ELEMENTS OF THE ABSTRACT THEORY OF HILBERT SPACE
SCATTERING

B. LANDON

1. INTRODUCTION

Scattering theory is the study of a physical system on time scales that are large compared
to the scale of interactions taking place within the system. Often, one has in mind two sets of
dynamics acting on a sytem - a free dynamics which is easy to solve, and an interacting dy-
namics which is more difficult. An example arising in quantum mechanics is the free dynamics
of a particle induced by the Laplacian —A, and then the interacting dynamics induced by a
central potential, —A + V. Scattering theory gives tools to examine the large time behaviour
of interacting sytems using knowledge of free systems. In a sense, scattering theory is a type
of perturbation theory.

In this paper we will be interested in some fundamentals of Hilbert space scattering theory.
In the first section we will recall some of the basic definitions and concepts associated with the
theory of linear operators on Hilbert spaces. In the second section we will examine two basic
elements of Hilbert space scattering, Cook’s method and the Kato-Birman theory.

2. LINEAR OPERATORS ON HILBERT SPACES

We recall the definitions and elementary theory of linear operators on Hilbert space for
reader convenience and to fix our notation. We follow closely [J], and refer the reader to [J] for
proofs. Let H; and Hs be Hilbert spaces. The inner product of H; is denoted by (-, -»;. When
the meaning is clear (i.e., there is only one Hilbert space under consideration) we will denote
the inner product by {:,-) (i.e., drop the suffix). In all cases, the inner product is linear wrt
the second variable. Throughout this paper we assume that all Hilbert spaces are separable.

A linear operator A from H; to Hs is a linear map from a distinguished subspace D(A) of
H1 to Ha. D(A) is called the domain of A, and A is called densely defined if D(A) is dense
in H;. If A and B are linear operators, then A + B is defined on D(A + B) = D(A) n D(B).
Similarly, AB is defined on

D(AB) = {1 : ¢ € D(B), Bip € D(A)}.

B is called an extension of A if D(A) <€ D(B) and Ay = B for ¢ € D(A). If B extends A
we write A € B.
An operator A is called bounded if D(A) = H and
JA] :== sup [Ay| < 0.
lpl=1

The set of bounded operators between Hilbert spaces is denoted B(H1, Hz) and we also define
B(H) = B(H,H). If Ais densely defined and there is a constant C so that |Ay| < C|¢|
holds for every ¥ € D(A), then A has a unique extension to an element of B(H1, Hs).
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The graph of A is defined as
I'(A) == {(¥, AY) : p € D(A)} € H1 @ Ho.

An operator is called closed if I'(A) is a closed subset of H1 @ Hs in the topologly induced by

the norm (wv (P) - <1/)7 w>7—l1 + <507 90>7-12
An operator is called closeable if it has a closed extension. If A is closeable, its smallest-

closed extension is called its closure and is denoted by A. It is an elementary fact [RS1] that

A is closeable iff T'(A) is the graph of a linear operator. In this case, I'(A) = T'(A)

Let A be a closed operator. A subset D < D(A) is called a core for Aif A | D = A.

2.1. Adjoints. We now turn to the task of defining the adjoint, A* of a densely defined
linear operator A. In this section and the remainder of this report, we will only consider linear
maps from H to itself. The set of all ¢ € H for which there exists a ¢ € H so that the equality

(Ap, ) = {p, )

holds for every ¢ € H is defined as D(A*), and we set A*¢ = 1. It is easy to see that A* is a
well-defined linear operator. Moreover, we have

Proposition 1. Let A be a densely defined linear operator. Then the adjoint A* is closed,
and A is closeable iff D(A*) is dense, and in this case A = A**. Finally, if A is closeable,
then A* = A*.

2.2. The spectrum. Let A be a closed densely defined operator. The resolvent set of A is
denoted by p(A) and is the set of all z € C such that

A—z:D(A) > H

is a bijection. By the closed graph theorem, (A — z)~! € B(H). The spectrum of A, sp(A) is
defined by

sp(4) := C\p(A).

2.3. Self-adjoint operators. Let A be a densely defined linear operator on a Hilbert space
H. A is called symmetric if for every ¢ and ¢ in D(A),

(A, ) = (&, Ap). (1)

Equivalently, A is symmetric if A € A*. Any symmetric operator is closeable, and A < A*. A
densely defined operator A is called self-adjoint if A = A*. A is self-adjoint iff A is symmetric
and D(A) = D(A*). We have the following basic result about self-adjointness:

Proposition 2. Let A be a symmetric operator on H. Then TFAE:

(i) A is self-adjoint.
(ii) A is closed and ker(A* £+ 1) = {0}.
(ili) ran(A +1i) = H.

We say that a symmetric operator A is essentially self-adjoint if A is self-adjoint.

Proposition 3. Let A be a symmetric operator on H. The TFAE:

(i) A is essentially self-adjoint.
(i) ker(A* £1) = {0}.
(iii) ran(A + 1) is dense in H.
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2.4. The spectral theorem. In this section we state the basic structural result for self-
adjoint operators. Let ¢ € H and A a self-adjoint operator. The cyclic subspace generated
by ¢ and A is the closure of the linear span of the vectors

{(A—2)"1: 2ze C\R}
We have:

Theorem 1 (Decomposition theorem). Let A be a self-adjoint operator. Then there is a set
of orthonormal vectors {¢,} so that

H = @an, A= @nA F'Hna

where H.,, is the cyclic subspace for ¢, and A. Each H,, is invariant under A and the subspaces
H, are mutually orthogonally closed.

The set {¢y} and subspaces {H,}, is called a cyclic decomposition for A.
A vector ¢ € H is called cyclic for A if the cyclic subspace generated by ¢ and A is all of
H. We have,

Theorem 2 (Spectral theorem, cyclic case). Let A be a self-adjoint operator, and ¥ € H.
Then there is a unique Borel measure, denoted dpy s.t. py(R) = |]? and

w. (4= = |

holds for every z € C\R. Moreover, if ¥ is cyclic for A, then there is a unitary operator U so
that A is unitarily equivalent to an operator of multiplication by x on L*(R, dpty).

Ly (o)

r—z

The two preceding theorems imply

Theorem 3 (Spectral theorem, general case). Let A be a self-adjoint operator and {1}, and
{Hn}n be a cyclic decomposition for A. Then there is a unitary operator U,

U:H=&®H,— D L*(R,dpy,)

so that A acts by multiplication by x on each L*(R,duy, ). Furthermore,

sp(A4) = _Jsupp o,

Let A be a self-adjoint operator and the orthonormal family {1, },er be as in the above
theorem. We define the measure space M and sigma-algebra F as follows. For every n € T,
let R,, be a copy of R and let M = |J,,.r R. Let F be the collection of sets F' < M such that
F n R, is Borel for every n € I'. For F € F, let

p(F) = > b, (F A Ry).
nel’
By the above theorem, A is unitarily equivalent to an operator of multiplication on L?(M, dpu).
Note that sp(A) = supp p. Denote by U this unitary operator. Recall that any Borel measure
v on R has the decomposition

V = Vac + Vsc + Vpp

where v, is absolutely continuous wrt to Lebesgue measure, vy, is an atomic measure (recall
that an atom of a measure is a singleton {z} s.t. v({z}) > 0 - an atomic measure is a measure
consisting only of atoms), and v is supported on a set of Lebesgue measure 0 but has no
atoms. V,e/sc/pp 18 called the absolutely continuous/singular continuous/pure point part of v.
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Let,

Hac/sc/pp = Z Hap,, ;ac/sc/pp

nel’
Then, L2(M,du) = L?(M, djiac) ® L*(M, dpse) ® L* (M, dpupp) and we define
HaC/SC/PP = U_1L2(Ma d:uac/sc/pp)-

These subspaces are invariant under A and are called the absolutely continuous/singular con-
tinuous/pure point spectral subspaces for A. The projection onto this subspace is denoted by
Picjsc/pp(A). Finally, we set

Spac/sc/pp(A) = bp(‘4 f Hac/sc/pp) = U SUpp M, ,ac/sc/pp
nel’
2.5. Stone’s theorem. We also require the following theorem which provides a 1-to-1 corre-
spondence between strongly continuous one-parameter unitary groups and self-adjoint opera-
tors on a Hilbert space.

Theorem 4 (Stone’s theorem). Let U(t) be a strongly continuous one-parameter unitary group
on a Hilbert space H. That is, {U(t)}ier is a family of unitary operators on H satisfying

(i) U@R)U(s) =U(t+ s), for every t,s € R.

(ii) The map t — U(t) is strongly continuous.
Then, there is a self-adjoint operator A satisfying e'*4 = U(t). Conversely, for any self-adjoint
operator A, the set {eitA}teR 18 a strongly continuous one-parameter unitary group. Moreover,
D(A) is precisely the vectors ¢ for which the limits

lim ¢~ (¢4 — )
exist, and the limit equals 1Av.

3. SCATTERING THEORY

In this section, we turn to the main focus of this paper. We discuss briefly quantum
mechanics and then prove some of the fundamentals of Hilbert space scattering theory. We
follow closely [RS3].

A quantum system is described by a Hilbert space of ‘states’ and a unitary group acting on
that Hilbert space which generates the dynamics. Stone’s theorem provides a correspondence
between dynamics and self-adjoint operators on the Hilbert space. We say that the generator
of the dynamics is the Hamiltonian of the system, typically denoted by H.

Scattering theory is typically interested with two sets of dynamics for the same system; a
given, “interacting,” dynamics, given by some Hamiltonian H, and a free dynamics given by a
different Hamiltonian H,y. Typically, the interacting dynamics is difficult to solve analytically,
but the free dynamics is “easy” to deal with in some sense, and conserves the momentum of
the individual parts of the system. If the difference between the dynamics is “small” in some
sort of sense (for example, we shall see later that one sense of “small” is that H — Hy is trace-
class) then information about the behaviour of the system under the free dynamics should
yield information about the system under the interacting dynamics. In this sense, scattering
theory can be viewed as a sort of pertubation theory.

Let H and Hg be the Hamiltonians generating respectively the interacting and free dynamics
on a physical system described by the Hilbert space H. We say that a state ¢ is asymptotically
free in the distant past if there is a state ¢_ so that

He—iHot _ e_thQOH =0. (2)

lim
t——00

(Vo
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Such states are those that, when looking far into the past, are comparable to states evolving
due to the free dynamics. Note that (2) is equivalent to

the—iH[)t

Jim e v —¢| =0,

and so the question of determining which states are asymptotically free in the past is reduced
to deciding the existence of strong limits. Similarly, we say that a state ¢ is asymptotically
free in the distant future if there is a state ¢ so that (2) holds, but with ¢ — oo instead of
t — —00.

This prompts the following definition: for self-adjoint A and B acting on H, let P,.(B)
denote the projection onto the absolutely continuous subspace of B. We say that the gener-
alized wave operators (¥ (A, B) exist if the strong limits

+ ol SiAE_—iBt
O*(A,B) = ts_)hirge e " Py (B) (3)

exist. When the meaning is clear we will write QF for QT (A, B). When the generalized wave
operators exist, we define

Hin = ran QT Hous = ran ™. (4)

For notational convenience, we will sometimes use the convention H, = H;, and H_ = Hout-

When the generalized wave operators exist, the states that look asymptotically free in the
distant past/future are the elements of H;,/Hout, and the associated ¢, is an element of the
absolutely continuous subspace of Hy.

The following is a first basic result about wave operators. Recall that a bounded linear
operator U on H is called a partial isometry if |U| = ||| for every ¢ € (ker U)L. If U is a
partial isometry, then H can be written as H = ker U @ (ker U)* and H = ranU @ (ran U)*,
with U a unitary operator from (ker U)*, which is called the initial subspace of U, to ran U,
which is called the final subspace of U.

Proposition 4. Suppose that the wave operators exist. Then,

(i) Q*F are partial isometries with initial subspace Pao(B)H and final subspaces H .
(ii) Ha are invariant subspaces for A and

QF[D(B)] < D(A), AQ*(A,B) = Q*(A, B)B. (5)
(i) H4 S ran Poc(A).

Proof. For (i), note that obviously (P.,.H)* € kerQ*. OTOH, if u € PyH = ((PacH))*
(recall that the range of a bounded linear operator is closed) then [e*4'e B! P,cu| = [u| for
every t, and so |QFu| = |u|. This shows that (P.cH)* = ker QF and that QF is a partial
isometry. By definition, the final subspace is H .

B

450t e=iBs (since Bt commutes with

To prove (ii), note that for any s € R, clearly QF =
P,.(B), which is, e.g., a corollary of the Borel functional calculus for B). Equivalently,
e HAsOE = OFeiBs, (6)

(5) is then a consequence of Stone’s theorem and (6). Moreover, (6) shows that H is an
invariant subspace for e14*, and the invariance for A follows by differentiation.
Lastly, (1) and (2) imply that A | H4 is unitarily equivalent to B | P,.(B)H, which proves
(iii) (recalling that the ac/pp/sc parts of the spectrum are preserved under unitaries). O
We have also,

Proposition 5 (Chain rule). If Q*(A, B) and Q* (B, C) exist, then QX (A, C) exist and
OF(A,C) = Q% (A, B)Q*(B,0)
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Proof. By Proposition 4(iii), ran QF (B, C) € Py (B) and so
. B itB_—itC =
Jim (1= Pac(B))ePe " Poc (O] = 0
for any ¢. Therefore,
eitAe_itCPac(C)QO _ eitAe—itBPaC (B)eitBe_itCPaC(C)SO
+ eitAe—itB(l _ PaC(B))eitBe_itCPac(C)(p

converges to QF (A4, B)Q*(B,C)y as t — Foo. O

If a state looks asymptotically free in the past, we would hope that it would look asymptot-
ically free in the future as well, and vice versa. This notion is captured by the following defini-
tion: we say that the wave operators are weakly asymptotically complete if H;, = Hous-

Consider a system composed of individual components for which the interaction between
the components falls off whenever the pieces move apart. One expects that states of the system
will either decay into freely moving clusters (e.g., two particles moving away from each other
to infinity) or will remain bound (e.g., two particles orbiting each under due to a mutual
attraction) under the action of the dynamics of the system. In quantum mechanics, the bound
states are the elements of Py, (H)H, where P,,(H) is the projection onto the pure point part
of the interacting Hamiltonian H (they are called bound because they are invariant under the
dynamics e'*7),

The definition making this physical notion precise is the following: we say that the wave
operators (A, B) are asymptotically complete if Hiy, = Hous = (Ppp(A))L. Note that if
the wave operators are asymptotically complete then H = Hi @ P,,(A)H. Asymptotic
completeness implies weak asymptotic completeness.

Sometimes the following definition is useful. If the wave operators QF (A, B) exist, we say
they are complete if ran Q1 = ran Q™ = ran P,.(A).

It is clear that asymptotic completeness is equivalent to the pair of statements: Q% (A4, B)
are complete, and A has no singular continuous spectra.

The existence of the wave operators can be proven in many cases by a general technique
known as Cook’s method, which we will be the next topic of discussion. Under a set of more
stringent conditions, one can prove the stronger result that the wave operators exist and are
complete, using a complex of ideas called the Kato-Birman theory. These results will be
discussed second.

We have the following result about completeness:

Proposition 6. Suppose that the wave operators Qt (A, B) exist. Then they are complete iff
O (B, A) ewist.

Proof. If both Q* (A, B) and Q*(B, A), then by Proposition 5,
Poo(A) = QF (A, A) = QF (A, B)QE(B, A),
and so
Po.(AYH S ran Q* (A, B).

The reverse inclusion follows from Proposition 4(iii). For the converse statement, suppose that
O* (A, B) exist and are complete. Let ¢ € Py.(A)H be given. We want to prove the existence
of the limit

lim e*Bem 140, (7)

t—F o0
By the completeness assumption, there is a 1 with ¢ = Q* (A, B)y. The vector P,.(B)1 is
readily seen to be the limit (7). O
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The above proposition suggests that proving the completeness of the wave operators is no
more difficult than proving existence. However, in applications this is often untrue. Normally
one has explicit formulas for one of the operators (i.e., the Hy describing free dynamics), and
proving the existence of QF (H, Hy) is easy while proving the existence of Q* (Hy, H) is difficult.

We now present our first existence result:

Theorem 5 (Cook’s method). Let A and B be self-adjoint operators on H and suppose there
is a set D S D(B) N Pac(B)H which is dense in P,.(B)H, such that for any v € D there is a
Ty satisfying, for |t| > Ty,

e Bty e D(A) (8)
and

L [(B—A)e'Ply| + | (B — A)e'P!| dt < oo. (9)

Then QT (A, B) exist.
Remark. Note that B — A makes sense in (9) by the assumption (8).

Proof. Fix some ¢ € D, and let f(t) = e4’e Bty By Stone’s theorem together with the
assumption that f(t) € D(A) n D(B) for t > Ty, we have that f(t) is strongly differentiable
for all t > Ty. For t > s > Ty, we apply the FTC to write,

£t — f(s) = f ie (B — A)e—1Produy, (10)

S

We take the norm on both sides of the equation. Then, (9) implies that f(¢) is Cauchy, and
so the limit exists and equals

lim e'Ate Bt p, . (B)e.

t—00
An /3 argument extends this to all of P,.(B)H, and we define Q7 (A, B) by setting it 0 on
(Pac(B)H)*. The proof for the existence of Q¥ (A, B) is identical. O

We also have the following generalization, which is applicable when B — A has “local sin-
gularities.”

Theorem 6 (Kupsch-Sandhas theorem). Let A and B be self-adjoint and suppose there is a
bounded operator x and a subspace D S D(B) N P,o(B)H that is dense in Pa(B)H, so that
for any ¢ € D there is a Ty so that for |t| > T,

(1—x)eP'p e D(A) (11)
and
m . .
f [Cem1Bry| + |CeiBlo| dt < oo (12)
To

where C = A(1 — x) — (1 — x)B. If also for some n, the operator x(B +1)~™ is compact and
D < D(B™), then Q* (A, B) exist.

Proof. We prove that Q™ (A, B) exists. The proof for Q1 (A, B) is identical. For fixed ¢ € D,
consider the function f(t) = e!4*(1—x)e Ptp. The same argument as in the proof of Theorem
5 yields that f(t) is Cauchy, and that s-lim;_,, e/4*(1 — y)e 'B? extends to a bounded linear
operator on P,.(B)H. We have only left to prove that e!4*ye 1Bt P, (B)H converges strongly
—iBt

to 0. Clearly, it suffices to prove that xe o converges to 0 for ¢ € D. Since ¢ € D(B™) we

can write

xe By = xe T BYB +1) ™" (B +1)"p = x(B + i) "e BB +i)". (13)
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Since (B +1)"p € P,.(B)H, the Riemann-Lebesgue lemma implies that e~5¢(B +1)"¢ con-
verges weakly to 0. Since x(B + i)™™ is compact, the RHS of (13) converges strongly to
0. g

We now turn to the complex of ideas that comprises the Kato-Birman theory. We start
with a definition. Let B be a self-adjoint operator. We denote by M(B) the set of ¢ € H such
that dug,(A) = [f(A)|?dA (where dy,, is the spectral measure of ¢ for B) with f € L*(R). Let
|l o be the L® norm of f.

It can be verified that ||-|,, is a norm on M(B). Furthermore, if ¢ € P..(B)H, then
dpy () = [f(A)[2dA for some f € L2(R). If fr,(A) := f(A)X{f|<n}(A), then by DCT f, — f in
L?(R). Since supp f, < supp f < sp,.(B), there is a ¢, € Pao(B)H so that du,, = |f,[2dA.
Furthermore ¢,, converges to ¢ in the usual norm on H, and so M(B) is dense in P,.(B)H.

Lemma 1. For any ¢ € M(B) and any 1) € H,

JIW,@’“B@IZdt < 2r |9l el (14)

Proof. Let @ be the projection onto the cyclic subspace generated by B and ¢, and let du, =
|f[2d\. Tt is clear that QH is unitarily equivalent to L?(R,|f|?d)\), with ¢ mapping to the
function ¢(\) = 1 and e~*# acting as multiplication by e~ *. Let n()\) be the function in
L2(R, |f|?d)) corresponding to the vector Q. We have,

W, e By = (4, Qe Py = (Qu, e P ) = fn(k)lf(k)l%‘“d& (15)

and so by the Plancherel theorem,
j K, e Byt = 2m j (V) PLFO) A
<on|fl., j () PIF) A

2 2 2 2
= 2m [@lag 1QVI™ < 27 [l 917 -

O

i*B and the Fourier transform also yields

The correspondence between the unitary group e

Lemma 2. For any ¢ € Pao(B)H, e "By converges to 0 weakly ast — +00. As a consequence,

if C is compact, then Ce "By converges to 0.

Proof. For any 1 € H, (15) (which holds even if ¢ is not in M(B)) gives us that (1, e *B¢p)

is the Fourier transform of an L!(R) function (recall that f and nf are both in L?(R)), and

so by the Riemann-Lebesgue lemma, (3, e~ 5} converges to 0 as t — +o0. O
We now prove,

Theorem 7 (Pearson’s theorem). Let A and B be self-adjoint and J a bounded operator.
Suppose that there is a trace-class operator C' so that C = AJ — JB, in the sense that for
every ¢ € D(A) and i € D(B), C satisfies

Note that since D(A) and D(B) are dense, this defines C uniquely. Then the strong limits
QO (A, B;J) = s-lim et Je 1Btp, (B)
—00
exist.

Remark. Note that (16) implies that C* = J*A — BJ* (in the same sense) and that JD(B) <
D(A*) = D(A) and J*D(A) < D(B*) = D(B).
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Proof. Let W(t) = !4t Je~'B* and consider the case t — oo. It suffices to prove that

lim (W (0) = W(s)gl* = 0 (17)
for every ¢ € M(B). Let
Fup(X) = Jb Bt X e 1Bl e, (18)
We first show that
W(t)*W(s) — e*“PW()*W (s)e P = Foa(Y (¢, 5)) (19)
where,
Y(t,8) = —i[eltB J¥e it AQemisB _ (itB ok milt=s)A Jo—isB], (20)

To prove (19), it suffices to consider the matrix elements of both sides, with respect to two
vectors in D(B). So, fix ¢ and ¢ in D(B) and let

Q(b) = (,e*PW (t)*W (s)e *P )
= (W (t)e P, W(s)e *Po).
Since D(B) is preserved under the unitary group e*?, Q(b) is differentiable and
d
—Q(b
<Q0)
— i[(elAt JBeTiBtebB ; (iAs JomiBs—ibB 5\ (Al Jo—iBto—ibB , iAs jpo—iBs—ibB ]
— i[(Be~iBtem1bB y J¥omiAtgids Jo—iBso—ibB;\ _ (—iAsiAt Jo-iBt—ibB , Jpe=iBso—ibB \]
(21)
By the Remark after the theorem, the equalities
(Be~iBte=bB , proiAtgids Jo—iBso—ibB o\ _ (omiBte—ibB, ¥ go—iAteids JoiBso—ibB oy
_ (eTiBtembB , Ok pmiAt iAs Jo—iBs—ibB
and
(e AseiAt Jo—iBto—ibB ) Jpe—iBs—ibB 5\ _ ( gomiAsgiAt Jo—iBto—ibB , jo—iBs—ibB )

_ <e—1A561AtJe—1Bte—1bB —1Bse—1bB

@,Ce oy

are justified. Substituting these two equalities into (21) yields,

QM) =~ Y (1, 5)e P,

Integrating from 0 to a proves (19).
For fixed ¢t and s and ¢ € D(A), p € D(B), the formula

¢
W WO = W)y =i [ .m0 P gy

holds, and so by density of D(B) in H it follows that W (t) — W (s) is compact. By Lemma 2,

linolO e BW () (W (t) — W(s))e By =0, (22)

for any ¢ € M(B). By (19). It then follows immediately that for any ¢ € M(B),

(o, W) (W(t) = W(s))p) = lim (o, Foa (Y (2:8) = V(2 5)))- (23)
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Since C is trace class, we can write

e}
C = Zl An<§0n7 '>'¢n

where the ¢,,’s and the ,,’s are orthonormal, the A,’s are all strictly positive and >\, =
|C|l; < oo, where |-]; is the trace norm. We apply this to derive, for any bounded operator X
and a > 0,

a—+u
K, Foa(e"BXCeB)gp| < ST A, f Ke™B o, Xt Xthn, € B 0| da

u

uta . 1/2 uta ) 1/2
< o [ e xuran| [ [ Koo a]

u u

1/2

" 1/2 w
< [Z An J_OO KX n, e‘i””B@lex] [Z An Ju [¥n, e‘i"”Bso>2dw]

o 1/2
< 27 [C1 )2 1X] 4] 04 lZ An f Ktbm, e”B@Izdx}

The first inequality follows from our expansion for C. The second and third inequalities
are Cauchy-Schwartz, and the last is Lemma 1. Clearly the same inequality holds if XC' is
substituted with C*X. This, together with (23) yield,

- 1/2
[(W () =W (s)el* <82 |C[ ) @l a 171 lz )\nf |<¢n,e‘”Bs0>l2dx1 - (29)

min{t,s}

One corollary of the above inequality, which we record here for later use, is (using Lemma 1),

W (&) = W(s)el* < 16 |Clly Il 171 (25)
Finally, Lemma 1 gives us that the function z — Y A\,[(¥y,e B2 is in L' (R), and so
(17), and therefore the theorem, follows. O

Taking s = 0 and ¢ — +00 in (27) yields

Corollary 1. Under the hypotheses of Theorem 7,
2 2
|9F(A, By J) = J|” < 167 |C], Il 1711, (26)

for ¢ € M(B).

Note that C = AJ — JB also implies C* = J*A — BJ* (in the sense of Theorem 7), and so
both s-lim 4! Je B¢ P, (B) and s-lim !B J*e #AP, (A) exist. For general J, this does not
imply completeness of either strong limit. However, if J = 1, then we can apply Proposition

6 to conclude

Theorem 8 (Kato-Rosenblum theorem). If A and B are self-adjoint and A — B is trace-class
(in the sense of Theorem 7) then QY (A, B) exist and are complete.

Remark. It follows that D(A) = D(B).
We also have,

Proposition 7. Let {A,}_,, A and B be self-adjoint operators.Suppose that the wave op-
erators QE(A, B)exist and that each A, — A is trace class in the sense of Theorem 7 with

|A, — A, = 0 as n — o0. Then, for every n, the wave operators Q*(A,,, B) exist and

OF (A, B) = s-lim Q* (A, B).
n—0o0
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If in addition, Q* (B, A) exist then for every n the wave operators QT (B, A,,) exist and
QF (B, A)p = lim QT (B, A,)p
n—0o0

for every ¢ € ran Py.(A).

Proof. By Proposition 5 and Theorem 8, QF(A,,, B) = Q*(A4,,, A)Q*(A, B) for every n. To
prove the first claim it suffices to prove

s-lim QF (A4, A) = P..(A). (27)

n—0o0

This follows immediately from Corollary 1, for if ¢ € M(A),
[ (An, A) = Pac)p| = (@ (An, 4) = D] < 167 | An — Al [i0]5

which goes to 0 as n — oo, Since QF (A4, A) is 0 on (Pac(A)H)* and M(A) is dense in
P,.(A)YH, we conclude (27).

Again by Proposition 5 and Theorem 8, QF (B, A,,) = QF (B, A)Q*(A, A,,) so to prove the
second claim it suffices to prove

lim QF (A4, A4,)p = ¢ (28)

n—oo

for any ¢ € ran P,.(A). Let ¢, = QT (4, A)p. By (27), |¢n — ¢| — 0, and so
lim HQi(A,A,L)((p,L - <p)H =0.

n—o0
Since QF (A, A,)pn = QF(A, A,)QF (A, A)p = Pac(A)p = ¢, this yields (31). |
While Theorem 8 is quite general it is not always useful. In quantum mechanics, A — B
may not even be bounded. We require some generalizations.

Theorem 9 (Kuroda-Birman theorem). Let A and B be self-adjoint operators with (A+i)~!—
(B +1)7! trace-class. Then the wave operators Q* (A, B) exist and are complete.

Proof. Let J = (A+1)7Y(B +1i)~!. For ¢ € D(A) and ¢ € D(B),

(A, Jp) = (b, JBpy = (b, (B +1)7" = (A+1) 7)), (29)

ie., AJ—JB = (B+i)"'—(A+i)~! in the sense of Theorem 7 and since the RHS is trace-class
by assumption, we conclude that

s-lim (A +1)"Y(B + 1) e PP, (B)

t—+00

exist. Any vector ¢ € D(B) we have,
A +i) e BIP o = M(A +1) (B +1) e PIP(B)(B +i)p

and so we conclude that the limits ¢ — 00 on the LHS exist for every ¢ € D(B), and so by
density we conclude that the strong limits

s-lim A +1)"te B P, (B).
exist. Since (A +1)7! — (B +1i)~! is compact, we by Lemma 2,
s-lim (A + i)™ — (B+1)"He PP, (B) = 0.
— T 0
It follows that
s-lim (B +1)"te B! P, (B)
t—+0o0
exists. Now,

e PP (B)p = ¢M(B +1) e P P (B)(B + i)¢ (30)
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for p € D(B), and so we conclude that Q% (A, B) exist. By symmetry, Q% (B, A) exist and the
proof is complete. O
We require the following definition. Let A and B be self-adjoint. We say that A is sub-
ordinate to B if there are continuous functions f and g on R with f(z) > 1 and g(z) > 1
and
lim f(z) =

so that D(g(B)) < D(f(A)) with f(A)g(B)~! bounded. If A is subordinate to B and B is
subordinate to A, we say that A and B are mutually subordinate.

This condition is very weak. For example, if D(A) = D(B), then A and B are mutually
subordinate. For this, consider f(z) = g(x) = 1 + |z|. Then g(B)~'H < D(A) and so by the
closed graph theorem, f(A)g(B)~! is bounded, and vice versa.

Theorem 10 (Birman’s theorem). Suppose that A and B are self adjoint with spectral pro-
jections Eq(A) and Eq(B) respectively, for Q Borel. Assume that

(i) Er(A)(A — B)E[(B) is trace-class for every bounded interval I.

(ii) A and B are mutually subordinate.

Then the wave operators Q* (A, B) exist and are complete.

Proof. By the symmetry on the hypotheses and Proposition 6, it suffices to show that Q% (4, B)
exist. Let Eq(C) 1= E(_q,)(C) and E}(C) := E(_y4]ofa,0)(C) where C'is A or B. 1If
J = E,(A)Ey(B), then J is trace-class by hypothesis. Therefore,

. iAt —iBt
ts;lgroé e E,(A)Ey(B)e PPy (B)
exist by Theorem 7. The set
U ran E,(B)
a>0
is dense in H. Let ¢ be an element of this set, i.e., ¢ € ran E,,(B) for some ag > 0. For a > ag

we have that

hm eiAtEa (A)e_iBt Pac (B)SO

t—+0o0
exists. Therefore, to conlude the theorem we need only show

lim [Sltlp |E,(A)e P Poc(B)g | = 0. (31)

a— o0

Let f and g be the functions guaranteed by the condition that A is subordinate to B. Let
F(a) = inf ;|4 f(z). Then F'(a) — o0 as a — . Therefore,

|EL()e P Pac(BYo] < F(a)™ [F(A)B(A)e™ P Puc( B¢
< F(a)™ [F(A) B, (A)g(B) ] |o(B)e 4]

< F(a)™ | f(A)g(B)"| [ sup Ig(ﬂf)l] lepll
lz|<ao

from which we conclude (31). In the last inequality we have used f(A)E.(A) = E/ (A)f(4). O

Numerous other conditions on A and B arise in applications that have not been covered by
the above results. For example if A and B are positive operators and A2 — B? is trace-class, is
it true that Q* (A, B) exist? Or for A= —A+V and B = —A (on R"), (A+i)~! — (B+i)7!
is not trace-class for any nontrivial potential V' for n > 4. But for large F and k, (A + E)~F —
(B + E)~F for certain potentials V. Does this imply existence of the wave operators?
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We turn now to an abstract theorem which will allow us to address these questions. We
first require the following notion: a function ¢ on 7', with T an open subset of R is said to be
admissable if T' = ngl I, where the I,, are finite disjoint open intervals, IV infinite or finite
and

(i) The distributional derivative ¢” is an L! function on every compact subinterval of T',
(ii) On each I,,, ¢’ is either strictly positive or strictly negative.

As a consequence of (i), ¢ is C! on compact subintervals of each I,,.
Example. Let T = (0,0). The function ¢(z) = 2/? is admissible. Note that if A2 = 4; and
B? = B!, then as long as A and B are positive, then A = ¢(A;) and B = ¢(B;), and A; — B,
is trace-class if A2 — B? is trace-class.
Example. If T = (0,0), then ¢(x) = 2~Y/" — @ is admissible. Let A and B be self-adjoint
satisfying A > —a and B > —a. Let Ay = (A+a) " and By = (B +a) ™. Then A = ¢(A;),
B = ¢(B;) and Ay — By is trace-class if (A +a)™™ — (B +a)™ ™ is trace-class.

The notion of admissibility is useful as the following theorem shows:

Theorem 11. Let ¢ be an admissible function an open set T. Suppose that A and B are
self-adjoint operators with o(A),o(B) < T and that at each boundary point of T either ¢ has
a finite limit, or both A and B do not have point spectrum at that point. Suppose that A — B
is trace-class. Then Q*(p(A), o(B)) exist, are complete and

Qi(@(A)v @(B)) = Qi(Aa B)ET1 (B) + 91(147 B)ETQ (B)
where Ty (resp., Tz) is the union of those intervals where ¢’ > 0 (resp., ¢ <0 ).

As a consequence of this theorem and the two examples above, we have immediately the
following corollaries.

Corollary 2. If A and B are positive operators with A?> — B? trace-class, then Qt (A, B) exist
and are complete.

Corollary 3. If A and B are positive operators with (A% +1)~t — (B2 +1)7! trace-class then
O (A, B) exist and are complete.

Corollary 4. If A and B are self-adjoint operators with A, B > —a+1 and (A+a)~% — (B +
a)~F trace-class, then Ot (A, B) exist and are complete.

We require the following lemma for the proof of Theorem 11.

Lemma 3. Let ¢ be an admissible function. Then,

(i) If Y = R has Lebesgue measure 0 than so do @[Y nT] and ¢~ 1[Y].
(ii) For any w e L2(I,,) with ¢’ >0 on I,

2

lim f 0P elAFseN)yy(X)dA| dt = 0. (32)

0
§—00 0

If ¢/ <0 on I, then the limit s — o0 is replaced with s — —o0.

Proof. (i) is an easy consequence of the fact that ¢ is strictly monotone on each I,,. We will
prove (ii) in the case that ¢;> 0 on I,,. The other case is similar. Since

(2m) 12 || OO
R
is the inverse Fourier transform of ¢*¥(Mw()\) we have

| po0 2
o7 |w|? zf U sy (N)dA| dt.
0 —0
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It follows that we need only prove (32) for w the characteristic function of some [a,b] S I,.
Since ¢ is C! on [a, b] we have inf[, 41 9" = v > 0. We have for t > 0 and s > 0,

it +se(N) _ i(t+ sgo/()\))_l ¢

A it (0)
d/\(e ).

And so,

b
J it se(0) )

a

b
J (t+ s<p’()\))_1ie_i(t’\”“”()‘))d)\
. a

b
< (t+s0(0) 4 (t+ 59 (a)) 7t + (t + S'y)_zsf " (N)]?dA.

Above, we have used integration by parts. This function is in L?(0, o0) and goes to 0 as s — o
by DCT. O
The proof of Lemma 3 as gives us,

Corollary 5. (82) also holds if the —i in the exponential is changed to +i and the limit
s — +0 is changed to s — Fo0.

Proof of Theorem 11. Let C = A — B =Y. X\,(tbp, )by, and let
n € ran Ey, (B) n M(B).
The proof of Theorem 7, specifically taking s = 0 in (24), yields

1/2

. 2 0 . .
@ (4.B)~ e < [ZWJ (i, BB 2 (33)
— 0

for some constant ¢ (note that ¢ includes the norm [e~**(B)p| = |n|,, which does not
depend on s since ¢ is real valued.) Lemma 3(2) implies that each of the integrals on the RHS
of (34) goes to 0 as s — o (resp., s —> —0) if ¢’ > 0 (resp., ¢’ < 0) on I,,. Lemma 1 implies
that each integral is bounded by 27 |1y, | ||l o for every s. Since ;|| lebn]? = IC]; < o,
we have, by DCT for sums, that the RHS of (34) goes to 0 for s — too. Proposition 4 tells
us that AQ* (A4, B) = Q*(A, B)B and so it is a consequence of the Borel functional calculus
that e (5O (A B) = Q* (A, B)e (B)s. We have therefore derived,

lim ei‘P(A)se_i“’(B)sn =Q" (A, B)n

5§—00
if ¢’ > 0, and then the same thing with the limit s — oo replaced by s — —oo if ¢’ < 0.
If we repeat the same proof as above, but replace the usage of the inequality (24) with the
corresponding inequality for Q1 (A, B) and the use of Lemma 3(ii) with Corollary 5, we obtain

lim ei“’(A)Sefi“"(B)Sn =Q%(A,B)n

§—00
for ¢’ < 0, and then the same thing with the limit replaced by s — —o0 if ¢’ > 0. Lemma 3(i)
and the additional hypotheses on sp(B) and ¢ (i.e., with regards to the boundary points
of T) guarantee that P,.(¢(B)) = P..(B) and so we conclude that the wave operators
QF (p(A), p(B)) exist. By symmetry, QF (o(B), ¢(A)) exist and we conclude the theorem. [J

Remark. The hypothesis that A — B is trace-class can be replaced by either the hypotheses
of Birman’s theorem or those of the Kuroda-Birman theorem. The proofs proceed by proving
the analog of Pearson’s theorem under this general set-up; that if AJ — JB is trace-class, then
the strong limits

s-lim ei‘/’(A)tJe_i‘P(B)tPaC(cp(B))

t—+oo

exist. One then uses the same J’s as used in the proofs of those two theorems.
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Let us conclude with the following result about the scattering theory of Schrodinger oper-
ators.

Theorem 12 (Cook-Hack theorem). Let V € L?(R3) + L"(R3) where r < 3. Let Hy = —A
and H=—A+ V. Then Q*(H, Hy) exist.
Proof. Fix v > 0 and let

iy () = e 3
The Fourier transform of ¢, is ¢ (p) = Ce3P"/7 for some constant C, so (e7itHop )~ =

Ce3P"/7®) where y(t)~t = 471 —2it. The constant can be evaluted using He_“HU <p7H = |-

One obtains
(67itHo<p7)(1‘) _ a(t)3/4€7%[a(t)+iﬂ(t)]m2 (34)

where a(t) = (1 + 4t>42)~! for some suitable real-valued S(t). From (34) it is easy to see
that, for £ > 0

I+ |:C|)ke_itH°<pﬁ,Hoo < oy (14 [t]) 7324k, (35)
Indeed, differentiating the function, for r > 0,
(1+ 7’)’“6*%0‘@”2
one finds that the supremum of the function on the LHS of (35) is attained when |x| satisfies

k _ Y
[2](1+|z|) 1+ 4t242°

For large t, |z| ~ t, and so (35) follows.
We conclude from (35) that

[Vert gy, < e|(1+lal) V], (L+ [t) 722 < d(IVally + Vel ) (1 + [¢]) =2+

where V. =V, + V, € L2+ L", and ! =  + k/(3 + ¢) for some £ > 0. This is a result of
Holder’s inequality and the fact that (1 + |=|)~* is in L™ for m > 3k~!. Since r < 3, we can

take k < 1/2 and conclude that

f“Ve_itH°<p7|}2 dt < 7.

Since linear combinations of translations of ¢,’s with v > 0 are dense in L?*(R*) and H,
—A has purely absolutely continuous spectra, we conclude from Theorem 5 that Q* (H, H,

o<

exist.
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