MATH 581 ASSIGNMENT 2

DUE FRIDAY FEBRUARY 15

- 1. If u is the characteristic function of the unit ball in \mathbb{R}^n , compute $x \cdot \nabla u$.
- 2. For $u \in \mathscr{E}'$ and $v \in L^1_{\text{loc}}(\mathbb{R}^n)$, we defined $u * v \in \mathscr{D}'$ by

$$\langle u * v, \varphi \rangle = \langle u, \tilde{v} * \varphi \rangle, \qquad \varphi \in \mathscr{D}.$$

Recall also the notations $\tilde{v}(z) = v(-z)$ and $(\tau_x \phi)(y) = \phi(y-x)$.

- a) Show that if $u \in \mathscr{E}'$ and $v \in \mathscr{E}$ then $u * v \in \mathscr{E}$ and $(u * v)(x) = u(\tau_x \tilde{v})$ for $x \in \mathbb{R}^n$.
- b) Show that for fixed $u \in \mathscr{E}'$, the mapping $v \mapsto u * v : \mathscr{E} \to \mathscr{E}$ is continuous.

3. a) Let $u \in \mathscr{E}'$ and $v \in \mathscr{D}'$. Show that

$$\tau_a(u * v) = (\tau_a u) * v = u * (\tau_a v), \qquad a \in \mathbb{R}^n,$$

where for distributions, the translation is defined by

$$\langle \tau_a u, \varphi \rangle = \langle u, \tau_{-a} \varphi \rangle.$$

b) For any distribution u, show that

$$u_a u = \delta_a * u,$$

where δ_a is the Dirac mass concentrated at $a \in \mathbb{R}^n$.

4. Let $u \in \mathscr{E}', \phi \in \mathscr{E}$, and $\psi \in \mathscr{D}$. Prove that

$$u*(\phi*\psi)=(u*\phi)*\psi=(u*\psi)*\phi.$$

Show that

$$1 * (\delta' * \vartheta) \neq (1 * \delta') * \vartheta,$$

where 1 is the function identically 1 in \mathbb{R} , and ϑ is the Heaviside step function.

- 5. Let u and v be the surface measures of the spheres $\{x \in \mathbb{R}^3 : |x| = a\}$ and $\{|x| = b\}$, respectively. Compute u * v, and determine its singular support.
- 6. a) Find a fundamental solution of the heat operator $\partial_n \sum_{1}^{n-1} \partial_i^2$

 - b) Find a fundamental solution of the wave operator $\partial_n^2 \sum_{j=1}^{n-1} \partial_j^2$, when n = 2, 4. c) Find a fundamental solution of ∂^{α} with support in $\{x \in \mathbb{R}^n : x_j \ge 0, j = 1, \dots, n\}$, where $\alpha_j \geq 1, j = 1, \ldots, n$.
 - d) Are these operators hypoelliptic?
- 7. Let $\omega \subset \mathbb{R}$ be an open interval, and $u \in \mathscr{D}'(\omega)$. Let $0 \leq k \leq \infty$.
 - a) Show that if u' = 0 then u is a constant function.
 - b) Show that if u' = f with $f \in C^k(\omega)$, then $u \in C^{k+1}(\omega)$.
 - c) Show that if u' + au = f with $a \in C^{\infty}(\omega)$ and $f \in C^{k}(\omega)$, then $u \in C^{k+1}(\omega)$.

Date: Winter 2013.