MATH 581 ASSIGNMENT 1

DUE WEDNESDAY JANUARY 30

1. Consider the Laplace equation $\Delta u = 0$ on the unit disk, given in polar coordinates by $\mathbb{D} = \{(r, \theta) : r < 1\}$. Specify the Cauchy data

$$u(1,\theta) = f(\theta), \qquad \partial_r u(1,\theta) = g(\theta),$$

where f and g are 2π -periodic real analytic functions. Then show that a real analytic solution exists for all $\theta \in \mathbb{R}$ and |r-1| sufficiently small. Investigate what happens to the solution as $r \to 0$ and $r \to \infty$, if f and g are of the form

$$a_0 + \sum_{n=1}^m a_n \cos n\theta + b_n \sin n\theta,$$

i.e., trigonometric polynomials.

2. On $B_r \subset \mathbb{R}^2$ with some r > 0, consider the system

$$\begin{cases} u_x \cdot u_{yy} = 0, \\ u_y \cdot u_{yy} = 0, \\ u_{xx} \cdot u_{yy} = |u_{xy}|^2 - f, \end{cases}$$

with the Cauchy data

$$u(x,0) = v(x),$$
 $u_y(x,0) = w(x),$ $-r < x < r,$

where $u : B_r \to \mathbb{R}^3$ is the unknown, $f \in C^{\omega}(B_r)$, $v, w \in C^{\omega}(B_r, \mathbb{R}^3)$, and the dot denotes the dot product between two vectors in \mathbb{R}^3 . Assuming that the vectors $v_x(0)$, $v_{xx}(0)$, w(0) are linearly independent, prove that there exists a solution u analytic in a neighbourhood of 0. This is the analytic core of the Janet-Cartan isometric embedding theorem, specialized to 2 dimensions. Please do not generalize the problem, i.e., solve it in 2 dimensions as stated.

3. Consider the linear system

$$Au \equiv \sum_{|\alpha| \le q} a_{\alpha} \partial^{\alpha} u = f,$$

where a_{α} are $m \times m$ real matrices whose entries are real analytic functions in an open neighbourhood of 0 in \mathbb{R}^n , and similarly f is an \mathbb{R}^m -valued analytic function near 0.

Date: Winter 2013.

DUE WEDNESDAY JANUARY 30

a) Assume that there are constants $M < \infty$ and r > 0 such that

$$\max\{|\partial^{\beta}a_{\alpha}(0)|, |\partial^{\beta}f(0)|\} \le M\beta! r^{-|\beta|},$$

for all α with $|\alpha| \leq q$, and for all β , where $|\cdot|$ denotes the maximum norm in $\mathbb{R}^{m \times m}$ or in \mathbb{R}^m . Assuming that $\{x_n = 0\}$ is noncharacteristic near 0, prove that there exists $\rho > 0$ depending only on M and r, such that there exists $u \in C^{\omega}(B_{\rho}, \mathbb{R}^m)$ satisfying Au = f in B_{ρ} and $\partial^{\alpha}u|_{B_{\rho}\cap\{x_n=0\}} = 0$ for all α with $|\alpha| \leq q - 1$.

- b) State and prove a local Holmgren theorem for these linear systems.
- 4. Let p be a nontrivial polynomial of n variables.
 - a) Prove that the set $\{\xi \in \mathbb{R}^n : p(\xi) = 0\}$ is closed and of measure zero.
 - b) Let $f \in C^{\omega}(\Omega)$ with $\Omega \subset \mathbb{R}^n$ an open neighbourhood of 0. Show that there is an open neighbourhood of 0, on which the equation $p(\partial)u = f$ has a solution.
- 5. Let p be a nontrivial polynomial of n variables, and let $H \subset \mathbb{R}^n$ be a (closed) half-space.
 - a) Show that if $u \in C^{\infty}(\mathbb{R}^n)$ satisfies $p(\partial)u = 0$ in \mathbb{R}^n and $\operatorname{supp} u \subset H$, and if the boundary of H is noncharacteristic for the constant coefficient operator $p(\partial)$, then $u \equiv 0$. Provide a counterexample when ∂H is characteristic and p is a nonconstant homogeneous polynomial.
 - b) Show that if we require that u is compactly supported, then the noncharacteristic condition on ∂H can be removed, i.e., prove that if $u \in C_c^{\infty}(\mathbb{R}^n)$ satisfies $p(\partial)u = 0$ in \mathbb{R}^n and $\operatorname{supp} u \subset H$ then $u \equiv 0$. Imply that if $u \in C_c^{\infty}(\mathbb{R}^n)$ then $\operatorname{supp} u$ is contained in the convex hull of $\operatorname{supp} p(\partial)u$.
- 6. Let u be a C^2 solution of the *n*-dimensional wave equation $\partial_t^2 \Delta u = 0$, and assume that u and all its first derivatives vanish on the line segment $\{(0,t) \in \mathbb{R}^{n+1} : 0 < t < T\}$. By using Holmgren's theorem, determine the region of \mathbb{R}^{n+1} where u must vanish.