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1. Consider the Cauchy problem

∂tu = P (Dx)u, u|t=0 = f,

where u is a vector function with m components, P is a (possibly complex) m×m matrix
of n-variable polynomials, and f is a given (vector) function. The operator P (Dx) is
called Petrowsky well-posed (PWP) if the eigenvalues {λj(ξ)} of P (ξ) satisfy

sup
ξ∈Rn

max
j

Reλj(ξ) <∞.

Even though Petrowsky well-posedness is an algebraic condition as defined, it is easy
to convert it into an analytic well-posedness condition (but there are many such equiv-
alent conditions and the algebraic definition above seems to be the cleanest choice for
PWP itself). In particular, we have seen in class that P (Dx) being PWP is essentially
equivalent to the existence of an L2-solution for the Cauchy problem with sufficiently
smooth initial data. So one can have a loss of smoothness in the sense that the solution
is less regular than the initial data. If we do not allow this, we are led to the following
notion.

The Cauchy problem is called strongly well-posed if for any f ∈ L2, there exists a
solution u ∈ C (R+, L

2), which satisfies the estimate

‖u(t)‖L2 ≤ Ceαt‖f‖L2 , t ≥ 0,

with some constants α and C. We want to investigate how these two types of well-
posedness conditions behave under zero-order perturbations.
a) Show that P (Dx) is strongly well-posed if and only if

sup
ξ∈Rn

|etP (ξ)| ≤ Ceαt t ≥ 0,

with some constants α and C, where | · | is understood as a matrix norm.
b) Show that if P (Dx) is PWP but not strongly well-posed, then there exists a matrix

B such that P (Dx) +B is not PWP.
c) Show that if P (Dx) is strongly well-posed, then so is P (Dx) +B for any a matrix B.

2. Consider the Cauchy problem

∂tu =

n∑
k=1

Ak∂ku+Bu+ f, u|t=0 = g,
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where u is a vector function with m components, all Ak and B are m×m matrices, and
f ∈ C (R, Hs(Rn)) and g ∈ Hs(Rn) are given (vector) functions, with some s ∈ R. In
each of the following cases, prove that there exists a unique solution u ∈ C (R, Hs(Rn)),
which satisfies the estimate

‖u(t)‖Hs ≤ Ceα|t|‖g‖Hs + C

∫ t

0
eα|t−τ |‖f(τ)‖Hsdτ, t ∈ R,

with some constants α and C.
a) Symmetric hyperbolic case: All Ak are Hermitian.
b) Strictly hyperbolic case: For all nonzero ξ ∈ Rn, the eigenvalues of P (ξ) =

∑n
k=1Akξk

are real and distinct.
3. Maxwell’s equations for 3 dimensional electromagnetism in vacuum are

∂tE = ∇×B, ∂tB = −∇× E, (1)

and
∇ · E = 0, ∇ ·B = 0, (2)

where E,B : R3×R→ R3 are the electric and magnetic field, respectively. Show that the
system (1) is symmetric hyperbolic. Then show that the constraints (2) are preserved
by the evolution, i.e., that if one starts with initial data satisfying the constraints (2),
and if E and B evolve according to (1), then (2) will be satisfied for all time.

4. For isotropic and homogeneous materials, the elastodynamics equation is given by

∂2
t u = µ∆u+ λ∇(∇ · u),

where u : Rn × R → Rn is the displacement field, and µ and λ are real parameters. In
components, it reads

∂2
t uk = µ∆uk + λ∂k(∂1u1 + . . . ∂nun), k = 1, . . . , n.

We consider the corresponding Cauchy problem with the initial data u|t=0 = f and
∂tu|t=0 = g. Determine the values of the parameters µ and λ for which the Cauchy
problem is well-posed in the following sense: For any initial data (f, g) ∈ Hs × Hs−1

with some s ∈ R, there exists a unique solution u ∈ C (R, Hs)∩C 1(R, Hs−1), satisfying

‖u(t)‖Hs + ‖∂tu(t)‖Hs−1 ≤ C(‖f‖Hs + ‖g‖Hs−1), t ∈ R,
with some constant C > 0.

5. Let Ω ⊂ Rn be a domain with smooth boundary, and recall that Hs
0(Ω) is the closure

of D(Ω) with respect to the Hs norm. Recall also that Hs(Ω) = {w|Ω : w ∈ Hs(Rn)},
with the norm

‖u‖Hs(Ω) = inf
{w∈Hs(Rn):w|Ω=u}

‖w‖Hs .

Prove the followings.
a) Let X = {v ∈ Hs(Rn) : supp v ⊂ Rn \Ω} ⊂ Hs(Rn) and let P : Hs(Rn)→ X be the

Hs-orthogonal projection onto X. Then

(w|Ω, v|Ω) = 〈w − Pw, v − Pv〉Hs ,

is an inner product on Hs(Ω), making it a Hilbert space.
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b) The (topological) dual of Hs
0(Ω) is isometric to H−s(Ω), and vice versa.

c) For 0 < s < 1, the norm ‖u‖Hs(Ω) on Hs(Ω) is equivalent to the Sobolev-Slobodeckij
norm

[u]s,Ω =

‖u‖2L2(Ω) +

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy

 1
2

.


