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Abstract

This final project of PDE 2 taught by Dr. Gantumur Tsotgerel investigates
probabilistic methods to solve toy model pde’s such as the Dirichlet Problem

and the Heat Equation. In the last part, we discuss the Feynman-Kac
Representation Theorem which establishes a strong connection between a

family of Stochastic Differential Equations and Classical Partial Differential
Equations.

1 Introduction

1.1 One Dimensional Brownian Motion

We begin by defining Brownian Motion. Let (Ω,F ,P) be a probability space
together with a filtration {Ft}t≥0, that is each Ft is a σ-algebra on Ω and t ≤ s
implies Ft ⊂ Fs ⊂ F . A stochastic process B = {Bt}t≥0 : [0,∞)×Ω 3 (t, ω)→
Bt(ω) ∈ R is called a Brownian Motion started at x if:

1. it is initially at the point x ∈ R, that is, B0(ω) = x a.s.

2. the sample paths are (a.s.) continuous, that is, for almost all ω in Ω the
maps [0,∞) 3 t→ Bt(ω) are continuous.

3. the increments of the motion are independent, that is, for all 0 ≤ t ≤ s <
∞, the increment Bs −Bt is independent of Ft.

4. the increments are normally distributed, that is, for all 0 ≤ t ≤ s < ∞,
the distribution of the increment Bs−Bt is that of a Gaussian with mean
0 and variance s− t : N(0, s− t)

We have a few remarks:

1. The continuous parameter t should be thought of as time. At each moment
in time t, the process is represented by the random variable Bt : Ω 3 ω →
Bt(ω).
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2. The natural filtration {Ft} chosen is that which makes the the collection
of random variables {Bt}0≤t≤s measurable with respect to Fs, for every
s ∈ R. Thus Fs = σ(Bt : 0 ≤ t ≤ s). One should think of the σ-algebra
Fs as the collection of events that can or have be measured up until time
s. As time grows and more information is collected from observing the
process, the number of events increases.

3. Another σ-algebra which is sometimes more useful to use is F+
t =

⋂
s>t
Fs,

where Fs is as defined in the previous item. It is obvious that {F+
t }t≥0 is

also a filtration and that F+
t ⊃ Ft for all t, suggesting that this revamped

σ-algebra allows an additional infinitesimal glance into the future.

4. Bs −Bt is the difference of two random variables so is a random variable
in its own right and measures the displacement of the process between
times t and s. Bs−Bt is independent of Ft means that for all A ⊂ R and
B ∈ Ft , P((Bs −Bt)−1(A) ∩B) = P((Bs −Bt)−1A) · P(B).

5. Item (4) in the definition of Brownian Motion means that

P({Bs −Bt ∈ [x1, x2]}) = 1√
2π(s−t)

∫ x2

x1
e−

ξ2

2(s−t) dξ, where by

{Bs −Bt ∈ [x1, x2]} we mean {ω ∈ Ω : Bs(ω)−Bt(ω) ∈ [x1, x2]}.

1.2 Multidimensional Brownian Motion

By a d-dimensional Brownian Motion started at x = (x1, ..., xd) we simply mean
a process of the form B = {Bt}t≥0 : [0,∞)× Ω 3 (t, ω)→ (B1

t (ω), ..., Bdt (ω)) ∈
Rd, where B1, ..., Bd are independent one dimensional Brownian motions started
at x1, ..., xd.

1.3 The Strong Markov Property

Brownian Motion satisfies the important Strong Markov Property which is a
much larger generalization of property (3) in the definition of Brownian Motion.
It states that for any finite stopping time T, the process {BT+t − BT }t≥0 is a
Brownian Motion started at 0 independent of F+

T . At this point, we should also
define what a stopping time is and what F+

T is, but for the purposes of this
report, we shall not go into the full details of probability. It is just important
to know that a stopping time T is a random variable, thus a map Ω 3 ω →
T (ω) ∈ R. At time T (ω), a flag signals that the process has reached a certain
threshhold and the process is stopped. It is important to keep in mind that,
in the same way that we are not interested in the individual sample paths of
the Brownian Motion, but rather the global behavior of the sample paths, we
are not interested in the individual values of T (ω) for each ω, but rather the
random variable T as a whole. Finally F+

T can be roughly thought of as the
collection of all possible events that could happen before the process is stopped
(according to some logic). Of course, deterministic times are stopping times,
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that is, for any fixed t ∈ [0,∞), T (ω) ≡ t is a well defined stopping time; ”just
stop the process after t seconds”.

One can show that the Strong Markov Property of Brownian Motion de-
scribed above implies (and is in fact equivalent) to the following statement :

For any bounded function f : Rd → R and for all x ∈ Rd,

Ex[f(BT+t)|F+
t ] = EBT [f(B̃t)]

where B̃ is a Brownian Motion seeded at BT , i.e. B̃0 = BT . The subscripts x
and BT on the two expectations are simply there to remind that B was seeded
at x and B̃ was seeded at BT . Again we shall not define conditional expectation
here, but intuitively this is saying that if the Brownian process is stopped at
some random time T, then it is only worthwhile to know the state of the process
at time T in order to best guess the future state of the Brownian motion t seconds
later, i.e. all history of the process can be thrown by the window except for the
current state.

2 The Dirichlet Problem

Let U ⊂ Rd be open and connected and ϕ : ∂U → R be a continuous function.
The Dirichlet problem is to find a continuous solution to the problem

∆u = 0 in U , u = ϕ on ∂U

We recall two standard tools from introductory pde’s:

Proposition (Mean Value Property) Let U ⊂ Rd be open and connected
and u : U → R be locally bounded. Then TFAE:

1. u is harmonic on U

2. for any ball B(x, r) ⊂ U , u(x) = 1
Leb(B(x,r))

∫
B(x,r)

u(s)ds

3. for any ball B(x, r) ⊂ U , u(x) = 1
σ(∂B(x,r))

∫
∂B(x,r)

u(s)dσ, where σ is the

Lebesgue surface measure

Proposition (Maximum Principle) Let u : Rd → R be subharmonic on the
open connected set U . Then

1. u does not achieve a maximum on U unless it is constant.

2. if further u is continous on U and U is bounded, then max
x∈U

u(x) = max
x∈∂U

u(x)

Proposition Let U be open, connected and bounded, and B = {Bt}t≥0 be
a Brownian motion started inside U. Define the stopping time τ(∂U) = τ =
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min{t ≥ 0 : Bt ∈ ∂U} which is finite since U is bounded. If ϕ : ∂U → R is such
that the function u : U → R, u(x) = Ex[ϕ(Bτ )] is locally bounded, then u is
harmonic on U .

Notation τ : Ω → τ(ω) = min{t ≥ 0 : Bt(ω) ∈ ∂U} ∈ R is the first time
the Brownian motion hits the boundary of U .

Proof
Since we are assuming local boundedness, by the mean value property, it

suffices to check that for all balls B(x, r) ⊂ U , u(x) =
∫
∂B(x,r)

udα where dα

denotes the normalized Lebesgue surface measure of B(x, r).
Let B(x, r) ⊂ U , B be a Brownian motion started at x and τ̃ = min{t ≥ 0 :

Bt 6∈ B(x, r)}. So τ̃ is the first time the Brownian motion exits the ball B(x, r).
We must then have τ ≥ τ̃ and so ϕ(Bτ ) is measurable with respect to F+

τ̃ so by
the properties of conditional expectation

u(x) = Ex[Ex[ϕ(Bτ )|F+
τ̃ ]]

By the Strong Markov property,
Ex[ϕ(Bτ )|F+

τ̃ ] = EB(τ̃)[ϕ(Bτ )] = u(B(τ̃)). Hence u(x) = Ex[u(B(τ̃))]. Since
B starts at the center of the ball B(x, r) and propagates in all directions with
the same probability (gaussian), u(x) = Ex[u(B(τ̃))] =

∫
∂B(x,r)

udα as required.

In order to continue the probabilistic approach, we need to impose some
regularity conditions on the domain U . We say that U satisfies the Poincare
cone condition at x ∈ ∂U if there exists a cone Cx (with non zero opening angle)
based at x and r > 0 such that Cx ∩ B(x, r) ⊂ U c. Upon investigation of the
proofs to come, we could relax the condition to hold for cone-like shapes, with
sharper tips for example.

Lemma Let C0 ⊂ Rd be a cone (like shape) based at the origin. Define

κ = sup
x∈B(0,1/2)

Px({τ(∂B(0, 1)) < τ(C0)})

.
Then κ < 1 and for any integers m,n > 0,

x, z ∈ Rd, |x− z| < 2−nm =⇒ Px({τ(∂B(z,m)) < τ(Cz)}) ≤ κn

Notation τ(∂B(0, 1)) : Ω → τ(∂B(0, 1))(ω) = min{t ≥ 0 : Bt(ω) ∈
∂B(0, 1)} ∈ R is the first time the Brownian motion hits the boundary of
B(0, 1), and similary τ(C0) is the first time the Brownian motion enters the
cone.

Proof Since 0 < Leb(C0)
Leb(B(0,1) < 1, it is clear that κ < 1. Now consider the

concentric balls {B(0, 2−n)}∞n=0.

We have {τ(∂B(0, 1)) < τ(C0)} ⊂
∞⋂
n=0
{τ(∂B(0, 2−n)) < τ(C0)}. This

is also a collection of independent sets, hence Px({τ(∂B(0, 1)) < τ(C0)}) ≤
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Πn−1
i=0 Px({τ(∂B(0, 2−n+i+1)) < τ(C0)}) ≤ κn. The more general formula is

obtained by rescaling.

Theorem (Dirichlet Problem) Let U ⊂ Rd be a bounded, open, connected
and such that every point on the boundary satisfies the Poincare cone condition.
Let ϕ : ∂U → R be continuous. Since U is bounded τ = τ(∂U) = inf{t ≥ 0 :
Bt ∈ ∂U} is a finite stopping time. Then the function u : U → R, u(x) =
Ex[ϕ(Bτ )] for x ∈ U is the unique continuous solution to the Dirichlet problem.

Proof The uniquess does not involve probabilistic arguments; it is the typ-
ical argument: if u1 and u2 are two solutions then applying the Maximum
principle to their difference shows that they are equal.

The boundedness of U also assures us that u is bounded, as can directly be
seen form its definition. Hence from the previous Proposition, u is harmonic.

Moreover, also straight form the definition, when B is a Brownian motion
seeded at x ∈ ∂U , then τ(∂U) = 0 and so ϕ(B(τ(∂U))) = ϕ(x) and so u also
satisfies the boundary condition.

The rest of the proof consists in showing then that the Poincare condition
implies that u is continuous on the boundary. Let z ∈ ∂U , Cz be a cone and
B(z,m) a ball so that the Poincare condition is satisfied at z. By the previous
Lemma we have for all x ∈ B(z,m2−n) , Px({τ(∂B(z,m)) < τ(Cz)}) ≤ κn.

Now by continuity of ϕ, given ε > 0 choose δ ∈ (0,m) such that |ϕ(y) −
ϕ(z)| < ε whenever y ∈ ∂U ∩B(z,m2−n). If x ∈ B(z,m2−n), then

|u(x)− u(z)| = |Ex[ϕ(Bτ )]− ϕ(z)|
≤ Ex[|ϕ(Bτ )− ϕ(z)|]

=

∫
{τ(∂U)<τ(∂B(z,m))}

|ϕ(Bτ )− ϕ(z)|dP +

∫
{τ(∂U)>τ(∂B(z,m))}

|ϕ(Bτ )− ϕ(z)|dP

If the Brownian motion hits the cone Cz before the sphere ∂B(z,m), i.e.
{τ(∂U) < τ(∂B(z,m))}, then |ϕ(Bτ )− ϕ(z)| < ε.

Then |u(x) − u(z)| ≤ εP({τ(∂U) < τ(∂B(z,m))}) + 2‖ϕ‖∞P({τ(∂U) >
τ(∂B(z,m))}) ≤ ε+ 2‖ϕ‖∞κn. Taking n→∞ and ε→ 0 gives continuity of ϕ.

3 The Heat Equation

3.1 Transition Kernels

Let B denote the Borel σ-algebra on Rd. A function p : [0,∞)×Rd ×B → R is
called a Markov transition kernel if

1. p(·, ·, A) is a measurable function for all A ∈ B.

2. p(t, x, ·) is a Borel probability measure on Rd for all t ≥ 0 and x ∈ Rd.
When integrating against this measure we write

∫
f(ξ)p(t, x, dξ) instead

of
∫
f(ξ)dp(t, x, ·)ξ
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3. For all A ∈ B, x ∈ Rd and t, s > 0:

p(t+ s, x,A) =

∫
Rd
p(t, y, A)p(s, x, dy)

Intuitively, the Markov transition kernel p(t, x,A) gives the probability that
the process currently at x takes a value in the set A at time t.

Straight from the axioms of Brownian motion, it is clear that the distribu-
tion of the probability measure p(t, x, ·) is normal with mean x and variance t.
Therefore the the density (Radon-Nikodym derivative with respect to Lebesgue
measure) of the probability measure p(t, x, ·) of a d-dimensional Brownian mo-

tion is given by 1
(2πt)d/2

e−
|x−y|2

2t , which we shall denote by p(t, x, y). Now this

looks very similar to the fundamental solution of the heat equation, so we are
on to something.

3.2 The Heat Equation

Theorem (Heat Equation) Let f(x) ∈ Cb(Rd). Then the function u : [0,∞)×
Rd → R, u(t, x) = Ex[f(Bt)] is a continuous solution to the heat equation
∂u
∂t (t, x) = 1

2
∂2u
∂x2 (t, x), for (t, x) ∈ (0,∞)× Rd, lim

t→0
u(t, x) = f(x) for x ∈ Rd.

Proof
We have

u(t, x) = Ex[f(Bt)] =

∫
Ω

f(Bt(ω))dP =

∫
Rd
f(y)p(t, x, y)dy

From here we see that u is continuous and an application of the dominated
convergence theorem shows that u(t, x)→ f(x) as t→ 0.

From the density of the probability measure p(t, x, ·) we have ∂p
∂t (t, x, y) =

1
2
∂2p
∂x2 (t, x, y) for every y ∈ Rd. Hence another application of the dominated

convergence theorem shows that

∂

∂t

∫
Rd
f(y)p(t, x, y)dy =

∫
Rd
f(y)

∂p(t, x, y)

∂t
dy

=

∫
Rd
f(y)

1

2

∂2p(t, x, y)

∂x2
dy

=
1

2

∂2

∂x2

∫
Rd
f(y)p(t, x, y)dy

6



4 The Feynman-Kac Representation

4.1 Itô Integrals

Recall that for ϕ : [0,∞) → R ∈ C ∩ BVloc([0,∞)) and ψ : [0,∞) → R, the
Riemann-Stieltjes integral is defined as∫ t

0

ψ(s)dϕ(s) = lim
|P|→0

∑
I∈P

ψ(xI)∆ϕI

where P is a partition of [0, t]. If ψ is Riemann-Stieltjes integrable with respect
to ϕ, then ϕ is Riemann-Stieltjes integrable with respect to ψ and the integration
by parts formula holds:∫ t

0

ϕ(s)dψ(s) = ϕ(t)ψ(t)− ϕ(0)ψ(0)−
∫ t

0

ψ(s)dϕ(s)

Notice that the sample paths of Brownian motion are continuous, so in the
above discussion we could let ψ(s) = Bs(ω) (for fixed ω). More generally, if
θ : [0,∞) × Ω 3 (t, ω) → θt(ω) ∈ R is a continuous stochastic process such
that for almost every ω ∈ Ω, θ(·)(ω) ∈ C ∩ BVloc([0,∞)), then we define the
stochastic process

Iθ : [0,∞)× Ω 3 (t, ω)→ Iθ(t, ω) =

∫ t

0

θτ (ω)dBτ (ω)

.
Of course

Iθ(t, ω) = θt(ω)Bt(ω)−
∫ t

0

Bτ (ω)dθτ (ω)

As it is understood that Iθ is a stochastic process we do not write everywhere
the ω, so we have

Iθ(t) =

∫ t

0

θτdBτ

The Itô integral is a stochastic process which has many nice properties, and
behaves similarly to Brownian motion. For example, it is a continuous square-
integrable martingale. Importantly, we have:

Theorem (Itô’s formula) Let F : (t, x) ∈ [0,∞)× R→ F (t, x) ∈ R be such

that F1 = ∂F
∂t , F2 = ∂F

∂x and F22 = ∂2F
∂x2 are continuous. Suppose that θ is a

stochastic as described above. Then for all t ≥ 0, a.s.

F (t, Iθ(t)) = F (0, 0)+

∫ t

0

F1(τ, Iθ(τ))dτ+

∫ t

0

F2(τ, Iθ(τ))θτdBτ+
1

2

∫ t

0

F22(τ, Iθ(τ))θ2
τdτ
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or in differential form:

dF (t, Iθ(t)) = F1(t, Iθ(t))dt+ F2(t, Iθ(t))θtdBt +
1

2
F22(t, Iθ(t))θ

2
t dt

Starting with a function F we can easily derive a stochastic differential
equation (SDE) by writing out Itô’s formula whose solution is known.

4.2 The Feynman-Kac Representation

Theorem
Assume that {Xt}t≥0 is a real-valued stochastic process seeded at x ∈ R

that solves the following SDE{
dXt = σ(Xt)dBt + b(Xt)dt

Xo ≡ x
where σ : R→ R+ and b : R→ R.
Suppuse further that u : [0,∞)×R→ R is such that u1 = ∂u

∂t , u2 = ∂u
∂x and

u22 = ∂2u
∂x2 are continuous and u solves the PDE{
∂u
∂t (t, x) = 1

2σ(x)2 ∂2u
∂x2 (t, x) + b(x)∂u∂x (t, x) for(t, x) ∈ (0,∞)× R

lim
t→0

u(t, x) = f(x) forx ∈ R
where f ∈ Cb(R). Then if u does not grow too fast,
u(t, x) = Ex[f(Xt)] for every (t, x) ∈ (0,∞)× R.
Proof (sketch)
Consider the stochastic process V : [0, t]×Ω→ R, V0 ≡ x, and for 0 ≤ s ≤ t,

Vs = u(t− s,Xs). We apply Itô’s formula:

dVs = du(t− s,Xs) = −u1(t− s,Xs)ds+ u2(t− s,Xs)dXs +
1

2
u22(t− s,Xs)(dXs)

2

= −u1(t− s,Xs)ds+ u2(t− s,Xs)(σ(Xs)dBs + b(Xs)ds)+

1

2
u22(t− s,Xs)(σ(Xs)dBs + b(Xs)ds)

2

=

(
−u1(t− s,Xs)ds+ u2(t− s,Xs) +

1

2
u22(t− s,Xs)σ

2(Xs)

)
ds+

u2(t− s,Xs)σ(Xs)dBs

= u2(t− s,Xs)σ(Xs)dBs

Therefore Vs =
∫ s

0
u2(t− s,Xs)σ(Xs)dBs, so V is an Itô integral and thus a

martingale, hence the expectation value of the process V is constant with respect
to s. In particular, Ex[u(t,X0)] = Ex[u(0, Xt)] ⇔ Ex[u(t, x)] = Ex[f(Xt)] ⇔
u(t, x) = Ex[f(Xt)], as required.
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