MATH 581 ASSIGNMENT 4

DUE FRIDAY MARCH 15

1. For $s \in \mathbb{R}$, the (Bessel potential) Sobolev space $H^s(\mathbb{R}^n)$ is the set of those $u \in \mathscr{S}'(\mathbb{R}^n)$ with $||u||_{H^s} := ||\langle D \rangle^s u||_{L^2} < \infty$, where the Bessel potential $\langle D \rangle^s u$ of u is defined by

$$\widehat{\langle D \rangle^s u}(\xi) = \langle \xi \rangle^s \hat{u}(\xi) \equiv (1 + |\xi|^2)^{s/2} \hat{u}(\xi).$$

Prove the followings.

- a) $\langle D \rangle^s : H^s(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a Hilbert space isometry.
- b) For $k \ge 0$ integer, $H^k(\mathbb{R}^n) = W^{k,2}(\mathbb{R}^n)$.
- c) $\mathscr{D}(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.
- d) The (topological) dual of $H^{s}(\mathbb{R}^{n})$ is isometric to $H^{-s}(\mathbb{R}^{n})$.
- 2. Prove the followings.
 - a) If $s = \frac{n}{2} + k + \alpha$ with $0 < \alpha < 1$ and $k \ge 0$ an integer, then $H^s(\mathbb{R}^n) \hookrightarrow C^{k,\alpha}(\mathbb{R}^n)$.
 - b) The trace operator $\gamma : \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^{n-1})$ defined by

$$(\gamma u)(x_1,\ldots,x_{n-1}) = u(x_1,\ldots,x_{n-1},0),$$

has a unique extension to a bounded linear operator $\gamma : H^s(\mathbb{R}^n) \to H^{s-\frac{1}{2}}(\mathbb{R}^{n-1})$. c) If $u \in H^s(\mathbb{R}^n)$ and $\varphi \in \mathscr{D}(\mathbb{R}^n)$, then $\varphi u \in H^s(\mathbb{R}^n)$ with

$$\|\varphi u\|_{H^s} \le C \|u\|_{H^s},$$

where

$$C = 2^{|s|/2} \int_{\mathbb{R}^n} \langle \xi \rangle^{|s|} |\hat{\varphi}(\xi)| \mathrm{d}\xi.$$

Hint: Verify *Peetre's inequality*

$$\langle \xi \rangle^{2s} \le 2^{|s|} \langle \xi - \eta \rangle^{2|s|} \langle \eta \rangle^{2s},$$

for $\xi, \eta \in \mathbb{R}^n$ and $s \in \mathbb{R}$.

- d) Let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism with $d\phi \in W^{\ell,\infty}(\mathbb{R}^n)$ and $d(\phi^{-1}) \in W^{\ell,\infty}(\mathbb{R}^n)$ for all ℓ . Then the pullback $\phi^* : H^s(\mathbb{R}^n) \to H^s(\mathbb{R}^n)$ is a linear homeomorphism.
- 3. In this exercise we will refine the hypoellipticity and microlocal regularity theorems we have seen in class. First we localize the notion of Sobolev regularity in space and frequency. With $\Omega \subset \mathbb{R}^n$ a domain, let $u \in \mathscr{D}'(\Omega)$, and let $(x_0, \xi_0) \in \Omega \times \mathbb{R}_n^{\times}$, where $\mathbb{R}_n^{\times} = \mathbb{R}^n \setminus \{0\}$. We write $u \in H^s(x_0)$ if there is $\phi \in \mathscr{D}(\Omega)$ with $\phi(x_0) \neq 0$ such that $\phi u \in H^s(\mathbb{R}^n)$. Similarly, we write $u \in H^s(x_0, \xi_0)$ if there is $\phi \in \mathscr{D}(\Omega)$ with $\phi(x_0) \neq 0$,

Date: Winter 2013.

DUE FRIDAY MARCH 15

and there is a conical neighbourhood V of ξ_0 such that $\langle \cdot \rangle^s \widehat{\phi u}$ is square integrable in V. With these localizations at hand, we define the singular support

sing supp^s(u) =
$$\Omega \setminus \{x \in \Omega : u \in H^{s}(x)\}$$

and the wave front set

$$WF^{s}(u) = \Omega \times \mathbb{R}_{n}^{\times} \setminus \{(x,\xi) : u \in H^{s}(x,\xi)\},\$$

adapted to Sobolev regularity. Prove one of the followings¹.

a) Let p be a polynomial of degree m in $\mathbb{R}^n,$ satisfying

$$|\xi|^{\gamma} \lesssim \mu_p(\xi), \qquad \xi \in \mathbb{R}^n,$$

for some constant $0 < \gamma \leq 1$, where

$$\mu_p(\xi) = \inf\{|\eta| : p(\xi + i\eta) = 0, \, \eta \in \mathbb{R}^n\}.$$

Then

$$\operatorname{sing\,supp}^{s+\gamma m}(u) \subset \operatorname{sing\,supp}^{s}(p(D)u), \qquad u \in \mathscr{D}'(\Omega).$$

b) Let P be a differential operator of order m with smooth coefficients in Ω . Then

$$WF^{s+m}(u) \subset Char P \bigcup WF^{s}(Pu), \qquad u \in \mathscr{D}'(\Omega).$$

4. For a domain $\Omega \subset \mathbb{R}^n$, we define

$$H^{s}(\Omega) = \{ u \in \mathscr{D}'(\Omega) : u = w|_{\Omega} \text{ for some } w \in H^{s}(\mathbb{R}^{n}) \},\$$

with the norm

$$||u||_{H^s(\Omega)} = \inf_{\{w \in H^s(\mathbb{R}^n): w \mid \Omega = u\}} ||w||_{H^s}.$$

Similarly, define

$$\mathscr{D}(\overline{\Omega}) = \{ u : u = w |_{\Omega} \text{ for some } w \in \mathscr{D}(\mathbb{R}^n) \}.$$

- a) Show that the restriction operator $w \mapsto w|_{\Omega} : H^s(\mathbb{R}^n) \to H^s(\Omega)$ is continuous, and that $\mathscr{D}(\overline{\Omega})$ is dense in $H^s(\Omega)$.
- b) Show that there exists a sequence $\{\lambda_k\}$ satisfying

$$\sum_{k=0}^{\infty} 2^{jk} \lambda_k = (-1)^j, \qquad j \in \mathbb{N}_0.$$

c) Define the Seeley extension operator $E: \mathscr{D}(\overline{\mathbb{R}^n_+}) \to \mathscr{D}(\mathbb{R}^n)$ by

$$(Eu)(x) = \begin{cases} u(x) & \text{if } x_n \ge 0, \\ \sum_{k=0}^{\infty} \lambda_k u(x_1, \dots, x_{n-1}, -2^k x_n) & \text{if } x_n < 0. \end{cases}$$

Prove that indeed E maps $\mathscr{D}(\overline{\mathbb{R}^n_+})$ into $\mathscr{D}(\mathbb{R}^n)$, and that $E: H^s(\mathbb{R}^n_+) \to H^s(\mathbb{R}^n)$ is bounded for $s \ge 0$.

¹If you prove both, you will get bonus 2 points towards your final grade

- d) Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary. By using coordinate transformations and partitions of unity, construct a bounded extension operator $E: H^s(\Omega) \to H^s(\mathbb{R}^n)$ for $s \geq 0$.
- 5. Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary. Prove the followings.
 - a) If $s = \frac{n}{2} + k + \alpha$ with $0 < \alpha < 1$ and $k \ge 0$ an integer, then $H^s(\overline{\Omega}) \hookrightarrow C^{k,\alpha}(\overline{\Omega})$.
 - b) If Ω is bounded and $s > t \ge 0$, then the embedding $H^s(\Omega) \hookrightarrow H^t(\Omega)$ is compact. You can use the fact that the embedding $H^s_0(U) \hookrightarrow H^t_0(U)$ is compact for bounded domains U, where $H^s_0(U)$ is the closure of $\mathscr{D}(U)$ with respect to the H^s norm.
 - c) Let $\{U_k\}$ be a finite open cover of a neighbourhood of Ω , and let $\{\varphi_k\}$ be a smooth partition of unity subordinate to $\{U_k\}$. Then

$$\|u\|_{H^s(\Omega)}^2 \approx \sum_k \|\varphi_k u\|_{H^s(U_k \cap \Omega)}^2, \quad \text{for} \quad u \in H^s(\Omega).$$

In particular, the membership $u \in H^s(\Omega)$ is equivalent to $\varphi_k u \in H^s(U_k \cap \Omega) \ \forall k$.