MATH 581 ASSIGNMENT 3

DUE FRIDAY MARCH 1

- 1. a) Derive a formula for $\widehat{u \circ A}$, where A is an $n \times n$ invertible matrix.
 - b) There are (at least) two ways to define the Fourier transform on $L^2(\mathbb{R}^n)$.
 - Extend the Fourier transform from \mathscr{S} to L^2 by using the density of \mathscr{S} in L^2 (as well as the Plancherel bound).
 - First define the Fourier transform on \mathscr{S}' by duality, and then restrict it to L^2 . Show that these two approaches are consistent with each other.
 - c) Show that the Fourier transform acting on L^1 is not onto \mathscr{C}_0 .
 - d) Give an example of $u \in C(\mathbb{R}^n)$ such that $\varphi \mapsto \int u\varphi$ is a tempered distribution and that there is no polynomial p satisfying $|u(x)| \leq |p(x)|$ for all $x \in \mathbb{R}^n$.
- 2. For each of the following functions, determine if it is a tempered distribution, and if so compute its Fourier transform.
 - a) $x \sin x$,
 - b) $\frac{1}{x}\sin x$,
 - c) $e^{i|x|^2}$,
 - d) $x\vartheta(x)$, where ϑ is the Heaviside step function,
 - e) $\operatorname{sgn}(x) = \vartheta(x) \vartheta(-x)$.
- 3. Prove that a distribution $u \in \mathcal{D}'$ is tempered if and only if $u = \partial^{\alpha} f$ for some continuous function f satisfying $|f(x)| \leq C(1+|x|)^m$ with some constants C and m. That is, tempered distributions are derivatives of functions of polynomial growth.
- 4. a) Let $a \in \mathcal{E}(\mathbb{R}^n)$. Prove that the pointwise multiplication $u \mapsto au : \mathcal{S}' \to \mathcal{S}'$ is well-defined and continuous if and only if $a \in \mathcal{O}_M$, that is, for every multi-index α there is a polynomial p such that $|\partial^{\alpha} a(x)| \leq p(x)$, $x \in \mathbb{R}^n$.
 - b) Prove that if p is a polynomial with no real zeroes, then there are constants c > 0 and m such that $|p(\xi)| \ge c(1+|\xi|)^m$ for all $\xi \in \mathbb{R}^n$. Operators p(D) with p satisfying this condition are called *strictly elliptic*.
 - c) Show that if p(D) strictly elliptic, then the equation p(D)u = f has a solution for each $f \in \mathcal{S}'$.
- 5. Prove the followings.
 - a) For a compactly supported distribution $u \in \mathcal{E}'$, its Fourier transform is equal to

$$\hat{u}(\xi) = \langle u(x), e^{-i\xi \cdot x} \rangle,$$

Date: Winter 2013.

where the notation u(x) is to indicate that the distribution u acts on $e^{-i\xi \cdot x}$ as a function of x. The above expression also makes sense for $\xi \in \mathbb{C}^n$, defining an entire analytic function \hat{u} . (This is called the *Fourier-Laplace transform* of u.)

b) The Paley-Wiener-Schwartz theorem: Let $K \subset \mathbb{R}^n$ be a compact convex set, and let $\psi \in \mathcal{S}'$. Then a necessary and sufficient condition for ψ to be the Fourier transform of a distribution supported in K is that ψ is entire and satisfies the growth estimate

$$|\psi(\zeta)| \le C(1+|\zeta|)^N e^{I_K(\eta)}, \qquad \zeta = \xi + i\eta \in \mathbb{C}^n,$$

with some constants C and N. Hence the Fourier-Laplace transform of a compactly supported distribution is an entire function of growth order at most 1. Recall that the indicator function I_K is defined as

$$I_K(\eta) = \sup_{x \in K} \eta \cdot x.$$

- c) If the set of real zeroes of p is bounded, then every tempered distribution solution of p(D)u = 0 is an entire function of growth order at most 1.
- 6. Let p be a nonzero polynomial. Show the followings.
 - a) The equation p(D)u = f has at least one smooth solution for every $f \in \mathcal{D}$.
 - b) If all solutions of p(D)u = 0 are smooth, then sing supp $u \subset \operatorname{sing supp} p(D)u$ for any $u \in \mathscr{D}'$. So hypoelliptic operators can be defined as those p(D) such that all solutions of p(D)u = 0 are smooth.
 - c) If p(D) admits a fundamental solution that is smooth outside some ball of finite radius (centred at the origin), then p(D) is hypoelliptic.
- 7. Recall that by Hörmander's theorem, p(D) is hypoelliptic if and only if for any $\eta \in \mathbb{R}^n$ one has $p(\xi + i\eta) \neq 0$ for all sufficiently large $\xi \in \mathbb{R}$.
 - a) Construct a non-hypoelliptic polynomial p in dimension n > 1 such that $|p(\xi)| \to \infty$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.
 - b) For any given c > 0, construct a non-hypoelliptic polynomial p in dimension n > 1 such that $|p(\xi + i\eta)| \to \infty$ uniformly in $\{|\eta| \le c\}$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.