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1 Introduction

Mean Field Games (MFG) is a class of systems of partial differential equations that are used to
understand the behaviour of multiples agents each individually trying to optimize their position in
space and time, but with their preferences being partly determined by the choices of all other agents,
in the asymptotic limit when the number of agents goes to infinity. This theory has been recently
developed by J. M. Lasry and P. L. Lions in a series of papers [0, [7}[8, 9] and presented through several
lectures of P. L. Lions at the Collége de France.

The typical model for MFG is the following:

—0wu — vAu+ H(x,m, Dyu) = F(z,m) in R? x [0,T],
oym — vAm — div(DpH (z,m, Dyu)m) =0  in R x [0, 7, (MFG)
m(0) = mg,u(x,T) = G(z,m(T)) in R

where v is a non-negative parameter. The first equation is an Hamilton-Jacobi equation evolving

backward in time whose solution is the value function of each agent. Indeed, the interpretation is the

following: an average agent moves accordingly to the stochastic differential equation
dX; = aydt + V2wdW,

where W = {W, : t € R;} is a standard Brownian motion and « is the control to be chosen by the

agent. He then wishes to minimize

T
E /0 L(Xs,m(s),a(s)) + F(Xs,m(s))ds + G(Xp,m(T))




where L is the Legendre transform of H with respect to the last variable. The second equation is
a Fokker-Planck type equation evolving forward in time that governs the evolution of the density
function m of the agents.

In this report we will focus on studying the existence and uniqueness of solutions of MFG. In
Section |2| we consider with v = 1 and the Hamiltonian H(p) = 3|p|*, proving the existence
and uniqueness of classical solutions. In Section [3] we consider the same Hamiltonian but with v =0
and prove existence and uniqueness of (weak) solutions. For both sections we follow closely [3], trying
to provide more detail in the proofs where it felt needed. Finally in the Appendix we review some
basic definitions and results of stochastic calculus, as well as some results from measure theory that

are used.

2 Analysis of second order MFG

Our goal in this Section is to prove the existence of classical solutions for the following MFG:
—0wu — Au+ 3|Dyul? = F(z,m) inR?x (0,7)
oym — Am — div(mDyu) =0 in R? x (0,7) (1)
m(0) = mg, u(z,T) = G(x,m(T)) inR?
Here D,u denotes the partial gradient with respect to z. We need to introduce some definitions.

Definition 2.1. A pair (u,m) is a classical solution to if u,m € C>1 (R4 x (0,7))NC(R? x [0, T))
and (u,m) satisfies in the classical sense.

Definition 2.2. P is the set of Borel probability measures m on R with finite first order moment,

i€, [palzldm(z) < oco.

We endow P with the following (Kantorovich-Rubistein) distance

d(p,v) = inf / |z — yldy(z,y)
~yell(p,v) JR2d

where TI(y, v) is the set of Borel probability measures on R?? such that
(A x RY) = p(A) and y(R? x A) = v(A)

for any Borel set A C R,

We can now state the main theorem of this Section:
Theorem 2.3. Suppose there is some constant Cy such that
e (Bounds on F and G) F and G are uniformly bounded by Cy over R% x P,
e (Lipschitz continuity of F' and G) For all (x1,m1), (z2,m2) € R? x P, we have
|F(z1,m1) — F(22,m2)| < Co (|r1 — 2| + d(m1, m2))

and
|G (21, m1) — G(22,m2)| < Co (|21 — 22| + d(M1,M2)),



e The probability measure mq is absolutely continuous with respect to the Lebesgue measure, de-

noted by L% and has o Hélder continuous density, still denote by mq, which satisfies
/ |z|?>mo(z)dz < Cp.
Rd

Then there is at least one classical solution to .

We will first treat two PDE’s in separately: we obtain some estimates on the Fokker-Planck

equation and recall some known facts of the heat equation.

2.1 On the Fokker-Plank equation

In this Section we will derive some results on the following Fokker-Planck equation

Oym — Am — div(mb) =0  in R? x (0,7) @)

m(0) = mg

where b : R? x [0,7] — R is a given vector field. We can look at it as an evolution equation on
the space of probability measures. We will assume that the vector field b is continuous, uniformly
Lipschitz in space and bounded. The reason for this is that in the proof of Theorem we will take
b=—-D,u.

Definition 2.4. We say that m is a weak solution to if m € L([0,T),P) is such that for any test
function ¢ € D(R? x [0,T)) we have

T
/ (i, 0)dmo(x) + / / (Orp(.) + Ap(,t) — Dypl,t) - b, £)) dm(t) (z).
Rd 0 R4

Consider the following stochastic differential equation (SDE)

dX; = —b(Xy, t)dt +2dW, t€[0,T]
Xo = Zp

3)

where W; is a standard d-dimensional Brownian motion and the initial condition Zy € IL; is random
variable independent of W;. Under the assumption on b by Theorem there is a unique solution
to . The next Lemma shows that the solution of is closely related to the solution of .

Lemma 2.5. If £(Zy) = my, then m(t) := L(X,) is a weak solution of (2)), where X, is the solution
of [B). Here L(X) denotes the law (density function) of the random variable X .

Proof. This is a straightforward consequence of Itd’s formula. Indeed, let ¢ € C?1(R? x [0,7]). Then
by It6’s formula (Theorem [A.9)

T T
0(Xt,t) = ©(Zo,0) +/ (Orp(Xs, 8) — Dap(Xs, 8) - b( X5, 8) + Ap(Xs, 5)) ds +/ Dyp(Xs,5) - dW.
0 0

We know that

T
E l/o D,p(Xs, s) «dWQ] =0.



Hence taking the expectation on the above equality leads to

E[@(Xt,t)]E[w(ZmO)Jr/o (0rp(Xs;8) = Dop(Xss, 8) - b( X5, 8) + Ap(Xs, 5)) ds | -

So by the definition of m we have

[ etetim@ = [ ole.0dmoe)+ [ [ @pte,s) - Dota,s) -bla.s) + Ao, s)) dm(s)(a)ds.

Therefore for ¢ € D (Rd x [0, T)) and taking t = T we have

T
[ el 0dmo(e) + [ [ @upla.t) = Ditast) -bw,0) + (e 1) dm(t) z)ds =0,
Rd 0 Rd
i.e., m is a weak solution of . O

The above interpretation of mg as the probability density of the solution of allows us to show
that the map t — m(¢) is Holder continuous.

Lemma 2.6. Let m(t) := L(X;) where X, is the solution of (3)). Then there is a constant co = co(T)
(i.e., depending only on T ), such that for all s,t € [0,T]

d(m(t),m(s)) < co(L+ [bl]oc) [t — s]*/2.

Proof. We start by observing that the probability measure 7 of the pair (X, X;) belongs to II(m(t), m(s)).

Therefore
d(m(®).m(s) < [ |r=sldrtz,n) =E[X; - X.].

|

Without loss of generality suppose s < t. Then

E[|X; — X,[] = E { /t b(Xy, 7)dT + VAW, — W)

<E Ut (X, 7)|dr + V2|W; — Wsl}

2
< Iblloo(t —5) + ﬁ\/t— s
2
<Vt — blloc VT + —
<V s<|| [ \F+ﬁ)
2
§\/t—s(||b|oo+1)max{\/iﬁ}
So by taking cozmax{\/i%} we are done. O

We can also obtain easily an estimate on the second order moment of m

Lemma 2.7. Let m(t) := L(X;) where X, is the solution of ([3). Then there is a constant co = co(T)
such that for all t € [0,T]

/Rd ‘x|2dm(t)(x) < ¢y </Rd |x|2dm0(x) L1+ ||b|c2>o> ]



Proof. By definition of m we have

[ laPam() @) = E[1x:)

Hence
t 2
|z|2dm(t)(z) < 3R [|X02+ ’/ b(X,, s)ds +2|Wt|2]
R4 0
<3 (/ |z|2dmo () + ||b]|2,t* + 2t)
]Rd
<ao ([ lafamate) + Il +1)
]Rd
where ¢y = max{3,372,6T}. O

2.2 Existence of solutions to a 2" MFG

In this Section we prove Theorem In order to do that we need first to recall some existence

and uniqueness results for the following heat equation

Ow — Aw + a(z,t) - Dw + b(x, t)w = f(z,t) in R x [0,T]

w(x,0) = wp(z) in RY

(4)

where a,b, f : R? x [0, 7] — R and wp : R? — R. For this we introduce some notation.

Definition 2.8. Let s > 0 be an integer and o € (0,1). We denote by C>*(R? x [0,T)) the set of
functions f : R x [0, T] — R such that for any pair (k,1) with 2k +1 < s, OFD. f ewists and such that

these derivatives are bounded, a-Holder continous in space and a/2-Hélder continous in time.
We then have the following theorem whose proof can be found in [5]:

Theorem 2.9. Suppose that a,b, f € CO*(R? x [0,T)) and that wy € C**(RY) (the classical Holder
space). Then has a unique weak solution u € C*>*(R% x [0,T]).

We also have the following interior estimate:

Theorem 2.10. Suppose a = b = 0 and that f € C(R? x [0,T)) is bounded. Then any classical
bounded solution w of satisfies, for any compact set K C R x (0,T)

|Dl’w(x7t) - Dzw(ya S)|
sup 3 B2
(@t).(ys)ek T —ylP + [t — 5]

< O flloo

where 8 € (0,1) depends only on the dimension d and C = C(K, ||w]|s0,d).

The idea of the proof is to construct a map ¥ such that a fixed point of ¥ is a solution of the

system . Then we use the Schauder fixed point theorem to prove the existence of the fixed point.

Theorem 2.11 (Schauder fixed point). Let K be a conver, closed and compact subspace of a topological

vector space V and ¥ : K — K a continuous map. Then ¥ has a fived point.



Proof of Theorem[2.3 Let C be a large constant to be fixed later and let M be the set of maps

p € C([0,T],P) such that
A(u(t), nls)) _ .

sup
seeor]  [t—s]'/?
s#t

and

sup [ |oPdu(t)(z) < C.
t€[0,T] JRE

To any p € M we associate an m = U(u) € M in the following way: let u be the unique solution

to

—0u— Au+ 3| Dyul? = F(z,p(t)) inRYx[0,7]

(5)
u(z,T) = G(z,u(T) in R?
Then we define m = 1(u) € M as the unique solution of the Fokker-Plank equation
dym — Am — div(mDyu) =0 in R? x [0, (©)

m(0) = mo(z) in RY

In order to apply the Schauder fixed point theorem, we need to show that: M is a convex closed and

compact subset of C([0,T],P), ¥ is well defined and ¥ is continuous.
1) M is a convex closed and compact subset of C([0,T], P).
Let A € [0,1], p1, o € M, 1 € II(p1(t), p1(s)) and o € T(ua(t), pa(s)). We have that
A+ (1= A)y2 € DApa(8) + (1= Apa(t), Apa(s) + (1 = A)pa(s))
and therefore
(a1 () + (1= Npia(8), i (5) + (1= Apia(s))
< [ o= idOm(z.) + (1= Vra(ann)
<o [ =)+ (=) [ o= yldn().
Then taking the infimum over v € II(p1 (%), p1(s)) and 2 € I(pa(t), p2(s)) shows that
Aan () + (1= Npia(8), Mia () + (1= Npia(s)) < A (0, 11 () + (1 — N)d(pa(8), aa(s)).
We also have
[t + =M@ = [ el @) + 1= [ el (o).

From the last two equalities it’s now easy to see that, indeed, Ap; + (1 — AN)ue € M and so M is
convex.

Now let u, € M such that u,, — p in C([0,T],P). To prove that M is closed we need to show
that p € M.



It’s easy to show that

d(u(t), u(s)) < d(u(t) — pn(t), u(s) = pn(s)) + d(pn(t), pn(s))
and from this it follows easily that
d(p(t), u(s))
sup ————*- < C.
s,te[(I)),T] [t — 5|1/2 -

s#£t

As for the second order moment estimate we note that
[ JaPautt)@) = [ JaPa(utt) - (@)@ + [ e (t)(o)
Rd R R4

Taking the supremum for ¢ € [0, T] we get

sup / e *dp(t)(x) < sup |z [2d(p(t) = pn(8))(x) + sup |2 dpn (t) ()
t€[0,T] JRE t€[0,T] JRe t€[0,T] JRA
< sup |z [2d(u(t) — pn (1)) (z) + C
te[0,T] JRd

Now since p,, — g in C([0,T7, P), by taking n — oo we get

sup /Rd |z|*du(t)(x) < C

t€[0,T)

as desired.

For the proof that M is compact we refer the reader to Lemma 5.7 of [3].
2) 1 is well-defined.

First we need to see that a solution of exists and is unique. Consider then the Hopf-Cole
transformation given by w = ¢*/2. Then it is easy to check that u is a solution of if and only if w

is a solution of

—Ow — Aw = wF (z, pu(t))  in R? x [0, 7]

w(z, T) = eG@nT)/2 in RE

(7)

The map (x,t) — F(z,m(t)) belongs to C%'/? since F is Lipschitz in both variables, uniformly

bounded over R% x P and a4
Q00505 _

s,t€[0,T |t - 3|1/2
s#t

because p € M. The map z — e“@#T)/2 jis in C1/2(R4) since G is Lipschitz in = and uniformly
bounded over R? x P. Then appealing to Theorem there is a unique solution in C%/2 to @
which implies that there is a unique solution in C*'/2 to (§). Recall that, by assumption, the maps
(z,t) = F(z,m(t)) and  — G(z, u(T) are bounded by Cy. Hence a straightforward application of
the comparison principle implies that u is bounded by (14 7")Cy. Similarly the maps x — F'(z,m(t))
and x — G(z, u(T) are Co-Lipschitz continuous (again by our assumptions on F and G) and so u is

also Cp-Lipschitz continuous. Hence D, u is bounded by Cj.



Now we look at the Fokker-Planck equation @ By expanding the divergence term, we can write
it into the form
Oym — Am — Dym - Dyu(z,t) — mAu(z,t) =0 in R? x (0,7)
m(0) = mg
Since u € C*'/2, the maps (x,t) + Dyu(z,t) and (x,t) — Au(x,t) belong to C>'/2. Also by

assumption mg € C%*(R%). Hence by Theorem (2.9) there is a unique solution m € C*'/? to @
Moreover, by Lemma [2.6] for all s,t € [0, 7]

d(m(t),m(s)) < co(1+ Co)|t — 5|7
and by Lemma [2.7 for all ¢ € [0, 7
[ laPdm(®)@) < ofCo + 1+ C3)
Rd

where ¢y depends only on 7T'. So if we choose C' = max{co(1 + Cp),co(Co + 1+ C2)}, m € M and ¥
is then well-defined.

3) ¥ is continuous.

Let p, € M converge to some p. Let (u,, m,) and (u,m) be the corresponding solutions. Note
that (z,t) — F(x, pn(t)) and x — G(z, un,(T')) converge locally uniformly to (x,t) — F(z, u(t)) and
x — G(x, u(T) respectively. Hence we can conclude that (u,) converges locally uniformly to u by a
standard argument with viscosity solutions. Since the (D,u,) are uniformly bounded (by Cp), the
(uy,) solve an equation of the form

Oy, — Auy = [y

where f, = $|Dyuy,|? — F(x,m,,) is uniformly bounded in  and n. Then by Theorem m (Dyuy,) is
locally uniform Hélder continuous and therefore converge locally uniform to D,u. This implies that
any converging subsequence of the relatively compact sequence (m,,) is a weak solution of @ But
m is the unique solution of @, which proves that (m,,) converges to m. Hence ¥ is continuous.
Finally, by the Schauder fixed point theorem, the continuous map p — m = ¥(u) has a fixed point
in M. To this fixed point m € M corresponds a pair (u,m) that is a classical solution to and so

we are done. O

2.3 Uniqueness of solutions of a 2" order MFG

In this Section we prove a uniqueness result to the system .
Theorem 2.12. Besides the assumptions of Theorem[2.3, assume that

e For all mi,mo € P with my # mo we have

/]R (F(,m) ~ F(a,ma))d(my — ma)(z) >0,



e For all my,ms € P

Rd(G(a:,ml) — G(x,mz))d(m; —msg)(x) > 0.

Then there is a unique solution to .

Proof. Let (u1,m1) and (ugz, ms) be two classical solutions of . We set u = w1 —ug and m = mq—mso.
Then

—Ou — Au + %(\Dxu1|2 — |Dyusal?) — (F(x,m1) — F(z,m2)) =0 ®)

om — Am — div(myDguy — maDgus) =0

Since u € C>(R? x (0,7)), we can multiply the second equation by wu, integrate over R? x [0,7],
followed by part integration to get

T
— [ m(T)u(z,T)dz + mo(x)u(z, 0)dr + / / (Oru + Au)m — Du - (my Dyuy — meDyusg)dxdt.
R? R4 0 Jre

Multiplying now the first equation by m, integrating over R? x [0,7] and adding to the previous
equality, leads to

- m(T)(G(x,m1(T)) — G(z,m2(T))dx

Rd
T m

[ ] (F 5D = Dawal? — m(F ) = F(a,ma)))) dodt =0
o Jra 2

where we used the fact that m(0) = 0 and that
m m
5(|D3¢u1|2 — |Dug|*) — Dyu - (myDyuy — maDyug) = —5|Dwu1 — Dyusl?.

By assumption

g m(T)(G(x,m1(T)) — G(z,m2(T))dz >0
and therefore

T
/ m(F(x,my) — F(z,ma))dzdt < 0.
0o Jrd
Hence, by our assumption on F, this implies that m = 0 and therefore u = 0 since u; and uy (now)

solve the same equation. O

We finish this Section by mentioning that the existence of solutions for second order MFG hold

under more general assumptions. Indeed, in |7, 8] the authors consider equations of the form
—Owu(x,t) — Au+ H(z,Du) = F(z,m)) in Q x (0,T)
om(x,t) — Am — div(m%—g(x, D,u))=0 inQx(0,7)
m(0) = mg, u(z,T) = G(z,m(T)) inQ

where Q = [0,1]¢ (with periodic boundary conditions), H : R% x R? is Lipschitz continuous with
respect to 2 and uniformly bounded in p, convex and of class C! with respect to p. The conditions

on I and G are one of the following:

e F and G are regularizing, i.e., satisfy the same conditions as in Theorem 2.3

e F(x,m) = f(z,m(z)) and G(x,m) = g(z,m(x)), where f = f(z,\) and g = g(z, \) satisfy

suitable growth conditions with respect to A and H is sufficiently strictly convex.

10



3 Analysis of first order MFG

In this Section we will prove the existence of solutions to the following first order MFG:

—Owu(z,t) + 1| Du(z,t)|> = F(z,m(t)) inR?x(0,T)
oym(z,t) — div(Du(z,t)m(z,t) =0 in R% x (0,7) 9)
m(0) = mg,u(x,T) = G(x,m(T)) inRI

We consider the following definition of weak solutions.

Definition 3.1. We call the pair (u,m) a weak solution of (9) if u € Wllo’coo(Rd x [0,T]), m €
Li(RY x (0,T)) such that the first equation of @D is satisfied in the viscosity sense and the second in

satisfied in the sense of distributions.

Note that here we don’t look any more for classical solutions mainly because we no longer have

the smoothing terms Aw and Am. Our goal is then to prove the following.
Theorem 3.2. Suppose that
1. F and G are continuous over R? x P,
2. There is a constant C such that for any m € P, F(-,m),G(-,m) € C*(R?) and
IEC¢m)lc2may <C |G(,m)|lc2mey < C
where for f € C*(R?) we denote || - ||c2gray by
[1fllc2®ay = ;élﬂgi{lf(w)\ +[Df (@) +|D*f(x)l},
8. mg 1s absolutely continuous with respect to the Lebesgue measure and has a density, still denoted
by mg, which is bounded and has a compact support.

Then there is at least one weak solution of @

Remark 3.3. Under the assumptions of Theorem[2.19 we can show that the solution is unique. The
proof is the same with the only difference being that now we use the Lipschitz continuous map u as a

test function because the density m is bounded and has compact support.

As in Section [2] we will study the two equations separately.

3.1 On the Hamilton-Jacobi equation
In this Section we study the Hamilton-Jacobi equation

—Ou+ |Dyul? = f(z,t) inRYx (0,7T)
uw(z,T) =g(x) inR?

(10)

We will start by recalling some basic facts about the notion of semi-concavity which will play a role

here. The proofs for these results can be found in [2].

11



Definition 3.4. A map w : R* = R is semi-concave if there is some constant C > 0 such that one

of the following equivalent conditions is satisfied:
1. the map x — w(z) — $|z|? is concave in RZ.
2. wz + (1= Ny) > w(z) + (1 — Nw(y) — CA(1 = N)|z — y|? for any x,y € R? and \ € [0, 1].
3. D*w < Cly in the sense of distributions.

4. p—q)- (x—y) < Clz—y|? for any z,y € R, t € [0,T], p € Dfw(x) and q € Dfw(y), where

Dfw denotes the super-differential of w with respect to the x variable, namely

y=e ly — x|

< 0}

Lemma 3.5. Let w : R — R be semi-concave. Then w is locally Lipschitz continuous in R®.

Moreover D w(z) is the closed convex hull of the set Diw(x) of reachable gradients defined by

Diw(z) = {p € R?: 3 (x,,) with x,, — x such that Dyw(x,) exists and converges to p}

x

In particular, D w(z) is compact, convex and non empty subset of R for any x € R, Finally w is

differentiable at x if and only if D w(x) is a singleton.

Lemma 3.6. Let (w,) be a sequence of uniformly semi-concave maps on R? which converge point-
wiseto a map w : R* — R. Then the convergence is locally uniform and w is semi-concave. Moreover,
for any x, — x and any p, € D w,(z,), the set of accumulation points of (pn) is contained in

DYw(x). Finally, Dw,(x) converges to Dw(x) for a.e. x € RY.
Definition 3.7. Let (z,t) € R x [0,T]. We denote by A(z,t) the nonempty set of optimal controls
to u(z,t), i.e., a« € L2([t, T],R?) such that

T
1
est) = [ (Gl + a(s),9)) ds + g(ar)
¢
where x(s) = x + f: a(r)dr. We call z(-) the associated trajectory to the control a.

Lemma 3.8. If (zp,t,) — (z,t) with o, € A(xn, ty), then, up to a subsequence, (ay,) weakly converges
in L? to some a € A(w,t).

We can now study equation .

Lemma 3.9. Let f : R? x [0,7] = R and g : R? — R be continuous functions. For anyt € [0,T],
f(,1),9 € C*(RY) with

[fCDlle2 <C iglle <C (11)

for some constant C'. Then equation has a unique bounded uniformly continuous viscosity solution

which is given by the representation formula

)= ot ' (1a<s>2 + f(a(s), s>> ds + g(a(T)),

a€L?([t,T],R) 2

12



where x(s) = x + f: a(7)dr. Moreover u is Lipschitz continuous and satisfies
||Da:,tu||oo S Cly Dg%(ru é Clld
where the last inequality holds in the sense of distributions.

Proof. From the theory of Hamilton-Jacobi equations we already know that has a unique bounded

uniformly continuous viscosity solution given by

e = [ e / ' (3l + Fa(s).5)) ds + gt ()

Hence we only need to check that w is Lipschitz continuous with || D, 1ull < Cy and D2 u < C1I4 in

the sense of distributions for some constant Cy = C1(T).
1) w is Lipschitz continuous with respect to x.

Let 21,72 € R4 ¢t € [0,T] and o € A(z,t). We then have
Tr1
wer) < [ (GlalF + 1(a(o) + 02— 1.9)) ds 4 g(a(D) + 22 - )
t
T
< [ (Gl + £(a9).9) + Cloa — ) ds + g(a(D) + Claz -
t
< wu(zy,t) + C(T + 1)|zg — 1|
Thus w is Lipschitz continuous with respect to z with Lipschitz constant C'(T + 1).

2) w is Lipschitz continuous with respect to ¢.

Fix 2 € R? and ¢ € [0,T]. From the dynamic programming principle we have for any t < s < T

uast) = [ Gl + fGalr) r)ar + ulats). )
where a € A(z, t) and z(-) is its associated trajectory. We have
ju(e. 1) — (e, )] < (e 1) — u(e(s),9)] + u(a(s), ) — u(z, )
< [ (Gl + 1#(etr)n)) dr + €T + Dlats) -
< (50) (3llall + 1+ CT + )

where in the second inequality we used the fact u is C(T + 1)-Lipschitz continuous with respect to x.
In Lemma [3.10} we show that « is bounded by a constant Cy = C2(T"). Hence the inequality above

proves that u is Lipschitz continuous with respect to ¢.
3) || Dy, rtt||oe < Ch.

It follows easily from 1) and 2).
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4) D2 u < C11, in the sense of distributions.

Let 2,y € R4, t € [0,T], A € [0,1] and set x5 = Az + (1 — \)y. By Definition it’s enough to
show that
Mu(z,t) + (1 — Nu(y, t) < u(za,t) + CA(1 = \)|z —y|?

where C' = C(T) is a constant. Let o € A(zy,t) and z,(-) its associated trajectory. Then
Tr1
Au(z,t) + (1 — Nu(y,t) < A [/ <2|a(s)|2 + fza(s) + 2 — x,\,s)> ds + g(xx(T) +x — xA)l
¢
T
+(1=2) [/ <2|a(s)|2 + f(@a(s) +y — S)) ds + g(zx(T) +y — iU,\)]
¢

< [ (31t + 7a61.0) ) ds +aloa(D) + O+ DA = Ve o
= u(w,t) + ||alloo(T + DAL = N)|z — y[%.

Hence u is semi-concave. O
Lemma 3.10 (Euler-Lagrange optimality condition). If o € A(z,t), then « is of class C1([t, T]) with
o/(s) =Df(x(s),s) inlt,T)

o(T) = —Dg(x(T))

In particular, there is a constant Oy = C1(C) such that for (x,t) € R x [0,T) and any o € A(x,t)
we have ||al| < C1, where C satisfies (L1)).

Lemma 3.11 (Regularity of u along optimal solution). Let (x,t) € R? x [0,T], a € A(z,t) and let
us set x(s) = + f: a(r)dr. Then

1. (Uniqueness of the optimal control along optimal trajectories) for any s € (¢,T), the restriction

of a to [s,T) is the unique element of A(x(s),s).

2. (Uniqueness of the optimal trajectories) Dyu(x,t) exists if and only if A(x,t) is a reduced to
singleton. In this case, Dyu(x,t) = —a(t) where A(x,t) = {a}.

Remark 3.12. In particular, if we combine the above statements, we see that u(-, s) is always differ-
entiable at x(s) for s € (t,T) with Dyu(z(s),s) = —a(s).

Proof. Let ay € A(x(s),s) and let z1(-) be its associated trajectory. For any h > 0 sufficiently small
we define oy, € L2([t, T],R?) in the following way

a(T) if T €[t,s—h)
an(T) = W ifres—h,s+h)
aq(7) ifres+hT)
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Then one easily checks that

x(T) if 7 €[t,s—h)
an(r) = Q a(s — h) + (1 — (s — b)) Lm0 e [ — hs 4 h)
x1(T) if rels+h,T)

Since both af,, 7 and a; are optimal for u(z(s),s), ap, which is nothing but the concatenation of
|, and v, is also optimal for u(z,t). Also observe that (1) = x + [ ap(0)do is given by a(7)

on [t,s] and x1(7) on [s,T]. Hence

west) = [ Sl + s+ [ (Gl + i) ) dr + glaa(r))
and -
we.) < [ (FlanP + fanr)r) ) dr-+ gD,

Using the definitions of «y, and xj, we can write the above inequality as

[ (daer s se@.n)ars [ (Sa@r s s )

—h
/S—‘rh 1
s—h 2

z1(s+h) —a(s—h)|°

2h

+ f(xh(T),T)> dr <0

Now dividing h and taking h — 07 shows that

Slas) + lon(5)?  lals) + ax(s) <0

since limy, 0 2, (s) = 2(s) = x1(s). Therefore |a(s) — ai(s)|> < 0, i.e., a(s) = ai(s). In particular

x(+) and z1(-) satisfy the same second order differential equation

y'(r) = Do f(y(7),7)
y'(s) = 2'(s) = a(s) = au(s) = z1(s)
y(s) = x(s) = z1(s)

Hence x(-) = z1(+) and a = a1 on [s,T]. This means that the optimal solution for u(x(s), s) is unique,
thus proving point 1.

We now show that if Dyu(z,t) exists, then A(z,t) is reduced to singleton and Dyu(z,t) = —a(t)
where A(z,t) = {a}. Indeed, let o € A(x,t) and z(-) be the associated trajectory. Then for any
v e R?

1
u(z +v,t) < /t i\a(s)\st + f(z(s) +v,8)ds + g(x(T) +v).

Since equality holds for v = 0 and since both sides of the inequality are differentiable with respect to

v at v =0 we get

Dmu(xﬂf):/t D, f(z(s),s)ds + Dyg(x(T)).
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Then by Lemma we have D,u(z,t) = —a(t). Therefore x(-) has to be the unique solution of the

second order differential equation

2(5) = Dy f(2(5), )
2'(t) = —Dyu(x,t)
z(t) ==z
which in turn implies that o = 2’ is unique.
Conversely, suppose that A(z,t) is a singleton. We want to show that u(-,¢) is differentiable at x.

For this we note that, if p belongs to D u(x,t) (the set of reachable gradients of the map wu(-,t)), then

the solution

a"(s) = Dy f(x(s), s)
o) = —p
z(t) ==z
is optimal. Indeed, by definition of p there is a sequence z,, — x such that u(-,¢) is differentiable at

x, and Dyu(z,,t) — p. Now since u(-,t) is differentiable at z,, we know that the unique solution
Zn(-) of

is optimal. Passing to the limit as n — oo implies by Lemma [3.8| that z(-), which is the uniform limit
of the x,(-), is also optimal. But from our assumptions, there is a unique optimal solution in A(z,t).
Hence D}u(z,t) has to be reduced to a singleton and since u(+,t) is semi-concave by Lemma we
have that u(-,t) is differentiable at by Lemma O

Let us consider again (z,t) € R% x [0,T), o € A(w,t) and z(-). Then we have just proved that
u(+, s) is differentiable at x(s) for any s € (¢,T) with

7'(s) = a(s) = =D, u(x(s), s).
So given « optimal, its associated trajectory z(-) is a solution of the differential equation

x'(s) = —=Dyu(x(s),s) on [t,T)
z(t) ==x

The following Lemma, states that the reverse also holds. This is an optimal synthesis result since it

says the optimal control can be obtained at each position y and at each time s as by the synthesis

Oé*(y, S) = 7D3?u(ya S)
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Lemma 3.13 (Optimal synthesis). Let (z,t) € R% x [0,T) and z(-) be an absolutely continuous
solution to the differential equation

2'(s) = —Du(x(s),s), a.e. in[t,T)] (12)

z(t) ==z
Then the control « := z’ is optimal for u(z,t), i.e., « € A(x,t). In particular, if u(-,t) is differentiable
at x, then equation has a unique solution, corresponding to the optimal trajectory.
Proof. We start by observing that z(-) is Lipschitz continuous because u is. Let s € (¢,T) be such
that equation holds. Hence u is differentiable with respect to x at (z(s),s) and the Lipschitz
continuous map s — u(z(s), s) has a derivative at s. Since w is Lipschitz continuous, Lebourg’s mean

value theorem (4], Th. 2.3.7), states that, for any h > 0 small enough there is some (yp,sn) €
[(2(5), 8), (2(s + h), 5 + )] and some (€l 1) € CoD%u(yn, s1) with

u(@(s +h),s +h) —u(z(s),s) = & - (x(s + h) — z(s)) + &'h, (13)

where CoD}; ,u(y, s) denotes the closure of the convex hull of the set of reachable gradients D} ,u(y, s).

Now from Carathéodory Theorem, there are (A ¢l f{b’i)izl,...,d.t,_Q such that

d+2 d+2
A >0, N A =1, (€ g1) € Dyulyn, sn) and (€8,60) =Y AR ).
=1 =1

For each i = 1,...,d + 2, the £/ converges to D u(xz(s),s) as h — 0 because, from Lemma any
accumulation point of (£%%); must belong to D} u(x(s), s) which is reduced D u(xz(s),s) since u(-, s)

is differentiable at x(s). Therefore

Eon =D AMEL — Dyu(a(s), s)

as h — 0. Since u is a viscosity solution to and (€8, 6"") € D yu(a(s),s) we have

i, L
—&" I = Flunssn)-
Therefore
dy2 b2 1
&= Z)\h’zfth’l =3 Z)\h’l|§g7z > — f(yn,sn) = §|Dxu(ff(5)as)|2 — f(z(s),s)
i=1 i=1

as h — 0. Then dividing by h and letting h — 0 we get

d%“(m(S), s) = Dyu(x(s), s) - 2'(s) + %\DwU(%‘(S)’ s)I? = f(x(s), 5)-

and, since 2’(s) = —D,u(xz(s), s), we have

d 1, ,, 2 )
au(a:(s),s) = —§|x (8)]* = f(x(s),s) ae. in (¢,T).

Integrating the above inequality over [t,T] we finally obtain

T
u(et) = [ G + Fla(s).)ds + gla(T))

where we used the fact that u(y,T) = g(y) for y € R%. Therefore a := 2’ is optimal.

The last statement of the Lemma is a just direct consequence of point 2. of Lemma [3.11] O
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From the stability of optimal solutions, the graph map (z,t) — A(z,t) is closed when the set
L2([0,T],R%) is endowed with the weak topology. This implies that the map (z,t) — A(z,t) is
measurable with nonempty closed values, so that it has a Borel measurable selection a: namely
a(z,t) € A(z,t) for any (z,t) (see [1).

Fix (z,t) € R? x (0,T). We define the flow

O(x,t,8) =x+ /ts a(x,t)(r)dr

for all s € [t,T7]. We will use it in the next Section to construct a solution to the Fokker-Planck

equation.
Lemma 3.14. The flow ® has the semi-group property
O(z,t,58') = ®(P(x,t,8),s,5) (14)
for allt < s < s <T. Moreover for any x € R? and s,s" € (t,T)
0s®(z,t,5) = —Dyu(®(x,t,s),s)

and
|®(x,t,8") — B(x,t,8)] < ||Dptt]|so]s” — s].

Proof. For any s € (t,T) we know from Lemma that A(®(x,t,s),s) = {a(z,t)|n} and
S0 holds. Moreover, Lemma also states that wu(-,s) is differentiable at ®(z,t,s) with

Du(®(z,t,s),s) = —a(x,t)(s). But by definition 9;®(z,t,s) = a(x,t)(s) and so 9;P(x,t,s) =
—D, u(®(x,t,s),s). Finally this last equality also implies the || D ul|so-Lipschitz continuity of ®(z,t, -)
on (¢, 7). O

We finish this Section with the following contraction property of the flow ®.

Lemma 3.15. If C satisfies , then there is some constant Cy = Co(C') such that, if u is a solution
of , then for all0 <t < s <T and z,y € R?

|aj - yl < 02|(I)(l'7t, 8) - q)(y’t7 8)|

In particular, the map x +— ®(x,t,s) has a Lipshitz continuous inverse on the set ®(R?, ¢, ).

Proof. Let u be the solution of (10). Then by Lemma D2 u < CyI; on R? x (0,T) in the sense of
distributions. Let x(7) = ®(z,t,s — 7) and y(7) = ®(y,t,s — 7) for 7 € [0, s — ¢]. Then from Lemma
3.14] x(-) and y(-) satisfy respectively

/(1) = Dyu(z(r,s —7) T€[0,5—1) Y'(1) = Dyu(y(r,s —7) 1€[0,5—1)

and (15)
x(0) = ®(z,t,8) y(0) = (y. ¢, )

We observe that for almost all 7 € [0, s — t] we have

(3l =) = (@ =) (@ =) < itz = )
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where the last inequality comes from and the fact that D2 u < C11,; (see Definition . Hence
by Grownwall’s inequality

(2 = y)(7)] < €7/27]2(0) - y(0)]

for all 7 € [0, s — t]. In particular for 7 = s — ¢ we get
|JI - y| < 601/2TT|(I)('T5 t7 5) - (I)(y?ta 8)‘

thus proving the claim. O

3.2 On the continuity equation

Our aim is now to show that, given a solution and under assumption , the continuity

equation

iz, ) — div(Dyu(x, s)u(z,s)) =0 in R? x (0,T)

w(x,0) = mg(z) in RY 16)

has a unique solution which is the density of the measure u(s) = ®(-,0,s).mg for s € [0,T], where
®(-,0,8).mp denotes the push-forward of the measure mg by the map ®(-,0,s), i.e., the measure
defined by ®(-,0, s).mo(A) = mo(®(-,0,5)"1(A)) for any Borel set A C R?.

We start by observing that the measure ®(-, 0, s).mq is absolutely continuous with respect to the

Lebesgue measure.

Lemma 3.16. Let C be a constant such that holds and such that mq is absolutely continuous,
has a compact support contained in the ball B(0,C) and satisfies ||mol|lp < C. Let us set u(s) :=
(-, 0,5).mqg for s €[0,T].

Then there is a constant Cs = C5(C) such that, for any s € [0,T], u(s) is absolutely continuous,
has a compact support contained in the ball B(0,C3) and satisfies ||p(s)||pe < C3. Moreover

d(pu(s'), 1(s)) < | Dsuf|oc s’ — s|
forallt <s<s <T.
Proof. By definition p satisfies

d(u(s'), u(s)) < y |®(2,0,5") = (,0,5)|dmo(z) < [|Daulloc(s” — 5).

Recall that @ is given by )
O(2,0,5) =z —|—/ a(z,0)(r)dr
0
where a(z,0)(7) = Dyu(®(z,0,7),7). Also since u is a solution of (10), || Dyulls < C;. Additionally,
mo has compact support contained in B(0,C'). Hence the (1(s)) have a compact support contained
in B(0, R) where R=C+TC.
Let us now fix ¢t € [0,7]. From Lemma we know that there is some Cy = C5(T') such that
the map z +— ®(x,0,t) has a Cy-Lipschitz continuous inverse on the set ®(R%,0,t). Let us denote this

inverse by W. Then, if A is a Borel subset of R we have

p(s)(A) = mo(®71(-,0,8)(A)) = mo(¥(A)) < [[molloc L4(¥(A)) < [[molocC2L(A).
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Therefore u(s) is absolutely continuous with a density (still denoted by u(s)) which satisfies

14(8)[loo < lImol[ocCa
for all s € [0,T]. O

Our goal is to show that the map s — u(s) := ®(+,0, s).mg is the unique weak solution of .
We first prove that p is a weak solution of .

Lemma 3.17. The map s — p(s) := ®(-,0,s).my is the weak solution of (16).

Proof. Let ¢ € D(R? x [0,T)). Then, since by Lemma s+ p(s) is Lipschitz continuous in P, the
map

S o(z, s)u(zx, s)dx
Rd

is absolutely continuous. Then using Lemma we have

d d
90(1‘7 S)/.L(Z‘, S)dl‘ - %

= /]Rd (0sp(®(,0,8),8) + Dpp(®(x,0,5),t) - 0sP(x,0,8)) mo(x)dx

ds Jpa /Rd ¢(®(2,0,5), s)mo(z)dz

= /]Rd (0sp(®(2,0,8),8) — Dpp(®(x,0,5),t) - Dpu(®(x,0,),s)) mo(z)de

= [ 0u(09) = Dusply.5)- Dty ) )y

Integrating the above inequality over [0, 7] we get, since p(0) = myq

T
[ etw0maay+ [ [ (0p(05) = Dale) - Dauly. ) g, 5)dy =0
Rd 0o JRrd
which means that m is a weak solution of . O

We now focus on proving the uniqueness property. The difficulty arises since —D,u(z,t) may
be discontinuous. In fact if —D,u(x,t) had some Lipschitz regularity property, then the uniqueness

would follow easily as we show in the next Lemma.

Lemma 3.18. Let b € L>°(R¢ x (0,T),R%) be such that, for any R > 0 and for almost all t € [0,T],
there is a constant L = L(R) such that b(-,t) is L-Lipschitz continuous on B(0, R). Then the continuity
equation
Orp(x, 8) + div(b(z, s)u(r,s)) =0 in R? x (0,7) a7)
w(z,0) = mo(z) in Re

has a unique solution, given by u(t) = ®(-,t).mo where ® is the flow of the differential equation

0,(z,5) = b(®(x,5), )
O(x,0) =z
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Proof. 1t’s easy to see by mimicking the proof of Lemma that the map ¢t — ®(-,t).my is a solution

to ([17).

We know that that the map x — ®(x,t) is locally Lipschitz continuous, with a locally Lipschitz
continuous inverse denoted by ¥(x,t). Note also that ¥ is actually locally Lipschitz continuous in
space-time. Let ¢ € D(RY) and let us consider the map w defined by w(x,t) = ¢(¥(x,t)). Then w is

Lipschitz continuous with compact support and satisfies

0= %(p($) = %w(é(x,t), t) = 0w (P (z,t),t) + Dyw(P(x,t),t) - b(P(x,t),t) a.e.,

and therefore w is a solution to
Ow(y,t) + Dyw(y,t) - b(y,t) =0 a.e. in RY x (0,7).

Using now w as a test function for p we have

d

@t o w(y, t)p(y, t)dy = / (Orw(y,t) + Dw(y,t) - b(y,t)) ply, t)dy = 0

Rd

and therefore
[ e ntdy = | ewmwi
R R

Changing the test function shows that
Py, t)dy = [ (D(y, s))mo(y)dy,
R4 R4
for any 1 € D(R), thus proving that pu(t) = ®(-,t).mq as desired. O

We now return to equation and prove that it has a unique solution.

Theorem 3.19. Given a solution u to and under assumption (L), the map s — u(s) =
®(-,0,5).mq is the unique weak solution of ([L16).

Proof. Due to Lemma we only need to show that if u is a solution of , then p is given by
®(-,0,t)«mp. Let then p be any solution. The idea is to regularize p to a get a sequence of solutions
to which we can apply Lemma Let p. € D(B(0,¢)) denote the standard mollifier. In particular
Jga pe(z)dz =1 and p.(z) > 0 in R? Define

(Dyu p) * pe(z,)
pe(w,t)

Then [[0°]|co < ||Dyulloo and b° is locally Lipschitz continuous in the sense of Lemma Moreover

u€ satisfies the continuity equation for b* because

pf(z,t) := pu* pe and b°(z,t) := —

Ot + div(b°p®) = (Ogpr) * pe — div((Dyup) * pe) = [0t — div(Dzup)] * p. = 0.
Then by Lemma pe(t) = (-, t).me, where m. = mg * p. and ®¢ is the flow associated to b°:
68(1)8(1:7 S) = bs((I)(.’L‘, 8)7 S)

oc(2,0) =z
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The difficulty now boils down to passing the limit in the equality pc(t) = ®(-, t)me..
Let us set, to simplify notations, I'r := C([0,T],R¢) and associate with u° the measure n° on
R? x I’y defined by
/ o, S () = | ol @@ e @e

for all ¢ € C(R? x T'r). Also for t € [0,T] we denote by e; the evaluation map at ¢, i.e., e;(y) = ¥(¢)
for v € T'r. Then for any ¢ € CP(R? R) we have

/RdxFT eled(y))dn®(z,v) = /Rd o(D° (2, t))m* (z)dz :/ o)1 (2, ). as)

Rd

Let us now prove that (7°) is tight in R? x I'y. Indeed, since m,. converges to mg as ¢ — 0, we can find
for any § > 0 some compact set K5 C R¢ such that m:(Ks) > 1 — 4 for any e small enough. Let Ks
be the subset of K5 x I'r consisting in pairs (z,v) where x € K, v(0) = x, v is Lipschitz continuous
with [|7/]|cc < || Dztt]|oo- Then Ks is compact and by definition of 7*,

n°(Ks) =me(Ks) 21 -0

for all ¢ € [0,T]. Therefore (°) is tight and from Prokhorov compactness theorem one can find a
subsequence, still denoted (1°), which converges weakly to some probability measure  on R? x I'z.
Then letting e — 0 in gives

L elatinn) = [ c@nte i (19)

for all ¢ € [0,7] and for any ¢ € Cy(R?), and therefore for any Borel bounded measurable map

¢ : R? — R. Moreover, since, by definition of 1°, we have

Rd

[ e@air@s) = [ eem. @
RdXFT
for all ¢ € C(R? R), we also have that

/ (@), 7) = / o (@)mo(z)dz (20)
RadxIDp

R4

for all ¢ € C(R?), i.e., the first marginal of 7 is mg. The key step of the proof consists now in showing
that 7 is concentrated on solutions of the differential equation for —D,u. More precisely, we want to

show that for any ¢ € [0, 7]

/RdXFT

For this we have to regularize a bit the vector field —D,u. Let ¢ : R x [0,7] — R be a continuous

v(t) —x +/0 D, u(y(s), s)ds|dn(x,v) = 0. (21)

vector field with compact support. We claim

/RdXFT

t T
10 == [ cats) sl dn@n) < [ [ letw )+ Dot Dlute ot (2)
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Indeed, we have for any € > 0 small

/Rd X FT
s
L

</ 16 (0% (2, ), 8) — e(@%(x, 8), 8)|me (x)dzds

/ / |6°(z, s) — c(z, s)|u® (z, t)dxds
R4

we have

dn®(z,v)

At = — / e (s). 5)ds
/ (@ (2, 5)

D¢ (z,t) —x — | (D (w,s),s)ds

me(z)dx

me(z)dx

/O (5 (°(2,1), 5) — c(@%(x, 5), 5)ds

where, setting c* (C‘L)*p

/ot /Rd b°(, s) = c(x, s)|p* (2, t)dwds

¢ ¢
< / |6° (2, 8) — ¢ (z, 8)|u® (x, t)dads +/ | (z, 8) — c(z, 8)|p®(x,t)dzds
0 JR4 0o JRr4

t t
S/ |(Dxu+c)u*p5(z,t)\d9:ds+/ / | (z, 8) — c(z, 8)|u° (x, t)dxds
0 Jrd 0o Jre

Note that the integrand of the first integral converges to |c(x,t) + Dyu(z,t)|u(x,t) as € — 0 and the
last term converges to 0 as € — 0 due to the continuity of ¢. This gives . As for it’s now
enough to take a sequence of uniformly bounded continuous maps ¢, with compact support which

converges a.e. to —D,u. Replacing then ¢ by ¢, in gives the desired result since, from ,

L peutr(e) )+ entae) lanteds = [ ] 1Deute, ) + enla, )t s)ds

Let us now desintegrate n with respect to its first marginal, which according to , is mg (see the
desintegration theorem in Appendix [B]). We get dn(z,v) = dn,(v)dmo(z). Then implies that, for

mo-a.e. © € R%, n,-a.e. ~ is a solution of the differential equation
7/(5) = 7Dmu('7(5)75) s € [ta T]
V() =

But for almost all z € R, u(-,0) is differentiable at z and Lemma then says that the above
differential equation has a unique solution given by ®(z,0,-). Since my is absolutely continuous, this

implies that, for mg-a.e. x € R%, n,-a.e. v given by ®(x,0,-). Then equality becomes

/ o(x) a:tdzf// (ee(7))mo(z)dn, (v d:c7// O(z,0,t))mo(z)dz
Rd R JTp R4 JTp

for any ¢ € Cy(R?) and t € [0,7]. This proves that u(t) is given by ®(-,0,t),mq as desired. O
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3.3 Existence of solutions to a 1% order MFG

Before starting the proof of Theorem |3.2] we need to show that the system @D is stable. Let (my;,)
be a sequence of C([0,T],P) which uniformly converges to m € C([0,T],P). Let u,, be the solution

to

—0yun, + 3|Duy? = F(z,m,(t))  inR?x (0,7T)
un (2, T) = G(z,m,(T)) in RY

and u be the solution to

—0wu+ |Dul* = F(z,m(t) inR?x(0,T)
u(z,T) = G(z,m(T)) in R?

Let us denote by ®,, (respectively ®) the flow associated to u,, (respectively u) as above and let us

set pin(s) = @,(+,0,8)smp and p(s) = ®(-,0, 8).mg.

Lemma 3.20 (Stability). The solution (u,) locally uniformly converges to u in R* x [0,T] and (j1,,)
converges to p in C([0,T],P).

Proof. From our assumptions on F' and G, the sequences of maps (x,t) — F(z,m,(t)) and = —
G(z,my(T)) locally uniform converge to the maps (z,t) — F(z,m(t)) and  — G(z,m(T)) respec-
tively. Hence the local uniform convergence of (u,,) to u is just a consequence of the standard stability
of viscosity solutions.

From Lemmathere is a constant C; such that wau" < C11y for all n. hence the local uniform
convergence of (u,) to u implies by Lemmathat D,u,, converges almost everywhere in R? x (0, T')
to Dyu. From Lemma we know that the (u,) are absolutely continuous with support contained
in K := B(0,C5) and ||n]|cc < C3. Moreover Lemma also states that

d(pn (), pn(s)) < Ch]s’ — |

forallt < s < s <T. Since P(K), the set of probability measures on K is compact, the Arzela-Ascoli
theorem states that the sequence (py,) is precompact in C([0,T], P(K)). Therefore a subsequence (still
denoted (py,)) of the (uy) converges in C([0,T],P(K)) and in L>® — weak — * to some m which has
a support in K x [0, 7], belongs to L>(R% x [0,T]) and to C([0,T], P(K)). Since the (u,) solve the
continuity equation for (u,), one easily gets by passing to the limit that m satisfies the continuity

equation for w. By uniqueness this implies that m = p and the the proof is complete. O
Finally we prove Theorem [3.2]

Proof of Theorem[3.4 Let M be the closed convex subset of maps m € C([0,T], P) such that m(0) =

mg. To any m € M one associates the unique solution u to

—0wu+ 3|Dyul* = F(z,m(t)) inR?x(0,7T)
uw(z,T) = G(z,m(T)) in R4
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and to this solution one associates the unique solution of the continuity equation
Oipp — div(Du(z, s)u(z,8)) =0  in R? x (0,7)
w(0) =my inRY

Then p € M and, from Lemma [3.20] the mapping m + p is continuous. From Lemma there
is a constant C3 independent of m, such that, for any s € [0,7T], u(s) has a support in B(0,C3) and
satisfies

d(pu(s"), p(s)) < Cls" —s| Vs, s €10,T).

This implies that the mapping m +— p is compact because s — p(s) is uniformly Lipschitz continuous
with values in the compact set of P(B(0,C3)). As in the second order MFG, we now appeal to the
Schauder fixed point theorem to complete the proof. O

A Stochastic Calculus

In this Appendix we review some of the basic definitions of stochastic calculus and related results

used along this report.

A.1 Brownian Motion and filtration

Consider a probability space (§2, F,P), where € is the sample space, F is a o-algebra on 2 and P

is a probability measure.

Definition A.1. Let W = {W, : t € Ry} be a stochastic process on the probability space (Q, F,P).

W is a Brownian motion if
e Wy =0 and the sample paths t — Wi(w) are continuous for a.e. w € §);
o W has independent increments, i.e., Wy, — Wy, 1L Wy, — Wy, where 0 <t; <ty <tz <ty;

e W has increments which are normally distributed, i. e., Wy, — Wy, ~ N(0,t2 — t1) where
0<t1 <ty

We can extend the definition of the Brownian motion to the vector case.

Definition A.2. Let W = {W; : t € Ry} be an RN-stochastic process on the probability space
(Q, F,P). W is a N-dimensional Brownian motion if the components W', i =1,..., N are indepen-
dent Brownian motions and the distribution of Wy, — Wy, s N(0, (t2 — t1)In) for all to > t1 > 0,

where Iy denotes the identity matriz in RY.
We now introduce the concept of filtration.

Definition A.3. A filtration is an increasing collection of o-algebras {Fi}i>o0, i.e., if s < t then
Fs C Fy.

Remark A.4. The increasing feature of the filtration means that information can only increase as

time goes on.

25



We consider in the probability space (Q, F,P) a filtration F = {F; : 0 < ¢ < T'}. The filtration we

consider is the one induced by W augmented with the P-null sets, that is,
Fi=0c{Ws:s<t}V Np.

Definition A.5. A stochastic process X is F-adapted if for allt € Ry X, is Fy-measurable.
A.2 Stochastic integral and It6’s formula

t
/ bV,
0

is defined for processes ¢ : Q2 x [0,T] — Mg(d, N) in

The stochastic integral

T
HE, = {w : F — adapted processes with / s |?ds < oo a.s.} .
0

However in the smaller space

H? = {1/1 : F — adapted processes with E

T
/ IwSIst] < oo} :
0

we can prove additional results since this one is a Hilbert space when equipped with the norm

[%w%

Remark A.6. We recall that W is a N-dimensional Brownian motion. Thus I := fOT YsdWy 1s an

abbreviation for the vector (I;)i=1,.. n such that

L= [ upaws,
j=1"9

where ¥ is a (d X N)-dimensional process. The norm of v is the Frébenius norm.

[Y]lm2 = 4| E

Definition A.7. An It6 process, X, is a continuous-time process defined by

t t
X, = X0+/ usds+/ oWyt > 0,
0 0

where u, o are F-adapted processes satisfying fot lps| + |os|?ds < 0o. Note that u and o take values in

R? and Mg(d, N), respectively.
Remark A.8. [td’s processes are frequently written in differential notation as
dXt = ‘U,tdt + O'tth.

Ito’s formula can be seen as the chain rule of stochastic calculus. It tells us how stochastic
differentials change under composition. Recall that given a smooth function f(x,t) we will denote by

D, f and D?_ f the partial gradient with respect to z and the partial Hessian with respect to .
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Theorem A.9 (It6 formula). Let f € C*Y(RYN x [0,T)) and X an It6 process given by
¢ ¢
X: = Xo —|—/ usds—l—/ osdWs.
0 0
Then, with probability 1,

FXint) = F(X0.0)+ O (X Do (Ko )ttt ST (.7 D2, (X s / D (X 5) W,

Moreover

E= {/Ot Dwf(Xs,s)-UdeS} )

A.3 Stochastic differential equations

In this section we give meaning to the stochastic differential equation

dXt = /,L(t, Xt)dt + O'(t, Xt)th
Xo =2y

(23)
Definition A.10. A strong solution to is an F-adapted process X with continuous samples paths
such that
o [ 1(Xet)] + [o( X, 8)[2dt < 00, P — a.s.
o Xy =Zy+ fot w(Xs, s)ds + fot o(Xs, 8)dWy for all t € [0,T].

The next Theorem gives sufficient conditions for the existence and uniqueness of strong solutions

for .

Theorem A.11. Let Zy € L2 be a random variable independent of W. Suppose that the functions
|11(0,4)], |o(0,-)| € L3(Ry) and that for some K >0

() = uy, O)] + lo(2,t) = o(y,t)| < K|z —y| for all t € [0,T) and ,y € R

Then, for all T > 0, there exists a unique strong solution X € H? to .

B Auxiliary results

Definition B.1. Let (X,T) be a topological space and let ¥ be a o-algebra on X that contains T'. Let
M be a collection of (possibly signed or complex) measures defined on X. The collection M is called

tight if, for any € > 0, there is a compact subset K. of X such that, for all measures p in M,
Il(X\ Ke) <e.

where || is the total variation of p. Very often, the measures in question are probability measures, so
the last part can be written as
p(E) >1—e.
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Theorem B.2 (Prokhorov theorem). Let (S, p) be a metric space. Let P(S) denote the collection of
all probability measures defined on S (with its Borel o-algebra). Then

1. A collection K C P(S) of probability measures is tight if and only if the closure of K is sequen-
tially compact in the space P(S) equipped with the topology of weak convergence.

2. The space P(S) with the topology of weak convergence is metrizable.

3. Suppose that in addition, (S, p) is a complete metric. There is a complete metric dy on P(S)
equivalent to the weak topology convergence. Moreover K C P(S) is tight if and only if the
closure of K in (P(S),do) is compact.

Theorem B.3 (Desintegration of a measure). Let X and Y be two Polish spaces and X be a Borel
probability measure on X XY . Let us set p = wx .\, where ¢px is the standard projection from X xY
onto X. Then there exists a p-almost everywhere uniquely determined family of Borel probability

measures (A;) on'Y such that

1. the function © — A, is Borel measurable, in the sense that x — A\ (B) is Borel measurable

function for each Borel measurable set B CY,

2. for every Borel measurable function f: X xY — [0, 0],

/Xxyf(x’y)dA("’”’w:/X/Yf(x’y)d%(y)du@)-
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