
de�nition from the calculus of variations and critical point theory.

De�nition 3. Let (un ) be a sequence in W
1,p

0 (Ω). We say that (un ) is a Palais-Smale
sequence (or simply a P.S.-sequence) for ϕ if (un ) is bounded, ϕ (un ) converges in R, and

ϕ′(un ) → 0 inW −1,p ′ (Ω)
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as n → ∞. Here, W −1,p ′ (Ω) denotes the topological dual of W 1,p
0 (Ω), which is itself a

Banach space.

As it turns out, the requirement that (un ) be bounded is redundant. It can be shown
(see Struwe [8] for a proof in the p = 2 case, or Willem [11] for the case 2 < p < 2∗) that
any sequence (un ) in W

1,p
0 (Ω) such that ϕ (un ) converges and ϕ′(un ) → 0 is necessarily

bounded. However, since our goal is to illustrate the method of proof used by Mercuri-
Willem, it will not harm us to assume a priori that a Palais-Smale sequence is bounded.

Having given this critical de�nition, a coherent formulation of our main result (The-
orem 2 in Mercuri-Willem [5]) is within reach.

Theorem 1.1 (Mercuri-Willem). Let (un ) be a Palais-Smale sequence for ϕ and assume
additionally that

(un )− → 0 in Lp
∗

(Ω) as n → ∞,

where (un )− := max{−un, 0}. After possibly passing to a subsequence, there exists a weak
solutionv0 ∈W

1,p
0 (Ω) to the problem (1.3) and a �nite (possibly empty) familyv1, . . . ,vk in

D1,p (RN ) of weak solutions2 to the limiting problem (1.4), together with associated sequences
(yin )n∈N ⊂ Ω and (λin )n∈N ⊂ R+ such that


un −v0 −

∑k

i=1

(
λin

) p−N
p vi

(
· − yin
λin

)
→ 0 as n → ∞, (1.10)

‖un‖
p →

k∑
i=0
‖vi ‖

p as n → ∞, (1.11)

ϕ (v0) +
k∑
i=1

ϕ∞(vi ) = lim
n→∞

ϕ (un ). (1.12)

Moreover, there holds
dist(yin, ∂Ω)

λin
→ ∞, as n → ∞

for each i = 1, . . . ,k .

Remark 1.3. For simplicity let us momentarily take µ = 1; we then have a complete

2. These v1, . . . ,vk are often referred to as bubbles – see Figure 1.
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classi�cation of the bubbles. Namely, they all take the form



λ
1

p−1N
p−1
p2

(
N−p
p−1

)1/p ′

λ
p

p−1 + |x − x0 |
p

p−1



N−p
p

for some x0 ∈ RN and λ > 0. (1.13)

This classi�cation was established by

• Ca�arelli-Gidas-Spruck in 1989 for p = 2;

• Damascelli-Merchán-Montoro-Sciunzi in 2014 for 2N
N+2 ≤ p < 2;

• Vétois 2016 + Damascelli-Ramaswamy in 2001 for the case 1 < p < 2N
N+2 ;

• Sciunzi 2015 for 2 ≤ p < N .

For more history on this classi�cation result, we urge the reader to consult the introduc-
tion of the paper [7] of Sciunzi.

Figure 1: An illustration of the convergence occurring in Theorem
1.1. In the energy space D1,p (RN ), a subsequence of (un ) converges
to a solution of (1.3) and �nitely many “bubbles” solving the limiting
problem (1.4).

As previously stated, the argument we will use when proving Theorem 1.1 follows to
a tee that outlined in Theorem 1.2 of Mercuri-Willem [5]. However, this argument has its
roots in a paper of Brézis-Coron [3] and was later re�ned in the book “Minimax Methods”
of Willem (where the case 2 < p < 2∗ was treated – see [11]).
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2 Tools from Measure Theory and Functional Analysis

In this section, we establish several results that will be used freely throughout the proof of
Theorem 1.1 and its supporting lemmas. Although not directly related to the problem at
hand, they are necessary tools that can be proven using only some elementary concepts
from measure theory and functional analysis. We begin with a very useful convergence
result reminiscent of the dominated convergence theorem. Throughout this section, we
follow in large part both Willem [10] and Ziemer [12].

Theorem 2.1 (p-Bounded Convergence Theorem). Let (X ,M, µ ) be a measure space, �x
1 < p < ∞, and let ( fn ) be a bounded sequence in Lp (X , µ ). Let f : X → C be measurable
and assume that

lim
n→∞

fn (x ) = f (x )

for µ-a.e. x ∈ X . Then, f ∈ Lp (X , µ ) and

lim
n→∞

∫
X

��( fn − f ) д�� dµ = 0

for every д ∈ Lp
′

(X , µ ). In particular,

lim
n→∞

∫
X
fnд dµ =

∫
X
f д dµ

for all д ∈ Lp
′

(X , µ ). Moreover, the measurability assumption on f can be dropped if
(X ,M, µ ) is complete.

Proof. Fix д ∈ Lp ′ (X , µ ). As a �rst observation, we necessarily have f ∈ Lp (X , µ ). Indeed,
we see from Fatou’s lemma that∫

X

��f ��p dµ ≤ lim inf
n→∞

∫
X

��fn��p dµ ≤ sup
n>1

fn
p
Lp (X ,µ )

< ∞.

Hence, we may assume without loss of generality that f = 0 in Lp (X , µ ). Thus, it su�ces
to check that

lim sup
n→∞

∫
X

��fnд�� dµ ≤ 0.

To this end, let η > 0 be given. For n ∈ N, consider the measurable set

Σn :=
{
x ∈ X : ��fn (x )д(x )�� ≤ η ��д(x )��p

′}
.
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From the dominated convergence theorem, it is clear that

lim
n→∞

∫
Σn

��fn (x )д(x )�� dµ = lim
n→∞

∫
X

��fn (x )д(x )�� 1Σn (x ) dµ = 0 (2.1)

because ��д��p
′

∈ L1(X , µ ), fn → 0 almost everywhere, and ��fn (x )д(x )�� 1Σn (x ) ≤ η ��д(x )��p
′

on X . Let M > 0 be such that fnLp (X ,µ ) ≤ M for every n ≥ 1. Since

��fn (x )д(x )�� > η ��д(x )��p
′

for each x ∈ Σc
n , an application of Hölder’s inequality gives∫

Σc
n

��fnд�� dµ ≤ fnLp (Σc
n ,µ )

(∫
Σc
n

��д��p
′

dµ
)1/p ′

≤ η−1/p ′ fnLp (X ,µ )
(∫

Σc
n

��fnд�� dµ
)1/p ′

≤ Mη−1/p ′
(∫

Σc
n

��fnд�� dµ
)1/p ′

.

So, for any n ≥ 1, this implies(∫
Σc
n

��fnд�� dµ
)1/p
=

(∫
Σc
n

��fnд�� dµ
)1−1/p ′

≤ Mη−1/p ′

Or, rather, that ∫
Σc
n

��fnд�� dµ ≤ Mpη−p/p
′

, ∀n ∈ N.
Combining this with (2.1), it follows that

lim sup
n→∞

∫
X

��fnд�� dµ ≤ lim sup
n→∞

∫
Σc
n

��fnд�� dµ ≤ Mpη−p/p
′

.

Finally, sending η → ∞ veri�es the assertion. �

This implies the following useful convergence criterion, which can be thought of as
a “local version” of Theorem 2.1.

Corollary 2.2. Let (X ,M, µ ) be a �nite measure space and let f : X → C be a measurable
function. Assume that ( fn ) is a sequence of measurable functions such that

lim
n→∞

fn (x ) = f (x )

for µ-a.e. x ∈ X . If ( fn ) is bounded in Lp (X ) for some 1 < p < ∞, then fn → f in L1(X ).
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In particular, we see that one can overcome the need for a dominating function when
passing the limit inside the integral, provided our sequence ( fn ) is bounded in some
“higher” Lp-space.

Lemma 2.3. Let (X ,d ) be a compact metric space and denote by C (X ) the real vector space
of all continuous maps X → R, endowed with the norm

‖·‖∞ := sup
x∈X
|·(x ) | < ∞.

If F ⊆ C (X ) is equicontinuous and equibounded, then

sup
f ∈F

f ∈ C (X ).

Namely, supf ∈F f is continuous on X .

Proof. First, we de�ne a function s : X → R via the rule

s (x ) := sup
f ∈F

f (x );

since the family F is equibounded, this is clearly a well de�ned function. Next, consider
any two points x ,y ∈ X . We have

sup
f ∈F

f (x ) = sup
f ∈F

( f (x ) − f (y) + f (y)) ≤ sup
f ∈F

( f (x ) − f (y)) + sup
f ∈F

f (y)

whence

s (x ) − s (y) = sup
f ∈F

f (x ) − sup
f ∈F

f (y) ≤ sup
f ∈F

( f (x ) − f (y)) ≤ sup
f ∈F

��f (x ) − f (y)�� .

Similarly,

s (y) − s (x ) = sup
f ∈F

f (y) − sup
f ∈F

f (x ) ≤ sup
f ∈F

( f (y) − f (x )) ≤ sup
f ∈F

��f (x ) − f (y)�� .

Combining these two inequalities yields

��s (x ) − s (y)�� =
������
sup
f ∈F

f (x ) − sup
f ∈F

f (y)
������
≤ sup

f ∈F
��f (x ) − f (y)�� .
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Let now ε > 0 be given. By equicontinuity, there is δ > 0 such that ��f (x ) − f (y)�� < ε for
all f ∈ F , whenever d (x ,y) < δ . For any such x ,y ∈ X , we must therefore have

��s (x ) − s (y)�� =
������
sup
f ∈F

f (x ) − sup
f ∈F

f (y)
������
≤ sup

f ∈F
��f (x ) − f (y)�� ≤ sup

f ∈F
ε = ε .

This shows that s (x ) is continuous and the proof is complete. �

Our only application of this lemma will be the following.

Proposition 2.4. Let U ⊆ RN be non-empty and let f ∈ L1(RN ). For r ≥ 0, we de�ne the
Lévy concentration function of f as

Q (r ) := sup
y∈U

∫
B (y,r )

��f �� . (2.2)

The function Q (r ) is continuous and bounded on [0,∞).

Proof. For �xed y ∈ U , we de�ne

Qy : [0,∞) → R, r 7→

∫
B (y,r )

��f �� .

Since f ∈ L1(RN ), each Qy is continuous at 0, i.e.

lim
r↘0

Qy (r ) = 0.

By virtue of Lemma 2.3, it is enough to show that the family F :=
{
Qy

}
y∈U

is equicontin-
uous and equibounded on any compact interval [a,b] ⊂ [0,∞). To see that this family is
equibounded, let y ∈ U and r ≥ 0 be arbitrary. Clearly, one has the following:

���Qy (r )
��� =

∫
B (y,r )

��f �� ≤
∫
RN

��f �� < ∞.

It follows that F is equibounded on [0,∞), and hence on [a,b]. Next, we establish the
equicontinuity of F on [a,b]. Let ε > 0 be given. Since f ∈ L1(RN ), there exists δ > 0
such that ∫

E

��f �� < ε
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whenever E ⊂ RN is Lebesgue measurable withm(E) < δ .3 Now, for any r ,q ∈ [a,b] and
every y ∈ U , it is easily seen that

���Qy (r ) −Qy (q)
��� =

�����

∫
B (y,r )

��f �� −
∫
B (y,q)

��f ��
�����
=

∫
B (y,r )\B (y,q)

��f ��

where we are assuming, without loss of generality, that r ≥ q. Letting ωN be the volume
of the unit ball in RN , we have

m(B (y, r ) \ B (y,q)) = ωn (r
N − qN )

= ωn (r
N−1 + rN−2q + · · · + rqN−2 + qN−1) (r − q)

≤ C (r − q),

for a constant C > 0 independent of r ,q ∈ [a,b].4 Therefore, we will have

m(B (y, r ) \ B (y,q)) < δ

whenever 0 ≤ (r − q) < δ
C . This implies that

���Qy (r ) −Qy (q)
��� ≤

∫
B (y,r )\B (y,q)

��f �� < ε

for any such r ,q ∈ [a,b]. This shows that the family F is both equicontinuous and
equibounded on every [a,b] ⊂ [0,∞) whence the proof is complete. �

2.1 Motivating the Homogeneous Space D1,p (RN )

Before discussing in detail the homogeneous space D1,p (RN ), let us �rst motivate its
de�nition. Namely, we ask ourselves why one should care about functions in Lp

∗

(RN )

having weak derivatives in Lp (RN ;RN ). Put informally, D1,p (RN ) seeks to fully take
advantage of the Gagliardo-Nirenberg-Sobolev inequality

φLp∗ ≤ C ∇φLp (RN ) (2.3)

which is valid for all φ ∈ C1
c (RN ), and a constant C > 0 independent of φ. Perhaps even

more importantly, we want to take advantage of the nice rescaling properties present

3. Here,m(·) denotes the Lebesgue measure on RN .
4. Note that this constant C will depend on the interval [a,b].
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in the Gagliardo-Nirenberg-Sobolev inequality. More precisely, �x φ ∈ C1
c (RN ) and let

λ > 0 be given. De�ne a new function φλ ∈ C1
c (RN ) via the rule φλ (x ) := λ(N−p)/pφ (λx )

and note that∫
RN

��∇φλ��p dm =
∫
RN

���λ · λ
(N−p)/p∇φ (λx )���

p
dx =

∫
RN

λN ��∇φ (λx )��p dx

=

∫
RN

��∇φ��p dm.

Similarly, we have∫
R

��φλ��p
∗

dm =
∫
R
λ

N−p
p p∗ ��φ (λx )��p

∗

dx =
∫
R
λN ��φ (λx )��p

∗

dx

=

∫
R

��φ��p
∗

dm.

Equivalently, φλLp∗ (RN ) =
φLp∗ (RN ) and ∇φλLp (RN ;RN ) =

∇φLp (RN ;RN ) . Such an
invariance under a particular rescaling is known as homogeneity. In other words, the
D1,p (RN )-norm is homogeneous with exponent N−p

p and so is the Lp∗-norm. However, it
is easily seen that the Lp-norm is not homogeneous with respect to this same exponent.
For this reason, we chose to omit it when de�ning the D1,p (RN )-norm.

2.2 The Topology of D1,p (RN )

Let us now discuss the topology of the homogeneous space D1,p (RN ), which will be of
particular interest to us. We have already given this space a norm:

‖u‖ := ‖∇u‖Lp (RN ) ,

but we may also give it the norm:

‖u‖∗ := ‖u‖Lp∗ (RN ) + ‖∇u‖Lp (RN ) = ‖u‖Lp∗ (RN ) + ‖u‖ .

Recalling the proof thatW 1,p (RN ) =W
1,p

0 (RN ), it becomes clear thatC∞c (RN ) is dense in
D1,p (RN ) with respect to the norm ‖·‖∗ (see, for instance, Willem [10]). Letu ∈ D1,p (RN )

and choose a sequence (φn ) in C∞c (RN ) such that

lim
n→∞

u − φn∗ = 0.

13



Then, we have both

lim
n→∞

u − φnLp∗ (RN ) = 0 and lim
n→∞

∇u − ∇φnLp (RN ;RN ) = 0.

By continuity of norms, this combined with (2.3) gives

‖u‖Lp∗ (RN ) = lim
n→∞

φnLp∗ ≤ C lim
n→∞

∇φnLp (RN ;RN )

≤ C ‖∇u‖Lp (RN ) .

In other words, the Gagliardo-Nirenberg-Sobolev inequality holds for all u ∈ D1,p (RN ).
In fact, this shows that ‖·‖ is equivalent to the norm ‖·‖∗ on D1,p (RN ). Indeed, for any
u ∈ D1,p (RN ) there holds

‖u‖ ≤ ‖u‖∗ = ‖∇u‖Lp (RN ) + ‖u‖Lp∗ (RN )

≤ (C + 1) ‖∇u‖Lp (RN )

= C′ ‖u‖

with C′ > 0 a constant depending only on N and p. We summarize our �ndings in the
following theorem:

Theorem 2.5 (Properties of D1,p (RN )). If 1 < p < ∞, then

(1) D1,p (RN ) is a Banach space;

(2) smooth functions of compact support are dense in D1,p (RN );

(3) the Gagliardo-Nirenberg-Sobolev inequality holds inD1,p (RN ): there exists a constant
C > 0 such that

‖u‖Lp∗ ≤ C ‖∇u‖Lp (RN ) , ∀u ∈ D1,p (RN ); (GNS)

(4) D1,p (RN ) ⊆W
1,p
loc (R

N ).

In particular, bounded sequences in D1,p (RN ) are bounded in Lp
∗

(RN ).

Proof. By our previous discussion, we need only verify the �rst point. To this end, we
�x a Cauchy sequence (un ) in D1,p (RN ). By de�nition, we see that (∂iun ) is Cauchy
in Lp (RN ) for each i = 1, . . . ,N . Utilizing the Gagliardo-Nirenberg-Sobolev inequality

14



(GNS), the seqeunce (un ) is also Cauchy in Lp
∗

(RN ). Thus, we may �ndu0 ∈ Lp
∗

(RN ) and
u1, . . . ,uN ∈ Lp (RN ) such that limn→∞un = u

0 in Lp
∗

(RN ) and

ui = lim
n→∞
∂iun in Lp (RN ),

for every i = 1, . . . ,N . By de�nition of ‖·‖, the claim will follow if ∂iu0 = ui for each
index i . Let φ ∈ C∞c (RN ) be given; two applications of Hölder’s inequality shows that∫

RN
u0∂iφ = lim

n→∞

∫
RN

un∂iφ = − lim
n→∞

∫
RN

φ∂iun

= −

∫
RN

φui .

Thus, u0 ∈ D1,p (RN ) and ∇u0 = (u1, . . . ,uN ). Especially, ∇un → ∇u0 in Lp (RN ;RN ). By
de�nition, it follows that un → u0 in D1,p (RN ) and the proof is complete. �

2.3 Understanding Weak Convergence in D1,p (RN )

As mentioned previously, the topological dual of D1,p (RN ) will play an important role
in the proof of Theorem 1.1. Consequently, we seek to properly understand weak con-
vergence in D1,p (RN ). Of course, since strong convergence in D1,p (RN ) only tests the
Lp-convergence of the gradients, we should expect that weak convergence in D1,p (RN )

be characterized by the weak convergence of the gradients in Lp (RN ;RN ). As it turns
out, this is indeed the case.

Proposition 2.6. Let (vn ) be a sequence inD1,p (RN ) and �x v ∈ D1,p (RN ). Then, vn ⇀ v

in D1,p (RN ) if and only if ∇vn ⇀ ∇v in Lp (RN ;RN ).

Proof. We begin by de�ning the following map

T : D1,p (RN ) → Lp (RN ;RN ), u 7→ ∇u .

Clearly, T is a linear isometry and is hence an embedding. Through T , we can identify
D1,p (RN ) with the subspace T (RN ) := T (D1,p (RN )) of Lp (RN ;RN ). As a �rst step, we
will show that vn ⇀ v in D1,p (RN ) if and only if ∇vn ⇀ ∇v in T (RN ).

Assume that vn ⇀ v in D1,p (RN ); given a continuous linear functional ϕ on T (RN ),
we de�ne

φ : D1,p (RN ) → R, φ (u) := ϕ (∇u).
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In other words, we set φ := ϕ ◦T . Clearly, φ is a continuous linear functional on D1,p (RN ).
Since vn converges weakly to v in D1,p (RN ), we must have φ (vn ) → φ (v ) as n → ∞.
However, this is equivalent to the statement

lim
n→∞

ϕ (∇vn ) = ϕ (∇v ).

We infer that ∇vn converges weakly to ∇v in T (RN ) as n → ∞. Conversely, we assume
that ∇vn ⇀ ∇v inT (RN ) and �x a continuous linear functional φ on D1,p (RN ). Consider
the map

ϕ : T (RN ) → R, ϕ := φ ◦T −1.

Again, it is obvious that ϕ is a continuous linear functional on T (RN ). Since ∇vn con-
verges weakly to ∇v in T (RN ), we see that ϕ (∇vn ) converges to ϕ (∇v ). By de�nition,
this is equivalent to having

lim
n→∞

φ (vn ) = φ (v ).

To summarize, we have shown that weak convergence in D1,p (RN ) is equivalent to the
weak convergence of the gradients inT (RN ). To complete the proof, we need only show
that weak convergence of the gradients in T (RN ) is equivalent to their weak conver-
gence in all of Lp (RN ;RN ). Here, the only non-trivial claim is that weak convergence in
Lp (RN ;RN ) implies weak convergence inT (RN ). However, this is a simple consequence
of the Hahn-Banach theorem. Indeed, any continuous linear functional ϕ on T (RN ) can
be extended to a continuous linear functional ψ on all of Lp (RN ;RN ). Consequently, if
∇vn ⇀ ∇v in Lp (RN ;RN ), then

ψ (∇vn ) → ψ (∇v ) as n → ∞.

Clearly, this simply means that limn→∞ ϕ (∇vn ) = ϕ (∇v ) whence we have established that
∇vn converges weakly to ∇v in T (RN ). This completes the proof. �

The previous technical result will mainly be used when establishing the following:

Corollary 2.7. If (vn ) is a bounded sequence in D1,p (RN ), there exists v ∈ D1,p (RN ) and
a subsequence of (vn ) that converges weakly to v in D1,p (RN ).

Remark 2.1. Note that we cannot directly apply any familiar results about weak com-
pactness in Banach spaces as D1,p (RN ) may not be re�exive, a priori. However, as will
become apparent in the proof, we will be “saved” by the familiar properties of Lp-spaces.
Certainly, if X is a Banach space, then X is re�exive if and only if the closed unit ball in
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X is weakly compact5. It therefore follows that bounded sequences in Lp (RN ;RN ) have a
weakly convergent subsequence. SinceW 1,p (Ω) is re�exive for 1 < p < ∞, this reasoning
also shows that bounded sequences inW 1,p (Ω) have weakly convergent subsequences.

Proof of Corollary. By de�nition of theD1,p (RN )-norm, the sequence of gradients (∇vn ) is
bounded in Lp (RN ;RN ). By Theorem 2.5, the sequence (vn ) is also bounded in Lp

∗

(RN ).
After passing to a subsequence, we may assume that ∇vn converges weakly to some
w = (w1, . . . ,wN ) in Lp (RN ;RN ). Passing to yet another subsequence, we may also
assume that vn converges weakly to v ∈ Lp

∗

(RN ). Next, we claim that v belongs to
D1,p (RN ) and that ∇v = w . To see this, �x an index i = 1, . . . ,N and let φ ∈ C∞c (RN ) be
given. Weak convergence in Lp

∗

(RN ) gives∫
RN

v∂iφ = lim
n→∞

∫
RN

vn∂iφ = − lim
n→∞

∫
RN

φ∂ivn .

Since ∇vn converges weakly to w in Lp (RN ;RN ), it is not hard to check that ∂ivn also
converges weakly to wi in Lp (RN ). Using this with the above, we discover that∫

RN
v∂iφ = − lim

n→∞

∫
RN

φ∂ivn = −

∫
RN

φwi .

We conclude that v ∈ D1,p (RN ) and that ∇v = w . Finally, since ∇vn → w = ∇v weakly
in Lp (RN ;RN ), it follows from Proposition 2.6 that vn ⇀ v in D1,p (RN ). �

Corollary 2.8. For 1 < p < ∞, the homogeneous Sobolev space D1,p (RN ) is a re�exive
Banach space.

Before starting the proof of Theorem 1.1, we would like to partially strengthen the
conclusion of Corollary 2.7. Obviously, it would be ideal to extract a subsequence that
converges strongly in D1,p (RN ). Instead, we will have to be content with the following
pointwise result. In light of Theorem 2.1, this turns out to be almost as good.

Theorem 2.9. Let (vn ) be a bounded sequence in D1,p (RN ). Then, (vn ) has a subsequence
(vnk ) such that vnk ⇀ v in D1,p (RN ) and vnk → v pointwise almost everywhere on RN .

Proof. In light of Corollary 2.7, we may assume without loss of generality that vn con-
verges weakly to v in D1,p (RN ). For each k ≥ 1, we denote by Bk the open ball B (0,k ) in
RN . We then consider the restrictions of the sequence (vn ) to Bk . In doing so, we obtain

5. The proof of this fact is essentially an application of the Banach-Alaoglu theorem.
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a bounded sequence in W 1,p (Bk ), for each k ∈ N. By the Rellich-Kondrachov theorem,
the embedding

W 1,p (Bk ) ↪→ Lp (Bk )

is compact. Thus, for this ball Bk , there exists a subsequence (vn,k )n>1 such that

(i) vn,k converges weakly to some uk ∈W 1,p (Bk ) as n → ∞;

(ii) vn,k converges strongly to uk in Lp (Bk ) as n → ∞; and

(iii) vn,k converges pointwise almost everywhere to uk on Bk as n → ∞.

By duality and the fact that vn ⇀ v in D1,p (RN ), we see through Proposition 2.6 that

lim
n→∞

∫
RN
∇vn,k · д =

∫
RN
∇v · д

for each д ∈ Lp ′ (RN ;RN ). In particular,

lim
n→∞

∫
Bk

∇vn,k · д =

∫
Bk

∇v · д

for all д ∈ Lp ′ (Bk ;RN ). On the other hand, (i) ensures that

lim
n→∞

∫
Bk

∇vn,k · д =

∫
Bk

∇uk · д

for every д ∈ Lp ′ (Bk ;Rn ). Combining these last two equations shows that∫
Bk

(∇uk − ∇v ) · д = 0, ∀д ∈ Lp ′ (RN ;RN ).

By a density argument, it follows that uk = v + αk pointwise a.e. on Bk , where αk ∈ R is
a constant. In other words, vn,k converges pointwise almost everywhere to v + αk on Bk ,
as n → ∞.

To complete the proof, we will now make use of a diagonal argument. For this family
of balls {Bk }k≥1, we inductively construct subsequences

{(
vn,k

)}
k>1 using the procedure

described above (in such a way that (vn,k+1)n>1 is a subsequence of (vn,k )n>1). Therefore,
there is a corresponding sequence (αk )k≥1 of real numbers such that

vn,k → v + αk pointwise a.e. on Bk as n → ∞,
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for each k . Finally, for any �xed k ∈ N, an application of Fatou’s lemma yields

αkm(Bk )
p∗ ≤ lim inf

n→∞

∫
Bk

��vn,k −v ��p
∗

≤ lim sup
n→∞

∫
Bk

(��vn,k �� + |v |
)p∗

≤ 2p
∗−1 lim sup

n→∞

(∫
Bk

��vn,k ��p
∗

+

∫
Bk

|v |p
∗

)
≤ 2p

∗−1 sup
n∈N

(∫
RN

��vn,k ��p
∗

+

∫
RN
|v |p

∗

)
where this last term is uniformly bounded in n and k since (vn ) is bounded in D1,p (RN )

and v ∈ Lp
∗

(RN ). Noting that m(Bk ) → ∞ as k → ∞, we infer that αk → 0 as k → ∞.
Then, the diagonal subsequence (vn,n )n∈N will converge pointwise almost everywhere to
v on RN as n → ∞, which proves the claim. �

3 Preliminary Results

As mentioned above, we begin by stating two results established by Mercuri-Willem that
will play a critical role in the proof of Theorem 1.1. The �rst is a rather technical, but
elementary, identity:

Lemma A (Lemma 3.2 in [5]). Let 1 < q < ∞ and consider the function

A : RN → RN , y 7→ y ��y��q−2 .

Let µ be a measure on Ω and assume that (un ) is a bounded sequence in Lq (Ω, µ ) having the
property that

lim
n→∞

un (x ) = u (x )

for µ-a.e. x ∈ Ω. Then,

lim
n→∞

∫
Ω
|A(un ) −A(un − u) −A(u) |

q
q−1 dµ = 0.

Theorem B (Theorem 3.3 in [5]). Let (Ωk ) be a sequence of open sets such that Ωk ↗ Ω.
Assume that q > 1 and (vn ) is a sequence inW 1,q (Ω) such that vn ⇀ v inW 1,q (Ω). Let
T : R→ R be given by the rule

T (s ) :=



s if |s | ≤ 1,
s
|s | if |s | > 1.
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If for each k ≥ 1 there holds

lim
n→∞

∫
Ωk

(
|∇vn |

q−2 ∇vn − |∇v |
q−2 ∇v

)
· ∇T (vn −v ) = 0,

then, after passing to a subsequence,

(1) ∇vn → ∇v pointwise almost everywhere in Ω;

(2) lim
n→∞

(
‖∇vn‖

q
Lq (Ω)

− ‖∇(vn −v )‖
q
Lq (Ω)

)
= ‖∇v ‖Lq (Ω)q ; and

(3) |∇vn |q−2 ∇vn − |∇(vn −v ) |
q−2
∇(vn −v ) → |∇v |

q−2 ∇v in L
q

q−1 (Ω).

Furthermore, the theorem holds when Ω = RN andW 1,q (Ω) is replaced by D1,q (RN ).

Finally, we will require the following non-existence result:

Theorem C (Theorem 1.1 in [5]). Any non-negative weak solution u ∈ D1,p
0 (RN

+ ) to (1.9)
vanishes almost everywhere.

3.1 Technical Lemmas

This subsection is devoted to establishing two special lemmas that can be viewed as the
“base cases” for the iterative argument that will be used in the proof of Theorem 1.1. We
note that these Lemmas are slight variants of those stated in Mercuri-Willem [5]. More
precisely, we do not impose any assumption on the limiting behaviour of (un )−.

Lemma 3.1. Let (un ) be a sequence inW
1,p

0 (Ω) such that the following hold true:

(1) un converges weakly to u inW 1,p
0 (Ω);

(2) un → u pointwise almost everywhere on Ω;

(3) ϕ (un ) → c ∈ R as n → ∞; and

(4) ϕ′(un ) → 0 inW −1,p ′ (Ω) as n → ∞.

After passing to a subsequence, one has ∇un → ∇u pointwise almost everywhere on Ω and
ϕ′(u) = 0. Furthermore, by de�ning vn := un −u, we obtain a sequence inW

1,p
0 (Ω) with the

property that

20



(i) lim
n→∞

(
‖un‖

p − ‖vn‖
p) = ‖u‖p ;

(ii) lim
n→∞

ϕ∞(vn ) = lim
n→∞

ϕ (un ) − ϕ (u); and

(iii) ϕ′∞(vn ) → 0 inW −1,p ′ (Ω) as n → ∞.

Proof. We follow, with only slight modi�cations, the proof from Mercuri-Willem [5]. De-
�neT : RN → RN as in Theorem B. Since Ω is bounded and |T | ≤ 1 on R, the dominated
convergence theorem implies that

lim
n→∞

∫
Ω
|T (un − u) |

q = 0 (3.1)

for all 0 < q < ∞. Here, we have used the continuity ofT and the assumption thatun → u

pointwise almost everywhere on Ω. Next, we claim that T (un − u) ⇀ 0 in W
1,p

0 (Ω). Of
course, this amounts to showing that, up to a subsequence,

T (vn ) ⇀ 0 inW
1,p

0 (Ω).

Note that this is well de�ned (see Ziemer [12]) becauseT is Lipschitz continuous whence
T (vn ) ∈W

1,p (Ω). In fact, because |T (vn ) | ≤ |vn | a.e. on Ω, we have

Trace(T (vn )) = 0

which implies that T (vn ) ∈W
1,p

0 (Ω).
Since vn is weakly convergent, it is bounded in W

1,p
0 (Ω). Now, it is obvious that

(T (vn )) is bounded in Lp (Ω). By the chain-rule (which is valid because T is Lipschitz
continuous – refer to Ziemer [12]), one has

∂i[T (vn )] = T ′(vn )∂ivn

for all i = 1, . . . ,N . Since the derivative of a Lipschitz continuous function is bounded,
it follows that (∇T (vn )) is bounded in Lp (Ω) whence (T (vn )) is bounded in W

1,p
0 (Ω) as

well. After passing to a subsequence, it is of no harm to assume that

T (vn ) ⇀ η inW
1,p

0 (Ω)

as n → ∞. In fact, by compactness of the embedding W 1,p (Ω) ↪→ Lp (Ω), we might as
well assume that T (vn ) → η strongly in Lp (Ω) and pointwise almost everywhere on Ω.
Finally, since un → u pointwise almost everywhere on Ω, we have

lim
n→∞

T (vn (x )) = 0 a.e. on Ω.
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This means that η = 0 for almost every x ∈ Ω. In particular,T (vn ) ⇀ 0 inW
1,p

0 (Ω). Next,
direct computation shows that

∫
Ω

(
|∇un |

p−2 ∇un − |∇u |
p−2 ∇u

)
· ∇T (un − u) = 〈ϕ

′(un ),T (un − u)〉

−

∫
Ω
|∇u |p−2 ∇u · ∇T (un − u)︸                             ︷︷                             ︸

I1

−

∫
Ω

(
a(x ) |un |

p−2un − µ |un |
p∗−2un

)
T (un − u)︸                                                     ︷︷                                                     ︸

I2

.

Since ϕ′(un ) → 0 strongly in W −1,p ′ (Ω) and T (un − u) is bounded in W
1,p

0 (Ω), it is easy
to see that 〈ϕ′(un ),T (un − u)〉 → 0 as n → ∞. To deal with I1, note that by Hölder’s
inequality,

|I1 | ≤

∫
Ω
|∇u |p−1 |∇T (un − u) | ≤

(∫
Ω
|∇u | (p−1)· p

p−1

)1/p ′

‖∇T (un − u)‖Lp (Ω)

≤ ‖u‖
p/p ′

W 1,p (Ω)
‖T (un − u)‖W 1,p (Ω) .

These estimates show that the map

f 7→

∫
Ω
|∇u |p−2 ∇u · ∇f

is a continuous linear functional on W 1,p (Ω). Using that T (un − u) ⇀ 0 in W
1,p

0 (Ω), it
follows that I1 → 0 as n → ∞. For convenience, we now break I2 into two parts. An easy
application of Corollary 2.2 together with the boundedness of (un ) in Lp

∗

(Ω) shows that
∫
Ω
µ |un |

p∗−2unT (un − u) → 0, as n → ∞.

Applying Hölder’s inequality once again, we �nd that

∫
Ω
|a | |un |

p−1 |T (un − u) | ≤ ‖a‖LN /p (Ω)

(∫
Ω

(
|un |

p−1 |T (un − n) |
) N
N−p

) N−p
N
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where a ∈ LN /p (Ω) by assumption and∫
Ω

(
|un |

p−1 |T (un − n) |
) N
N−p =

∫
Ω
|un |

p∗− N
N−p |T (un − n) |

N
N−p (3.2)

≤

[∫
Ω
|un |

(
p∗− N

N−p

)
q

]1/q [∫
Ω
|T (un − u) |

N
N−p q

′

]1/q′

(3.3)

=

(∫
Ω
|un |

p∗
) p−1

p
(∫

Ω
|T (un − u) |

p∗
)1/p
, (3.4)

where
q :=

p∗

p∗ − N
N−p

=
(N − p)p∗

(N − p)p∗ − N
=

Np

Np − N
=

p

p − 1
= p′.

By the same reasoning as before, we see that
∫
Ω |a | |un |

p−1 |T (un − u) | → 0 as n → ∞ and
therefore that I2 → 0. Putting all of this together, we �nd that

lim
n→∞

∫
Ω

(
|∇un |

p−2 ∇un − |∇u |
p−2 ∇u

)
· ∇T (un − u) = 0.

Applying Theorem B with Ωk = Ω, we may extract a subsequence (also denoted (un ))
such that ∇un → ∇u almost everywhere on Ω. By this same theorem (or, alternatively,
Theorem A.3), we also have (i). Since (un ) is bounded inW 1,p (Ω), the Sobolev inequality
tells us that

{
|un |

p}
n∈N is bounded in L

N
N−p (Ω) � (LN /p (Ω))∗. Recalling that un → u

pointwise almost everywhere on Ω, an application of Theorem 2.1 shows that

lim
n→∞

∫
Ω
a(x ) |un |

p =

∫
Ω
a(x ) |u |p .

But then, using (i) together with the Brézis-Lieb lemma (see Theorem A.3 in Appendix
A) implies that

ϕ∞(vn ) =

∫
Ω

(
|∇vn |

p

p
− µ
|vn |

p∗

p∗

)
=

1
p
‖un − u‖

p −
µ

p∗
‖un − u‖

p∗

Lp
∗
(Ω)

=
1
p

(
‖un‖

p − ‖u‖p
)
−
µ

p∗

(
‖un‖

p∗

Lp
∗
(Ω)
− ‖u‖

p∗

Lp
∗
(Ω)

)
+ o(1)

=
1
p

(
‖un‖

p − ‖u‖p
)
−
µ

p∗

(
‖un‖

p∗

Lp
∗
(Ω)
− ‖u‖

p∗

Lp
∗
(Ω)

)
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+

∫
Ω
a

(
|un |

p − |u |p
)
+ o(1)

= ϕ (un ) − ϕ (u) + o(1)
= c − ϕ (u) + o(1).

This proves (ii). Now, we claim thatϕ′(u) = 0. More precisely, we check that 〈ϕ′(u),h〉 = 0
for all h ∈W 1,p

0 (Ω). Since ϕ′(un ) → 0 strongly inW −1,p ′ (Ω), it would actually su�ce to
show that

lim
n→∞
〈ϕ′(un ),h〉 = 〈ϕ

′(u),h〉, ∀h ∈W 1,p
0 (Ω).

Let h ∈W 1,p
0 (Ω) be given and write

〈ϕ′(un ),h〉 − 〈ϕ
′(u),h〉

=

∫
Ω

(
|∇un |

p−2 ∇un · ∇h + a |un |
p−2unh − µ |un |

p∗−2unh
)

−

∫
Ω

(
|∇u |p−2 ∇u · ∇h + a |u |p−2uh − µ |u |p

∗−2uh
)
.

As above, an application of Theorem 2.1 shows that

lim
n→∞

∫
Ω
|∇un |

p−2 ∇un · ∇h =

∫
Ω
|∇u |p−2 ∇u · ∇h,

and

lim
n→∞

∫
Ω
µ |un |

p∗−2unh =

∫
Ω
µ |u |p

∗−2uh

Next, we claim that the family
{
|un |

p−2unh
}
n∈N

is bounded in L
N

N−p (Ω), where N
N−p is the

Hölder conjugate exponent of N
p . As in (3.2)-(3.4), we have

∫
Ω

(
|un |

p−1 |h |
) N
N−p =

∫
Ω
|un |

p∗− N
N−p |h |

N
N−p

≤

[∫
Ω
|un |

(
p∗− N

N−p

)
q

]1/q [∫
Ω
|h |

N
N−p q

′

]1/q′

=

(∫
Ω
|un |

p∗
) p−1

p
(∫

Ω
|h |p

∗

)1/p
.
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After a �nal application of Theorem 2.1, we deduce that 〈ϕ′(un ),h〉 → 〈ϕ′(u),h〉 for any
�xed h ∈ W

1,p
0 (Ω). Consequently, ϕ′(u) = 0 inW −1,p ′ (Ω). By similar convergence argu-

ments, it readily follows from the Breźis-Lieb lemma (Theorem A.3) that

ϕ′∞(vn ) = ϕ
′(vn ) + o(1) = ϕ′(un ) − ϕ′(u) + o(1) = o(1)

when considered inW −1,p ′ (Ω). This completes the proof. �

Finally, we cite a �nal result from Meruci-Willem which can be thought of as an
analogue of the previous lemma for rescalings of the sequence (un ).

Lemma 3.2. Let (yn ) and (λn ) be sequences in Ω and (0,∞), respectively, such that

dist(yn, ∂Ω)

λ1
n

→ ∞, as n → ∞. (3.5)

Suppose further that we have a sequence (un ) in D1,p (RN ) such that the rescaled sequence

vn (x ) := λ
N−p
N

n un (λnx + yn )

in D1,p (RN ) satis�es

(1) vn ⇀ v in D1,p (RN ) and pointwise almost everywhere on RN ;

(2) ϕ∞(un ) → c and ϕ′(un ) → 0 inW −1,p ′ (Ω) as n → ∞.

Then ϕ′∞(v ) = 0. Furthermore, after passing to a subsequence, we have ∇vn → ∇v almost
everywhere on RN . Moreover,

(i) lim
n→∞

(
‖un‖

p − ‖wn‖
p) = ‖v ‖p ;

(ii) ϕ∞(wn ) → c − ϕ∞(v ) as n → ∞; and

(iii) ϕ′∞(wn ) → 0 inW −1,p ′ (Ω) as n → ∞

where we de�ne

wn (z) := un (z) − λ
p−N
N

n v

(
z − yn
λn

)
.
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Proof. We once again follow, with slight modi�cation, the proof of Lemma 3.6 in Mercuri-
Willem [5]. Note that (vn ) is bounded in D1,p (RN ) since it converges weakly. Let {Bk }k∈N
be an exhaustion of RN by open balls, centered at the origin, of radius k ≥ 1. For any such
k , we claim that ϕ′∞(vn ) → 0 strongly inW −1,p ′ (Bk ). Given a test function h ∈ C∞c (RN ),
we de�ne

hn (z) := λ
p−N
p

n h

(
z − yn
λn

)
.

Suppose now that h ∈ C∞c (Bk ). By the assumption in (3.5), we have hn ∈ C∞c (Ω) for all
n su�ciently large. Hence, a change of variables together with the Friedrich-Poincaré
inequality gives

��〈ϕ′∞(vn ),h〉�� = ��〈ϕ′∞(un ),hn〉�� ≤ ϕ′∞(un )W −1,p ′ (Ω) ‖hn‖W 1,p (Ω)

≤ C ϕ′∞(un )W −1,p ′ (Ω) ‖hn‖

= C ϕ′∞(un )W −1,p ′ (Ω) ‖h‖

≤ C ϕ′∞(un )W −1,p ′ (Ω) ‖h‖W 1,p (Bk ) .

It follows that ϕ′∞(vn ) → 0 inW −1,p ′ (Bk ) as n → ∞, for each k ≥ 1. Let T : R→ R be as
in Theorem B and �x k ≥ 1. Let ρ ∈ C∞c (RN ) be such that




0 ≤ ρ ≤ 1 in RN ,

ρ ≡ 1 on Bk ,

ρ ≡ 0 outside Bk+1.

For n ∈ N, we de�ne

fn : RN → RN , fn := |∇vn |p−2 ∇vn − |∇v |
p−2 ∇v .

It is not hard to check (see Lemma A.2 in Appendix A) that fn · ∇T (vn −v ) ≥ 0 on all of
RN . Thus, ∫

Bk

fn · ∇T (vn −v ) =

∫
Bk

fn · ρ∇T (vn −v ) ≤

∫
RN

fn · ρ∇T (vn −v ).

Now, assuming that
∫
RN fn · ρ∇T (vn − v ) → 0 as n → ∞, Theorem B would ensure

the existence of a subsequence (vn ) with ∇vn → ∇v almost everywhere on RN . In fact,
by homogeneity, this same theorem would immediately give (i). A simple calculation

26



veri�es that∫
RN

fn · ρ∇T (vn −v ) =

∫
RN

fn · ∇ [T (vn −v )ρ]︸                        ︷︷                        ︸
=:I1

−

∫
RN

T (vn −v ) fn · ∇ρ︸                     ︷︷                     ︸
=:I2

.

As in the previous lemma, we are now reduced to verifying that I1, I2 → 0 as n → ∞. For
I2, an application of Hölder’s inequality gives the estimate

|I2 | ≤

∫
RN

��T (vn −v ) fn · ∇ρ�� ≤ fn
L

p
p−1 (RN ;RN )

T (vn )∇ρLp (RN ;RN )

where ∫
RN
|T (vn −v ) |

p ��∇ρ��p → 0 as n → ∞

by the dominated convergence theorem. Hence, I2 → 0. To see that I1 → 0 as well, we
�rst note that

I1 = 〈ϕ
′
∞(vn ), ρT (vn −v )〉 + µ

∫
RN
|vn |

p∗−2vnρT (vn −v )︸                           ︷︷                           ︸
=:J1

(3.6)

−

∫
RN
|∇v |p−2 ∇v · ∇ [ρT (vn −v )]︸                              ︷︷                              ︸

=:J2

. (3.7)

Now, ρ has compact support andT is a bounded Lipschitz function with bounded deriva-
tive. Since ϕ′∞(vn ) → 0 strongly in W −1,p ′ (Bk ) for every k ≥ 1, it is not hard to see
that

〈ϕ′∞(vn ), ρT (vn −v )〉, as n → ∞.

To deal with J1, we �rst apply Hölder’s inequality:

|J1 | ≤
|vn |

p∗−1
L

p∗
p∗−1 (RN ;RN )

ρT (vn −v )Lp∗ (RN )

= ‖vn‖
p∗−1
Lp
∗
(RN )

(∫
RN

��ρ�� |T (vn −v ) |p
∗

)1/p∗

where
lim
n→∞

∫
RN

��ρ�� |T (vn −v ) |p
∗

= 0
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by the dominated convergence theorem. It follows that J1 → 0 as n → ∞. Treating J2,
we write

J2 =

∫
RN
|∇v |p−2 ∇v · ∇ [ρT (vn −v )] =

∫
RN
|∇v |p−2 ρ∇v · ∇T (vn −v )

+

∫
RN
|∇v |p−2T (vn −v )∇v · ∇ρ.

As before, it is clear from Theorem 2.1 that

lim
n→∞

∫
RN
|∇v |p−2T (vn −v )∇v · ∇ρ = 0.

On the other hand,∫
RN
|∇v |p−2 ρ∇v · ∇T (vn −v ) =

∫
RN
|∇v |p−2 ρ∇v ·T ′(vn −v )∇(vn −v )

for each n ∈ N. Using the de�nition of T , we see that∫
RN
|∇v |p−2 ρ∇v ·T ′(vn −v )∇(vn −v ) =

∫
RN
|∇v |p−2 ρ∇v · ∇(vn −v )

−

∫
|vn−v |≥1

|∇v |p−2 ρ∇v · ∇(vn −v )

where this �rst term converges to zero because vn ⇀ v in D1,p (RN ). As for the second
term, invoking Hölder’s inequality shows that

�����

∫
|vn−v |≥1

|∇v |p−2 ρ∇v · ∇(vn −v )
�����
≤ M ‖vn −v ‖

(∫
En

|∇v |p
) (p−1)/p

with En :=
{
x ∈ supp(ρ) : |vn (x ) −v (x ) | ≥ 1

}
. Using that ρ has compact support and

vn → v a.e. on RN , an application of Proposition A.1 ensures that m(En ) → 0 as n → ∞.
Consequently, this second term also tends to zero. It follows that J2 → 0 and so I1 → 0.

By our earlier remarks, we may now assume that ∇vn → ∇v almost everywhere on
RN and that (i) holds. Much like in Lemma 3.1 (and, of course, Mercuri-Willem [5]), the
Brézis-Lieb lemma together with (i) implies that

ϕ∞(wn ) = ϕ∞(vn −v ) = ϕ∞(vn ) − ϕ∞(v ) + o(1)
= ϕ∞(un ) − ϕ∞(v ) + o(1)
= c − ϕ∞(v ) + o(1)
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whence we have (ii). Next, let us �x h ∈ C∞c (RN ). Clearly, we have 〈ϕ′∞(vn ),h〉 → 0 as
n → ∞. On the other hand,

〈ϕ′∞(vn ),h〉 − 〈ϕ
′
∞(v ),h〉 =

∫
RN

(
|∇vn |

p−2 ∇vn · ∇h − µ |vn |
p∗−2vnh

)
−

∫
RN

(
|∇v |p−2 ∇v · ∇h − µ |v |p

∗−2vh
)
.

Next, note that the
{
|∇vn |

p−1
}
n≥1

and {|vn |p
∗−1}n≥1 are bounded in the dual spaces of

Lp (RN ;RN ) and Lp
∗

(RN ), respectively. Since h has compact support, applying Theorem
2.1 in a now routine manner gives

lim
n→∞

∫
RN
|∇vn |

p−2 ∇vn · ∇h =

∫
RN
|∇v |p−2 ∇v · ∇h

and
lim
n→∞

∫
RN
|vn |

p∗−2vnh =

∫
RN
|v |p

∗−2vh.

This tells us that ϕ′∞(v ) = 0. Finally, convergence arguments that are by now familiar
show that

〈ϕ′∞(wn ),д〉 → 0 as n → ∞

uniformly inд ∈ C∞c (Ω) satisfying д = 1. This establishes (iii) and the proof is complete.
�

4 The Proof of Theorem 1.1

We are now ready to illustrate the method used by Mercuri-Willem [5] in the proof of
Theorem 1.1. In the spirit of their proof, we shall divide the proof into several steps for
the sake of readability. Recall that ‖·‖ by default denotes the D1,p (RN )-norm and not the
W 1,p (Ω)-norm.

Step 1. There exists a subsequence, also denoted (un ), and a solution v0 to the problem (1.3)
such thatun ⇀ v0 weakly inW

1,p
0 (Ω), strongly in Lp (Ω), andun converges pointwise almost

everywhere to v0 on Ω. Furthermore, the sequence inW 1,p
0 (Ω) given by

u1
n := un −v0

is bounded inW 1,p
0 (Ω) and satis�es
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(1) ∇u1
n → 0 almost everywhere on Ω;

(2) u
1
n


p
= ‖un‖

p − ‖v0‖
p + o(1);

(3) lim
n→∞

ϕ∞(u
1
n ) = lim

n→∞
ϕ (un ) − ϕ (v0); and

(4) ϕ′∞(u
1
n ) → 0 inW −1,p ′ (Ω) as n → ∞.

Proof of Step 1. Since the sequence (un ) is bounded inW 1,p
0 (Ω), we may obviously extract

a subsequence converging weakly to some v0 in W
1,p

0 (Ω). Furthermore, since Ω is a
smoothly bounded domain, the embedding

W
1,p

0 (Ω) ↪→ Lp (Ω)

is compact by the Rellich-Kondrachov theorem. Passing to yet another subsequence, we
might as well assume that un converges strongly to some function w in Lp (Ω) and that
limn→∞un (x ) = w (x ) for almost every x ∈ Ω. In particular, un converges weakly to w

in Lp (Ω). However, weak convergence in W
1,p

0 (Ω) implies weak convergence in Lp (Ω).
This means that un ⇀ v0 in Lp (Ω); by the uniqueness of weak limits we must then have
v0 = w almost everywhere in Ω. Consequently, becauseun → v0 a.e. on Ω and (un )− → 0
in Lp

∗

(Ω), we �nd that v0 ≥ 0 a.e. on Ω.
By virtue of Lemma 3.1, it is immediate that ϕ′(v0) = 0, i.e. v0 is a weak solution to

problem (1.3). Consequently, it remains only to verify the asymptotic identities in (2)-(4).
This turns out to be quite easy since Lemma 3.1 directly implies both (3) and (4). As for
(2), we have by this same result that

lim
n→∞

(
‖un‖

p −
u

1
n


p)
= ‖v0‖

p .

It follows that

u
1
n


p
+ ‖v0‖

p − ‖un‖
p = ‖v0‖

p −
(
‖un‖

p −
u

1
n


p)

= ‖v0‖
p − ‖v0‖

p + o(1) = o(1).

We also point out that (u1
n ) is a sequence in W

1,p
0 (Ω) which may be considered (using

standard extension results) as a sequence in W 1,p (RN ). In fact, the auxiliary sequence
(u1

n )n∈N will also be bounded inW 1,p (RN ). �

Step 2. Theorem 1.1 holds true in the case where u1
n → 0 strongly in Lp

∗

(Ω).
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Proof of Step 2. In light of Step 1, we know that ϕ′∞(u1
n ) converges to 0 in W −1,p ′ (Ω) as

n → ∞. Furthermore, for every integer n ≥ 1 there holds

���〈ϕ
′
∞(u

1
n ),u

1
n〉

��� ≤
ϕ
′
∞(u

1
n )

W −1,p ′ (Ω)
sup
n>1

u
1
n



≤
ϕ
′
∞(u

1
n )

W −1,p ′ (Ω)
sup
n>1

u
1
n

W 1,p (Ω)
→ 0,

as n → ∞. In this last step, we have used the boundedness of (u1
n ) inW

1,p
0 (Ω). Returning

to our expression for 〈ϕ′∞(u1
n ),h〉, we see that

〈ϕ′∞(u
1
n ),u

1
n〉 =

∫
RN

(���∇u
1
n

���
p
− µ ���u

1
n

���
p∗
)
→ 0, as n → ∞.

However, u1
n → 0 in Lp

∗

(Ω) would imply that, as n → ∞,∫
RN

µ ���u
1
n

���
p∗

→ 0.

From the last two equations, we infer that∫
RN

���∇u
1
n

���
p
→ 0, as n → ∞.

In other words, ∇un → ∇v0 in Lp (Ω). It follows that

‖un −v0‖ → 0 and ‖un‖ → ‖v0‖

as n → ∞. Since un → v0 in Lp (Ω) by Step 1, we have that u1
n → 0 in Lp (Ω). Combining

these facts shows that u1
n → 0 inW

1,p
0 (Ω). That is,

lim
n→∞

un = v0 strongly inW
1,p

0 (Ω)

whence ϕ (v0) = limn→∞ ϕ (un ). Furthermore, Step 1 states that v0 solves problem (1.3)
weakly whence Theorem 1.1 follows with k = 0. �

Next, we will consider a family of Lev́y concentration functions. For every index
n ≥ 1, we de�ne a real valued function Qn on [0,∞) via the formula

Qn (r ) := sup
y∈Ω̄

∫
B (y,r )

���u
1
n

���
p∗

.
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Note that each Qn is well de�ned since u1
n ∈ L

p∗ (RN ) by grace of the Sobolev embedding
theorem. By the same token, since the {u1

n}n∈N are uniformly bounded inW
1,p

0 (RN ), the
functional family

F := {Qn (·)}n∈N

de�nes (through the use of Proposition 2.4) a collection of continuous functions on [0,∞).
Now, in light of Step 2, we may assume that u1

n 6→ 0 strongly in Lp
∗

(Ω). After passing to
a subsequence, this means that there exists δ > 0 such that

inf
n∈N

∫
Ω

���u
1
n

���
p∗

> δ .

Without loss of generality, we may assume that

0 < δ <
(
Sp

2µ

)N /p
(4.1)

where Sp > 0 is the best constant for which the Gagliardo-Nirenberg-Sobolev inequality
(GNS) holds in all of D1,p (RN ):

Sp ‖w ‖
p

Lp
∗
(RN )

≤ ‖∇w ‖
p

Lp (RN ;RN )
, ∀w ∈ D1,p (RN ),

Now, every Qn is a continuous function on [0,∞) satisfying both

Qn (0) = 0 and lim
r→∞

Qn (r ) > δ .

By the intermediate value theorem, there exists rn ∈ [0,∞) such that Qn (rn ) = δ . Letting
Rn be the set of all such rn, we put λ1

n := inf Rn ≥ 0. Fixing n, let (rl )l∈N be a sequence in
Rn converging to λ1

n as l → ∞. By continuity, it is clear that

Qn (λ
1
n ) = lim

l→∞
Qn (rl ) = δ .

Furthermore, since Qn (0) = 0, we necessarily have λ1
n > 0. Proceeding inductively, we

obtain a sequence (λ1
n ) in (0,∞) such that

Qn (λ
1
n ) = sup

y∈Ω̄

∫
B (y,λ1

n )

���u
1
n

���
p∗

= δ ,

for each n ∈ N. Once again �xing n ≥ 1, we may �nd a sequence (ξ 1
m,n )

∞
m=1 in Ω̄ such that

δ = lim
m→∞

∫
B (ξ 1

m,n ,λ
1
n )

���u
1
n

���
p∗

.
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Passing to a subsequence if necessary, we may assume that ξ 1
m,n → y1

n ∈ Ω̄ as we let
m → ∞. By the dominated convergence theorem,

δ = lim
m→∞

∫
B (ξ 1

m,n ,λ
1
n )

���u
1
n

���
p∗

=

∫
B (y1

n ,λ
1
n )

���u
1
n

���
p∗

, ∀n ∈ N.

Remark 4.1. Since Ω is bounded, the sequence of radii (λ1
n ) must also be bounded. To

be more explicit, we must have 0 < λ1
n ≤ 2 diam(Ω) for each n ≥ 1. Furthermore, the

sequence of centers (y1
n ) lives in Ω̄ and must also be bounded. Thus, after passing to

another subsequence, we may �nd y1 in Ω̄ and λ1 ≥ 0 such that

lim
n→∞

y1
n = y

1 and lim
n→∞

λ1
n = λ

1.

Step 3. For each n ∈ N consider the domain

Ωn :=
1
λ1
n

(
Ω − y1

n

)
.

It is obvious that x ∈ Ωn if and only if

λ1
nx + y

1
n ∈ Ω.

Next, we de�ne a sequence (v1
n )n∈N inW 1,p

0 (Ωn ) ⊆W
1,p (RN ) by the rule

v1
n (x ) :=

(
λ1
n

) N−p
p u1

n (λ
1
nx + y

1
n ).

The family {v1
n}n∈N belongs to the spaceW 1,p (RN ) and is uniformly bounded in D1,p (RN ).

Moreover, one has

δ = sup
y∈Ωn

∫
B (y,1)

���v
1
n

���
p∗

=

∫
B (0,1)

���v
1
n

���
p∗

. (4.2)

Proof of Step 3. Since every v1
n is a rescaling of a function in W 1,p (RN ), it is clear that

{v1
n}n∈N ⊂W

1,p (RN ) ⊆ D1,p (RN ). To see that {v1
n}n∈N is uniformly bounded in D1,p (RN ),

it su�ces to use the homogeneity of D1,p (RN ):

v
1
n


p
=

∇v
1
n


p

Lp (RN ;RN )
=

∫
RN

�����
λ1
n ·

(
λ1
n

) N−p
p
∇u1

n (λ
1
nx + y

1
n )

�����

p

dx

=

∫
RN

(λ1
n )

N ���∇u
1
n (λ

1
nx + y

1
n )

���
p

dx

=

∫
RN

���∇u
1
n

���
p

≤
u

1
n


p

W 1,p (RN )
.
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Since the {u1
n}n∈N are bounded in W 1,p (RN ) by Step 1, the family

{
v1
n

}
n∈N

is therefore
bounded in D1,p (RN ). Next, we verify (4.2). Given n ∈ N, we have by construction that

∫
B (0,1)

���v
1
n

���
p∗

=

∫
B (0,1)

����(λ
1
n )

N−p
p u1

n (λ
1
nx + y

1
n )

����

Np
N−p

dx

=

∫
B (0,1)

(λ1
n )

N ���u
1
n (λ

1
nx + y

1
n )

���
p∗

dx

=

∫
B (y1

n ,λ
1
n )

���u
1
n

���
p∗

= δ .

Since y ∈ Ωn if and only if

y =
z − y1

n

λ1
n

for a unique z ∈ Ω̄, a similar argument yields

sup
y∈Ωn

∫
B (y,1)

���v
1
n

���
p∗

= sup
y∈Ωn

∫
B (y,1)

����(λ
1
n )

N−p
p u1

n (λ
1
nx + y

1
n )

����

Np
N−p

dx

= sup
y∈Ωn

∫
B (y,1)

(λ1
n )

N ���u
1
n (λ

1
nx + y

1
n )

���
p∗

dx

= sup
z∈Ω̄

∫
B (z,λ1

n )

���u
1
n

���
p∗

= δ .

This directly implies (4.2) and the proof is complete. �

For each n ∈ N, let us now consider the linear functional ϕ′∞(u1
n ) on D1,p (RN ). Since

W
1,p

0 (Ω) is a closed subspace of D1,p (RN ), every ϕ′∞(u
1
n ) restricts to an element of the

dual W −1,p ′ (Ω). By a duality result analogous to the Riesz Representation Theorem for
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Lp , we can �nd f 1
n , . . . , f

N
n ∈ L

p ′ (Ω) such that6

〈ϕ′∞(u
1
n ),h〉 =

N∑
i=1

∫
Ω
f in∂ih

for all h ∈W 1,p
0 (Ω). Next, consider the functions given by

дin =
(
λ1
n

)N−N
p f in (λ

1
nx + y

1
n ), ∀i = 1, . . . ,N .

Step 4. Adhering to the notation and terminology developed above, one has

〈ϕ′∞(v
1
n ),h〉 =

N∑
i=1

∫
Ωn

дin∂ih, ∀h ∈W 1,p
0 (Ωn ).

Proof of Step 4. First, we �x a function h ∈W
1,p

0 (Ωn ) and de�ne

h̃(z) = h

(
z − y1

n

λ1
n

)
.

Notice that h̃ ∈W 1,p
0 (Ω). Furthermore, we have the following equalities;

λ1
n∂ih̃(z) = ∂ih

(
z − y1

n

λ1
n

)
and λ1

n∇h̃(z) = ∇h

(
z − y1

n

λ1
n

)
.

Similarly, we see that

∇v1
n (x ) = (λ1

n )
(N−p)/p+1∇u1

n (λ
1
nx + y

1
n ) = (λ1

n )
N /p∇u1

n (λ
1
nx + y

1
n ).

6. Given general domain Ω and a continuous linear functional φ on W
1,p

0 (Ω), we can �nd f0, f1, . . . , fN
belonging to Lp

′

(Ω) such that

φ (w ) =

∫
Ω
f0w +

N∑
i=1

∫
Ω
fi∂iw

for all w ∈ W
1,p

0 (Ω). However, when Ω is bounded, one can dispense with the f0-term in the above.
That is, we have φ (w ) =

∑N
i=1

∫
Ω f

p
i ∂iw for suitable f1, . . . , fN in Lp

′

(Ω). This is not too surprising since
w 7→ ‖∇w ‖Lp (Ω) is an equivalent norm onW

1,p
0 (Ω). We refer the reader to Adams-Fournier [1] and Brézis

[2] for a precise statement and proof.
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Fix now an integer n ≥ 1 and let h ∈W 1,p
0 (Ωn ) be given. It is easily seen that

N∑
i=1

∫
Ωn

дin∂ih =
N∑
i=1

∫
Ωn

(λ1
n )

N−N
p f in (λ

1
nx + y

1
n )∂ih(x ) dx

= (λ1
n )

N−N
p −N

N∑
i=1

∫
Ω
f in (z)∂ih

(
z − y1

n

λ1
n

)
dz

= (λ1
n )
−N

p

N∑
i=1

∫
Ω
f in (z)∂ih

(
z − y1

n

λ1
n

)
dz

= (λ1
n )

1−N /p
N∑
i=1

∫
Ω
f in (z)∂ih̃(z) dz

= (λ1
n )

1−N /p〈ϕ′∞(u
1
n ), h̃〉.

On the other hand, 〈ϕ′∞(v1
n ),h〉 is given by∫
RN

[���∇v
1
n

���
p−2
∇v1

n · ∇h − µ
���v

1
n

���
p∗−2

v1
nh

]

which, when expanded, becomes∫
RN

���(λ
1
n )

N /p∇u1
n (λ

1
nx + y

1
n )

���
p−2

(λ1
n )

N /p∇u1
n (λ

1
nx + y

1
n ) · ∇h(x ) dx −

∫
RN

µ ���v
1
n

���
p∗−2

v1
nh

= (λ1
n )

N (p−1)/p
∫
RN

���∇u
1
n (λ

1
nx + y

1
n )

���
p−2
∇u1

n (λ
1
nx + y

1
n ) · ∇h(x ) dx

−

∫
RN

µ ���(λ
1
n )

(N−p)/pu1
n (λ

1
nx + y

1
n )

���
p∗−2

(λ1
n )

(N−p)/pu1
n (λ

1
nx + y

1
n )h(x ) dx

= (λ1
n )

N (p−1)/p−N
∫
RN

���∇u
1
n (z)

���
p−2
∇u1

n (z) · ∇h

(
z − y1

n

λ1
n

)
dz

− (λ1
n )

(N−p) (p∗−1)/p
∫
RN

µ ���u
1
n (λ

1
nx + y

1
n )

���
p∗−2

u1
n (λ

1
nx + y

1
n )h(x ) dx

= (λ1
n )
−N /p

∫
RN

���∇u
1
n (z)

���
p−2
∇u1

n (z) · ∇h

(
z − y1

n

λ1
n

)
dz

− (λ1
n )

(N−p) (p∗−1)/p−N
∫
RN

µ ���u
1
n (z)

���
p∗−2

u1
n (z)h

(
z − y1

n

λ1
n

)
dz

= (λ1
n )

1−N /p
∫
RN

���∇u
1
n (z)

���
p−2
∇u1

n (z) · ∇h̃(z) dz − (λ1
n )

1−N /p
∫
RN

µ ���u
1
n (z)

���
p∗−2

u1
n (z)h̃(z) dz.
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After some cleaning up, this last expression is equal to

(λ1
n )

1−N /p
∫
RN

[���∇u
1
n (z)

���
p−2
∇u1

n · ∇h̃ − µ
���u

1
n

���
p∗−2

u1
nh̃

]
,

which is precisely
(λ1

n )
1−N /p〈ϕ′∞(u

1
n ), h̃〉.

Combining these identities, we �nd that for all h ∈W 1,p
0 (Ωn ):

〈ϕ′∞(v
1
n ),h〉 = (λ1

n )
1−N /p〈ϕ′∞(u

1
n ), h̃〉 =

N∑
i=1

∫
Ωn

дin∂ih.

�

In light of the observations made in Remark 4.1, we may assume that Ωn → Ω∞, as
n → ∞, where Ω∞ ⊆ RN is

• a rescaled translation of Ω if λ1 > 0;

• all of RN if λ1 = 0 and y1 ∈ Ω; or

• a half space if λ1 = 0 and y1 ∈ ∂Ω.

Here, the convergence should be understood in the sense of indicator functions, which is
equivalent to the compact-open topology. However, a geometric picture of this conver-
gence is enough for our purposes.

Step 5. Passing to a subsequence if necessary, we may assume that v1
n ⇀ v1 for some

v1 ∈ D1,p (RN ) and that
lim
n→∞

v1
n (x ) = v1(x )

for almost every x ∈ RN .

Proof of Step 5. We already know from Step 3 that (v1
n ) is bounded in D1,p (RN ). Thus, the

remaining assertions follow at once from Theorem 2.9. �

Next, we show that our �rst bubble v1 ∈ D1,p (RN ) is non-trivial.

Step 6. The weak D1,p (RN )-limit v1 of v1
n is non-zero.
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Proof of Step 6. We argue by contradiction. Ifv1 = 0 inD1,p (RN ), thenv1 vanishes almost
everywhere in RN . Recall that the {v1

n}n∈N are uniformly bounded in D1,p (RN ). Since
the family {v1

n}n∈N is bounded in D1,p (RN ), the Gagliardo-Nirenberg-Sobolev inequality
(GNS) ensures that the {v1

n}n∈N also form a bounded family of functions in Lp
∗

(RN ).
Now, given an open ball B ⊂ RN , we see that {v1

n}n∈N is a uniformly bounded se-
quence in W 1,p (B). By the Rellich-Kondrachov theorem, we may assume that v1

n → w

strongly in Lp (B). Then, passing to a subsequence yet again, we must have v1
n → w

pointwise almost everywhere in this ball B. Hence, w = v1 almost everywhere on B. In
short, we have found a subsequence (v1

n ) that converges to 0 strongly in Lp (B). By taking
an exhaustion of RN by open balls of radius m ≥ 1 and using a diagonal argument, we
�nd a subsequence (also denoted by (v1

n )) that converges strongly to 0 in Lp (Bm ), for each
m ∈ N. Clearly, this means that v1

n → 0 in L
p
loc(R

N ) as n → ∞.

By using Step 1 together with a duality result from Brézis [2] (Proposition 9.20 therein),
it follows that

ϕ
′
∞(u

1
n )

W −1,p ′ (Ω)
=

N∑
i=1

∫
Ω

���f
i
n

���
p ′

(4.3)

=

N∑
i=1

∫
Ωn

���д
i
n

���
p ′

→ 0, as n → ∞. (4.4)

Next, recall that Ω∞ denotes the “limiting domain” of the Ωn. By de�nition, if y ∈ Ω∞,
then y belongs to Ωn for all su�ciently large n. Fix now a point y ∈ Ω∞ and consider the
ball B (y, 1), which may not be contained in Ω∞. For a given test function h ∈ C∞c (RN )

with supp(h) ⊂ B (y, 1), Hölder’s inequality with exponent N
p , gives∫

RN
|h |p

���v
1
n

���
p∗

=

∫
RN

���v
1
n

���
p∗−p
·

���hv
1
n

���
p

≤

(∫
supp(h)

���v
1
n

���
p∗
)p/N (∫

RN

���hv
1
n

���
p∗
) N−p

N

.

From this, an application of Sobolev’s inequality shows that∫
RN
|h |p ���v

1
n

���
p∗

≤

(∫
supp(h)

���v
1
n

���
p∗
)p/N (∫

RN

���hv
1
n

���
p∗
) N−p

N

(4.5)

≤ S−1
p

(∫
supp(h)

���v
1
n

���
p∗
)p/N (∫

RN

���∇(hv
1
n )

���
p
)
. (4.6)
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Because v1
n is bounded in D1,p (RN ) and converges strongly to 0 in L

p
loc(R

N ), one has∫
Ωn

���∇(hv
1
n )

���
p
=

∫
RN
|h |p ���∇v

1
n

���
p
+ o(1) (4.7)

=

∫
RN

���∇v
1
n

���
p−2
∇v1

n · ∇
(
|h |p v1

n

)
+ o(1) (4.8)

= 〈ϕ′∞(v
1
n ), |h |

p v1
n〉 + µ

∫
RN

���v
1
n

���
p∗−2 (

v1
n

)2
|h |p + o(1) (4.9)

=

N∑
i=1

∫
Ωn

дin∂i ( |h |
p v1

n ) + µ

∫
RN
|h |p

���v
1
n

���
p∗

+ o(1) (4.10)

≤ µ

∫
RN
|h |p

���v
1
n

���
p∗

+ o(1). (4.11)

Let us take a brief moment to justify this series of estimates. Equality (4.7)-(4.8) follows
from Hölder’s inequality. Thereafter, equation (4.11) follows from (4.3)-(4.4) together
with an application of Hölder’s inequality after observing that ∂i ( |h |p v1

n ) is uniformly
bounded in Lp (RN ).7 Applying (4.2) and (4.5)-(4.6), we actually obtain∫

Ωn

���∇(hv
1
n )

���
p
≤ µS−1

p δ
p
N

∫
RN

���∇(hv
1
n )

���
p
+ o(1)

≤
1
2

∫
RN

���∇(hv
1
n )

���
p
+ o(1)

where the last inequality follows from property (4.1). Whence we conclude that

lim
n→∞

∫
Ωn

���∇(hv
1
n )

���
p
= 0.

This means that ∇v1
n → 0 in Lp (B), for any ball B of radius 1 with center in Ω∞. After

covering Ω∞ with countably many balls, each of radius 1 with center in Ω∞, we infer
that ∇v1

n converges to 0 in L
p
loc(Ω∞), as n → ∞. Similarly, ∇v

1
n

Lp (B) → 0 on any ball B
compactly contained in the complement of Ω∞, asn → ∞. To summarize, we have shown
that ∇v1

n → 0 in L
p
loc(R

N ) whence v1
n → 0 in W

1,p
loc (R

N ). Finally, the Sobolev inequality
implies that

lim
n→∞

v1
n = 0 in L

p∗

loc(R
N ),

which directly contradicts (4.2). �

7. A simple calculation shows that ∂i ( |h |p v1
n ) = v

1
n∂i ( |h |

p ) + |h |p ∂iv
1
n . To see that v1

n∂i ( |h |
p ) is bounded

in Lp (RN ), we recall that v1
n is bounded in Lp

∗

(RN ) and h ∈ C∞c (RN ). Similarly, |h |p ∂iv1
n is bounded in

Lp (RN ) since ∂iv1
n is bounded in Lp (RN ) and h ∈ C∞c (RN ).
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Step 7. The radii converge to 0 as n → ∞, i.e. λ1 = limn→∞ λ
1
n = 0.

Proof of Step 7. Arguing by contradiction, let us assume that λ1 > 0. Since v1
n ⇀ v1

weakly in D1,p (RN ), Proposition 2.6 states that

lim
n→∞

∫
RN
∇v1

n · д =

∫
RN
∇v1 · д, ∀д ∈ Lp ′ (RN ;RN ). (4.12)

Fix now φ ∈ C∞c (RN ;RN ); a straightforward calculation shows that∫
RN
∇v1

n · φ =

∫
RN

(λ1
n )

N−p
p · λ1

n∇u
1
n (λ

1
nx + y

1
n ) · φ (x ) dx

=

∫
RN

(λ1
n )

N /P∇u1
n (λ

1
nx + y

1
n ) · φ (x ) dx

= (λ1
n )

N /p−N

∫
RN
∇u1

n (z) · φ

(
z − y1

n

λ1
n

)
dz.

Now, Step 1 ensures that ∇u1
n → 0 pointwise almost everywhere on Ω. Actually, since

{u1
n}n>1 ⊂W

1,p
0 (Ω), we know that ∇u1

n → 0 pointwise almost everywhere on RN . More-
over, it is not hard to see that the sequence (∇u1

n ) is uniformly bounded in Lp (RN ;RN ).
Since λ1

n → λ1 > 0 and y1
n → y1 ∈ Ω̄, there exists a compact set Λ ⊂ RN such that

supp
(
φ

(
· − y1

n

λ1
n

))
⊆ Λ, ∀n ≥ 1.

Using now that φ is bounded, an application of Theorem 2.1 gives

lim
n→∞

∫
RN
∇v1

n · φ = lim
n→∞

∫
RN
∇u1

n (z) · φ

(
z − y1

n

λ1
n

)
dz = 0.

Indeed, this is because for M := supRN ��φ�� one has

�����

∫
RN
∇u1

n (z) · φ

(
z − y1

n

λ1
n

)
dz

�����
≤

∫
RN

�����
∇u1

n (z) · φ

(
z − y1

n

λ1
n

) �����
dz

≤

∫
RN

���∇u
1
n

���M1Λ.

Now, we relax the assumption that φ ∈ C∞c (RN ;RN ). Fix д ∈ Lp ′ (RN ;RN ) and let ε > 0
be given. By density, there exists φ ∈ C∞c (RN ;RN ) such that

д − φLp ′ (RN ;RN ) < ε .
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Clearly, one has

�����

∫
RN
∇v1

n · д
�����
≤

�����

∫
RN
∇v1

n · φ
�����
+

�����

∫
RN
∇v1

n · (д − φ)
�����

≤
�����

∫
RN
∇v1

n · φ
�����
+

v
1
n


д − φLp ′ (RN ;RN ) .

Since {v1
n}n>1 is a bounded family in D1,p (RN ) and

∫
RN ∇v1

n · φ → 0 as n → ∞, we infer
that �����

∫
RN
∇v1

n · д
�����
< ε + sup

n>1

v
1
n

 ε

for all n large. Or, rather, that

lim
n→∞

∫
RN
∇v1

n · д = 0, ∀д ∈ Lp ′ (RN ;RN ).

But by Proposition 2.6 this means that v1
n ⇀ 0 in D1,p (RN ), which directly contradicts

Step 6. It follows that λ1
n → 0 as n → ∞. �

Step 8. The function v1 is almost everywhere non-negative in RN , i.e. v1 ≥ 0.

Proof of Step 8. Recall from Step 5 that v1
n → v1 a.e. on RN . Hence, it would be enough

to check that limn→∞v
1
n (x ) ≥ 0 for almost every x ∈ RN . In fact, because

v1
n (x ) =

(
λ1
n

) N−p
p un (λ

1
nx + y

1
n ) −

(
λ1
n

) N−p
p v0(λ

1
nx + y

1
n )

and

lim
n→∞

∫
RN

[(
λ1
n

) N−p
p un (λ

1
nx + y

1
n )

]

−

p∗

dx = lim
n→∞

∫
RN

(un )−
p∗ = 0,

it would be enough to show that the sequence

wn (x ) :=
(
λ1
n

) N−p
p v0(λ

1
nx + y

1
n )

has a subsequence converging a.e. to zero on RN . Fix now R > 0 and consider the open
ball BR := B (0,R). By homogeneity, we have that∫

BR

|wn |
p∗ =

∫
B (y1

n ,Rλ
1
n )
|v0 |

p∗ → 0,
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becausem(B (y1
n,Rλ

1
n )) → 0 as n → ∞. Hence, (wn ) has a subsequence converging point-

wise a.e. to 0 on BR (0), for any R > 0. By applying this argument iteratively with the
sequence Rm :=m with m ∈ N and using a diagonal argument, we obtain a subsequence
(wn ) convegring pointwise a.e. on RN to 0. �

Since λ1
n → 0 as n → ∞, we can rule out the case where Ω∞ is a rescaled translation

of Ω. This leaves us with only two possibilities:

• y1 ∈ Ω and Ω∞ = RN ; or

• y1 ∈ ∂Ω and Ω∞ is a half-space.

If Ω∞ is a half-space, then an argument similar to that used in Lemma 3.2 shows
that v1 is a non-negative (by virtue of Step 8) solution to the limiting problem (1.9) in a
half-space. However, this together with Step 6 would contradict Theorem C. Therefore,
Ω∞ = RN , y1 ∈ Ω, and v0 solves (1.4) by Lemma 3.2. In particular, after passing to a
subsequence, we may assume that yn ∈ Ω for each n ≥ 1.

Step 9. Ifw ∈ D1,p (RN ) is a non-trivial critical point of ϕ∞, one has

ϕ∞(w ) ≥
µ

N

(
Sp

µ

)N /p
> 0. (4.13)

Proof of Step 9. Let w ∈ D1,p (RN ) be a non-trivial critical point of ϕ∞. By de�nition, this
forces

0 = 〈ϕ′∞(w ),w〉 =

∫
RN

(
|∇w |p − µ |w |p

∗
)

whence, by the Gagliardo-Nirenberg-Sobolev inequality (GNS)

Sp ‖w ‖
p

Lp
∗
(RN )

≤ ‖∇w ‖
p

Lp (RN ;RN )
= ‖w ‖ = µ ‖w ‖

p∗

Lp
∗
(RN )
.

Especially, this gives
Sp

µ
≤ ‖w ‖

p∗−p

Lp
∗
(RN )
.

Put otherwise,

‖w ‖Lp∗ (RN ) ≥

(
Sp

µ

) 1
p∗−p

.
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From this, we infer that

ϕ∞(w ) =
‖w ‖p

p
−
µ ‖w ‖

p∗

Lp
∗

p∗
= µ ‖w ‖

p∗

Lp
∗

(
1
p
−

1
p∗

)

≥ µ


(
Sp

µ

) 1
p∗−p 

p∗ ( 1
N

)
=

µ

N

(
Sp

µ

)N /p
> 0.

�

Next, we complete the proof of Theorem 1.1. By invoking Lemma 3.2, the sequence

u2
n (x ) := u1

n (x ) −
(
λ1
n

) p−N
N v1

(
x − y1

n

λ1
n

)
satis�es

1. u
2
n


p
= ‖un‖

p − ‖v0‖
p − ‖v1‖

p + o(1);

2. ϕ∞(u2
n ) → lim

n→∞
ϕ (un ) − ϕ (v0) − ϕ∞(v1); and

3. ϕ′∞(u2
n ) → 0 inW −1,p ′ (Ω).

In light of this and Step 9, the iterative procedure described above can only construct
�nitely many sequences (vin ), (λin ), and (yin ). Afterwards, we would �nd ourselves in Step
2 thereby terminating the proof. We note that this part of the argument is standard and
can be found explicitly in Struwe [8]-[9], Willem [10]-[11], and Mercuri-Willem [5].

4.1 Further Observations

The assumption that (un )− → 0 in Lp
∗

(Ω) is only used to establish the non-negativity
of the vi extracted in Step 5. Then, by using Theorem C, it was possible to show that
the vi satis�ed (1.4) as opposed to, possibly, the limiting problem (1.9) for a half-space.
By relaxing this assumption on (un ), a stronger and more precise variant of Theorem 1.1
continues to hold true. Formally, we have the following theorem:
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Theorem 4.1. Let (un ) be a Palais-Smale sequence for ϕ. After passing to a subsequence,
there exists a weak solution v0 ∈W

1,p
0 (Ω) to the problem




−∆pu + a |u |
p−2u ≡ µ |u |p

∗−2u in Ω,

u = 0 on ∂Ω

and a �nite (possibly empty) family v1, . . . ,vk in D1,p (RN ) of weak solutions to either

−∆pu + a |u |
p−2u ≡ µ |u |p

∗−2u in RN

or




−∆pu ≡ µ |u |
p∗−2u in a halfspace H,

u ∈ D1,p
0 (H),

together with associated sequences (yin )n∈N ⊂ Ω and (λin )n∈N ⊂ R+ such that


un −v0 −

∑k

i=1

(
λin

) p−N
p vi

(
· − yin
λin

)
→ 0 as n → ∞,

‖un‖
p →

k∑
i=0
‖vi ‖

p as n → ∞,

ϕ (v0) +
k∑
i=1

ϕ∞(vi ) = lim
n→∞

ϕ (un ).

Since Lemmas 3.1-3.2 were established without any assumption on the limiting be-
haviour of (un )−, the proof of this theorem is simply an easy adaptation of the argument
used in the proof of Theorem 1.1.

A Appendix

In this section, we state or establish results necessary for this paper that are now either
standard or considered elementary. Unlike the results presented in §2, these are not
directly related to the main idea behind the proof of Theorem 1.1.

Proposition A.1. Let (X ,M, µ ) be a �nite measure space and let ( fn ) be a sequence of
measurable functions converging almost everywhere to a measurable function f onX . Then,
fn converges to f in measure on X .
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Proof. Let δ > 0 be given; we must show that µ (
{
x ∈ X : ��fn (x ) − f (x )�� ≥ δ

}
) → 0 as

n → ∞. To this end, we �x ε > 0. Through Egoro�’s theorem, we can �nd a measurable
set E ⊆ X such that µ (E) < ε and fn → f uniformly on X \ E. Let N ∈ N be such that

��fn (x ) − f (x )�� < δ

for all x ∈ X \ E and every n ≥ N . Then, for all n ≥ N one necessarily has{
x ∈ X : ��fn (x ) − f (x )�� ≥ δ

}
⊆ E

whence µ (
{
x ∈ X : ��fn (x ) − f (x )�� ≥ δ

}
) ≤ µ (E) < ε . �

Next, we state a nearly trivial inequality for real numbers:

Lemma A.2. Let 1 < p < ∞; then,

(a − b)
(
|a |p−2 a − |b |p−2 b

)
≥ 0

for all a,b ∈ R.

Proof. Clearly, we may assume without loss of generality that a > b. Then, it would be
enough to show that |a |p−2 a ≥ |b |p−2 b. Now, this inequality is obvious if a > b ≥ 0,
a ≥ 0 > b, or a > 0 ≥ b. It remains only to verify that case where b < a < 0. However,
this case is also trivial because

���a |a |
p−2��� = |a |

p−1 < |b |p−1 =
���b |b |

p−2���

gives a |a |p−2 ≥ b |b |p−2. �

Finally, we state (without proof) the Brézis-Lieb lemma (see Theorem 1 in [4]).

Theorem A.3. Let (X ,M, µ ) be a measure space and let 0 < p < ∞. Assume that ( fn ) is
a bounded sequence in Lp (X , µ ) and that fn → f a.e. on X , where f is measurable. Then,
f ∈ Lp (X , µ ) and

lim
n→∞

(∫
X

��fn��p dµ −
∫
X

��fn − f ��p dµ
)
=

∫
X

��f ��p dµ .
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