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1 Introduction

1.1 Outline of paper

In this paper, I will give an overview of basic regularity theory for (elliptic)
partial differential equations, mainly concerning Hölder spaces Cα. I will then
devote a significant portion of the text to proving Moser’s version of a Harnack
inequality. Finally, I will discuss the extraordinary regularity results of De
Giorgi, Nash, and Moser that were discovered in the mid 1950s and early 1960s,
and then some of the applications of these results to existence and uniqueness
theorems for various partial differential equations.

1.2 Notation

We will use a notation borrowed from [2]. We call Ω ⊂ R
n a domain if it is an

open and connected set. If Ω is a domain and X is an open subset of Ω, then
we write Ω ⊂⊂ to mean that X ⊂ Ω and X is compact. If u is a sufficiently
differentiable function, we write

Diu = Dxi
u =

∂u

∂xi
, Dij =

∂2u

∂xi∂xj

for the partial differential operator. If α is a multi-index, α = (α1, . . . , αn) then
we write Dα if we mean

Dα = Dα1
1 · · ·Dαn

n

By C0(Ω) we mean the set of continuous functions u : Ω → R, and if k ≥ 1
we denote Ck(Ω) by the set of continuous functions from Ω to R such that the
derivatives Dαu for |α| = α1 + . . .+ αn ≤ k exist and are continuous. For a C1

domain, we write ν = (ν1, . . . , νn) to mean the outward unit normal along ∂Ω.

2 Overview of Hölder spaces

Hölder spaces are a fundamental tool in studying partial differential equations,
and they will come into use particularly in the later section when we develop
the regularity results of De Giorgi, Nash, and Moser. Following Jost [3], we
will first prove the Moser-Harnack inequality, after which we will discuss some
applications of this inequality to elliptic partial differential equations, and then
finally discuss regularity results for variational problems. We first begin with a
definition for the Hölder seminorms and Hölder spaces.

Definition 1 (Hölder semi-norms and Hölder space Cm,µ). Let µ ∈ (0, 1] and
K ⊂ R

n be compact. Given u ∈ C0(K), we define the Hölder semi-norm [u]µ,Ω
by

[u]µ,Ω = sup
x 6=y∈Ω

|u(x)− u(y)|
|x− y|µ

For m ≥ 0 and µ ∈ (0, 1], we say u ∈ Cm,µ(Ω) if u ∈ Cm(Ω) and [Dm]µ,K < ∞
for all K ⊂ Ω.
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We define the Hölder norms as follows.

Definition 2 (Ck and Hölder norms). Let Ω be a bounded domain. We define
the C0 norm | · |0,Ω and Cm norm | · |m,Ω by

|u|0,Ω = sup
Ω

|u|, ‖u‖Cm(Ω) = |u|m;Ω :=
∑

k≤m

|Dku|0;Ω

The Hölder norm | · |m,µ,Ω is defined by

‖u‖Cm,µ(Ω) = |u|m,µ;Ω :=
∑

k≤m

|Dku|0;Ω + [Dmu]µ;Ω

Definition 3 (Sobolev space W k,p). If Ω ⊂ R
n is a domain, we say that an

integrable function v : Ω → R is the α-th weak derivative of u, written v = Dαu,
if

ˆ

Ω

vφdx = (−1)|α|
ˆ

X

uDαφdx for all φ ∈ D(Ω)

For k ∈ N and 1 ≤ p ≤ ∞ we define the Sobolev space W k,p as

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp for all |α| ≤ k}

The corresponding norm ‖·‖Wk,p(Ω) is given by

‖u‖Wk,p(Ω) :=





∑

|α|≤k

ˆ

Ω

|Dαu|pdx





1/p

Lemma 1. Let f1, f2 ∈ Cα(Ω) := C0,α where Ω ⊂ R
n. Then we have that

f1 · f2 ∈ Cα(Ω), and moreover we have the estimate

|f1f2|Cα(Ω) ≤ |f2|Cα(Ω)

[

sup
Ω

|f1|
]

+ |f1|Cα(Ω)

[

sup
Ω

|f2|
]

Proof. The proof of this is quite simple. We need only use the triangle in the
following:

|f1(x)f2(x)− f1(y)f2(y)|
|x− y|α ≤ |f1(x)− f1(y)|

|x− y|α |f2(x)|+
|f2(x)− f2(y)|

|x− y|α |f1(x)|

The result follows immediately since f1, f2 ∈ Cα.

3 Moser-Harnack inequality

We follow Jost [3] and Moser [4], [5] here. We want to understand the weak
solutions to the homogeneous equation Lu = 0 where L is defined by

Lu =

n
∑

i,j=1

∂

∂xj

(

aij(x)
∂

∂xi
u(x)

)

= 0
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where the coefficients aij are measurable and bounded, i.e., there is finite Λ > 0
such that

sup
i,j,x

|aij(x)| ≤ Λ < ∞

and that the coefficients also satisfy the ellipticity condition

λ|ξ|2 ≤
n
∑

i,j=1

aij(x)ξiξj (1)

where 0 < λ ≤ Λ, and sup(·) is understood as ess sup(·). The notion of subso-
lutions and supersolutions will be used in establishing the Harnack inequalities.

Definition 4 (Sub- and supersolutions). Let u ∈ W 1,2(Ω). We call u a weak
subsolution (resp. supersolution) of L, denoted Lu ≥ 0 (resp. Lu ≤ 0) if for all
positive functions φ ∈ H1,2

0 (Ω), we have that
ˆ

X

∑

i,j

aij(x)DiuDjφdx ≤ 0 (2)

(resp.
´

∑ ≥ 0 for supersolution). All the inequalities are assumed to hold
except possibly on sets of measure zero.

From this definition, it is clear from the following relation that if f ∈ C2(R)
is convex, and u is a subsolution (Lu ≥ 0), then f ◦ u is also a subsolution:

L(f ◦ u) =
∑

i,j

∂

∂xj

(

aijf ′(u)
∂u

∂xj

)

= f ′(u)Lu+ f ′′(u)
∑

i,j

aij
∂u

∂xi

∂u

∂xj
(3)

In fact, if the first and second derivatives of f are integrable, we can perform
integration by parts to deduce the following lemma:

Lemma 2. Suppose f ∈ C2(R) is convex and u is a weak subsolution for L.
Then f ◦ u is in fact a weak subsolution for L provided we can integrate f so
that the chain rule for weak derivatives holds.

Proof. Supposing that f is sufficiently integrable, we have thatDi(f ◦ u) =
f ′(u)Di(u) and Di(f

′ ◦u) = f ′′(u)Diu for each i = 1, . . . , n. We then have that
ˆ

Ω

∑

i,j

aijDi(f ◦ u)Djφ =

ˆ

Ω

∑

i,j

f ′(u)DiuDjφ

=

ˆ

Ω

∑

i,j

aijDiuDj(f
′(u)φ)−

ˆ

Ω

∑

i,j

aijDiuf
′′(u)Djuφ

Since f is convex and because of the ellipticity condition (1), if u is a weak
subsolution and f ′(u) is positive, then we have that

ˆ

Ω

∑

i,j

aijDi(f ◦ u)Djφ ≤ 0

Therefore f ◦ u is a weak subsolution.
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We need one more lemma before beginning the Moser iteration.

Lemma 3. If u ∈ W 1,2(Ω) is a weak subsolution of L and k is some real
number, then the function v defined by

v(x) = max (u(x), k)

is also a weak subsolution to L.

Proof. We can write v as a composition of functions v = f ◦ u where f(x) :=
max(x, k), where k ∈ R is as in the statement of the lemma. For such an f there
is a sequence (fn) of convex, twice differentiable functions such that fn → f
and fn is equal to f for all x outside of the interval (k − 1

n , k + 1
n ), and such

that |f ′
n(x)| ≤ 1 for all x. We then have that fn ◦ u → f ◦ u in W 1,2 norm, so

that we have for any 0 ≤ φ ∈ H1,2
0 ,

ˆ

Ω

∑

i,j

aijDivDjφ = lim
n→∞

ˆ

Ω

∑

i,j

Di(fn ◦ u)Djφ

Finally, by (2), this means that the above quantity is a a weak subsolution, since
each fn are convex.

3.1 Moser iteration and estimates

The goal of this section is to establish Moser’s result [5] on general Harnack
inequalities. We will first prove two more general theorems (Theorems 1 and
2) from which we will deduce the more well-known forms of the inequalities
appearing in these theorems.

Let us now denote the average mean integral
ffl

by
 

Ω

φdx =
1

vol(Ω)

ˆ

Ω

φdx

We will be using the average mean integral in order to have our constants be
independent of the size of the ball that we are integrating over.

The two main results of this section are due to Moser [5]. We follow Jost’s
presentation here [3]. The theorems are as follows.

Theorem 1. If u is a subsolution to L in the ball D(x0, 4R) ⊂ R
n for some

R > 0, then for any p > 1 we have

sup
D(x0,R)

u ≤ c1

(

p

p− 1

)2/p
(

 

D(x0,2R)

(max(0, u(x)))
p
dx

)1/p

(4)

If u is a positive function, then (4) takes the form

sup
D(x0,R)

u ≤ c1

(

p

p− 1

)2/p
(

 

D(x0,2R)

updx

)1/p

The constant c1 depends only on the dimension n and on the ratio of the
ellipticity bounds, Λ

λ .
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Theorem 2. If u is a positive supersolution to L in the ball D(x0, 4R) ⊂ R
n,

then for any dimension n ≥ 3 and for any p ∈
(

0, d
d−2

)

, we have that

(

 

D(x0,2R)

updx

)1/p

≤ c2
(

n
n−2 − p

)2 inf
D(x0,R)

u (5)

where c2 = c2
(

n, Λ
λ

)

.

These two theorems immediately imply the more familiar looking version of
the Harnack inequalities: if u is a positive weak solution to Lu = 0 in the ball
D(x0, 4R) in R

n, then there is some constant C depending only on n and Λ
λ

such that
sup

D(x0,R)

u ≤ C inf
D(x0,R)

u (6)

This local result extends to general domains in R
n in the following manner. If

u is a positive weak solution to Lu = 0 in some Ω ⊂ R
n, then for any X ⊂⊂ Ω

(i.e., X̄ ⊂ Ω and X̄ is compact), we have that

sup
X

u ≤ C ′ inf
X

u (7)

where C ′ depends on n,Ω, X, and Λ
λ . To see this, let {Bi}Ni=1 be a finite subcover

of X̄, with the balls Bi ⊂ Ω, each of radius R, such that Bi∩Bi+1 is non-empty
for all i. Then if y1, y2 ∈ X, we can take y1 ∈ Bk and y2 ∈ Bk+n for some
positive integer m. Then by applying (6) to each of the balls Bi, we get that

u(y1) ≤ sup
Bk

u(x) ≤ C inf
Bk

u(x)

≤ C sup
Bk+1

u because Bi ∩Bi+1 is non-empty

≤ C2 inf
Bk+1

u

≤ C2 sup
Bk+2

u ≤ . . .

≤ Cm+1 inf
Bk+m

u ≤ Cm+1u(y2)

Therefore (7) holds for general domains Ω ⊂ R
n.

We can now begin to start proving Theorems (1) and (2). If u is positive
and x0 ∈ R

n, then we define φ(p,R) as

φ(p,R) :=

(

 

B(x0,R)

updx

)1/p

The following two lemmas will be necessary for the whole proof of the two
theorems.
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Lemma 4. We have the following behaviour of φ(p,R) as p → ±∞.

lim
p→∞

φ(p,R) = sup
B(x0,R)

u (8)

lim
p→−∞

φ(p,R) = inf
B(x0,R)

u (9)

Proof. Let p′ > p be arbitrary. If u ∈ Lp′

(Ω), then we have that φ(p,R) is an
increasing function of p for fixed R by Hölder’s inequality:

(
 

Ω

updx

)1/p

≤ 1

(vol(Ω))1/p

(
ˆ

Ω

dx

)
p′−p

pp′
(
ˆ

Ω

(up)p
′/p

)1/p′

=

(

1

vol(Ω)

ˆ

Ω

up′

)1/p′

We also have that φ(p,R) is bounded above by φ(∞, R) := limp→∞ φ(p,R) since

φ(p,R) ≤
(

1

Rn

ˆ

B(x0,R)

(ess supu)
p

)1/p

= φ(∞, R)

However, by definition of ess sup, for every ε > 0 there exists δ > 0 such that if
we denote the set A as

A = {x ∈ B(x0, R) : u(x) ≥ sup
B(x0,R)

u− ε}

then the measure of A is strictly greater than δ. We therefore have that

φ(p,R) ≥
[

1

Rn

ˆ

A

updx

]1/p

≥
(

δ

Rn

)1/p

(supu− ε)

Therefore we have that for any ε > 0, limp→∞ φ(p,R) ≥ supu − ε. Therefore
we also have that limp→∞ φ(p,R) ≥ supu, which implies (8). By applying the
above limit to the function 1

u instead of u, we get (9).

We now prove the final lemma necessary for the proof of the desired theo-
rems.

Lemma 5. a) If u is a positive subsolution to L in Ω, then for q > 1
2 assume

that v = uq ∈ L2(Ω). Then for any η ∈ H1,2
0 we have that

ˆ

Ω

η2|Dv|2 ≤ Λ2

λ2

(

2q

2q − 1

)2 ˆ

Ω

|Dη|2v2 (10)
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b) If u is a supersolution, then this inequality is true when q < 1
2 .

Proof. We know that for (a), f(u) is a subsolution by Lemma 2; for (b), f(u) is
a supersolution. So define φ = f ′(u) · η2; then φ ∈ H1,2

0 (Ω) and so we have that
ˆ

Ω

∑

i,j

aij(x)DiuDjφ =

ˆ

Ω

∑

i,j

aijDiuDjuf
′′(u)η2 +

ˆ

Ω

∑

i,j

aijDiuf
′(u)2ηDjη

(11)

= 2|q|(2q − 1)

ˆ

Ω

∑

i,j

DiuDjuu
2q−2η2 + 4|q|

ˆ

Ω

∑

i,j

aijDiuu
2q−1ηDjη

{

≤ 0 case (a)

≥ 0 case (b)

Now, recall Young’s inequality: if a, b are positive real numbers and p, q are
conjugate exponents, then ab ≤ ap

p + bq

q . For case (a) we can apply Young’s
inequality to the last term: for any ε > 0 we have that, using the ellipticity
estimate,

2|q|(2q − 1)λ

ˆ

Ω

|Du|2u2q−2η2 ≤ 2|q|Λε
ˆ

Ω

|Du|2u2q−2η2 +
2|q|Λ
ε

ˆ

Ω

u2q|Dη|2

Since this inequality holds for all ε > 0, we can take ε = λ
Λ

2q−1
2 for case (a)

(and ε−1 for case (b)) to get that
ˆ

Ω

|Du|2u2q−2η2 ≤ Λ2

λ2

4

(2q − 1)2

ˆ

Ω

u2q|Dη|2 ⇔
ˆ

Ω

|Dv|2η2 ≤ Λ2

λ2

ˆ

Ω

v2|Dη|2

We can now begin with the proofs of Theorems 1 and 2. Note that in each
of the theorems, the inequalities are scaling and translation invariant, so we can
assume that the problem is concerned with a ball of radius 1 centred at the
origin; namely, x0 = 0 and R = 1. Also note that by Lemma 3, we can consider
the case when u is a positive function, for otherwise we could consider functions
of the form

vk(x) = max{u(x), k}
where k > 0 is an arbitrary positive constant, and applying the following proof
for positive functions and letting k ↓ 0.

For brevity we will denote Br := B(0, r) ⊂ R
n, and let r′ be a number such

that 0 < r′ < r ≤ 2r′. We define cutoff function η ∈ H1,2
0 (B − r) such that

η ≡ 1 on Br′

η ≡ 0 on Bc
r (12)

|Dη| ≤ 2

r − r′

So let us define v = uq again, and assume v ∈ L2(Ω). Recall the following
form of the Sobolev embedding theorem:
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Theorem 3 (Sobolev embedding theorem). For 1 ≤ p < n and u ∈ H1,p(B(x0, R))
(where B(x0, R) ⊂ R

n), we have that

(

 

B(x0,R)

|u| np
n−p

)
n−p
np

≤ c

[

Rp

 

B(x0,R)

|Du|p +
 

B(x0,R)

|u|p
]1/p

and c depends only on p and n

Thus for n ≥ 3 we have that

(

 

Br′

v
2d

d−2

)
d−2
d

≤ c

(

r′
2
 

Br′

|Dv|2 +
 

Br′

v2

)

(13)

Putting (10), (12), (13) together then gives us that

(

 

Br′

v
2d

d−2

)
d−2
d

≤ C

 

Br

v2 (14)

Here, C is a constant that is bounded above by

C ≤ c1

[

(

r′

r − r′

)2(
2q

2q − 1

)2

+ 1

]

(15)

Therefore we have that v ∈ L
2n

n−2 (Ω). We iterate this step to get that larger
and larger power of u are integrable. (“Moser iteration”!) So let s = 2q and
assume that |s| ≥ µ > 0 for some lower bound µ, whose exact value is to be
determined. What matters is that it is strictly bounded away from zero. Then,
since r ≤ 2r′ by construction, we have that

C ≤ c2

(

r′

r − r′

)2(
s

s− 1

)2

(16)

where c2 depends on µ as well. Since v = us/2, for s ≥ µ the relations (14) and
(16) imply that

φ

(

ns

n− 2
, r′
)

=

(

 

Br′

v
2n

n−2

)
n−2
ns

≤ c3

(

r′

r − r′

)2/s(
s

s− 1

)2/s

φ(s, r) (17)

where c3 := c
1/s
2 . When s ≤ −µ we similarly have that

φ

(

ns

n− 2
, r′
)

≥
(

s

s− 1

)−2/s
1

c3

(

r′

r − r′

)−2/|s|
φ(s, r) ≥

(

r′

r − r′

)−2/|s|
φ(s, r)

(18)
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since s ≤ −µ. We can now perform the iteration we spoke of earlier. The idea
is that we can appropriately bound the integrals of larger power of u by smaller
powers of u. So let us define numbers sm, rm, r′m for m ∈ N as

sm = p

(

n

n− 2

)m

, rn = 1 + 2−n, r′n := rn+1 >
rn
2

Then we can use (16) to get that for any m ∈ N,

φ(sm+1, rm+1) ≤ c3





1 + 2−m−1

2−m−1
·

p
(

n
n−2

)m

p
(

n
n−2

)m

− 1





2

p( n
n−2 )

m

φ(sm, rm)

:= c
m( n

n−2 )
−m

4 φ(sm, rm)

Thus we define iteratively φ(sm+1, rm+1) by

φ(sm+1, rm+1) ≤ c
∑m

k=1 k( n
n−2 )

−k

4 φ(s1, r1) ≤ c′4

(

p

p− 1

)2/p

φ(p, 2) (19)

But Lemma 4 allows us to take the limit m → ∞ to deduce that

ess supu := φ(∞, 1) ≤ C ′′
(

p

p− 1

)2/p
[

 

B(0,2)

updx

]1/p

which is precisely Theorem 1.
We now begin with proving Theorem 2. We will assume that u is strictly

positive for this proof; say, there is some ε > 0 such that u > ε > 0 on the
domain. This will allow φ(s, r) to be finite when s is negative. After proving
the theorem for u > ε > 0, if we want to prove the theorem for v ≥ 0, we can just
apply the theorem to v+ ε > 0 and then take the limit as ε ↓ 0. So we continue
with the previous Moser iteration for when s ≤ −µ. Letting rm = 2 + 2−m

again, (18) implies that

φ(−µ, 3) ≤ k0φ(−∞, 2) ≤ k0φ(−∞, 1) (20)

for some constant k0. We iterate this procedure until we get the relation

φ(p, 2) ≤ k1φ(µ, 3) (21)

for some constant k1. So we need only prove that

φ(µ, 3) ≤ k2φ(µ, 3) (22)

To prove this, we will need the John-Nirenberg theorem, which we present with-
out proof (see Theorem 9.1.2 of Jost [3] for a full proof):
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Theorem 4. Let B0 := B(x0, R0) ⊂ R
n be a ball and let u ∈ W 1,1(B(x0, R0)).

Suppose that for all B = B(x,R) ⊂ R
n we have that

ˆ

B0∩B

|Du| ≤ Rd−1

Then there is some α > 0 and β0 < ∞ such that
ˆ

B0

eα|u−u0| ≤ β0R
d
0

where u0 is the mean of u on B0, i.e.,

u0 =
1

vol(B(0, 1))

ˆ

B0

u

Thus the inequality
ˆ

B0

eαu
ˆ

B0

e−αu =

ˆ

B0

eα(u−u0)

ˆ

B0

e−α(u−u0) ≤ β2
0R

2n
0

holds.

So let us define functions v := log u and φ := 1
uη

2 where η is a cut-off

function, η ∈ H1,2
0 (B(0, 4)). Since u is a supersolution, then have that

0 ≤
ˆ

B(0,4)

∑

i,j

aijDiφDju = −
ˆ

B(0,4)

η2
∑

i,j

aijDivDjv+

ˆ

B(0,4)

2η
∑

i,j

aijDiηDjv

Thus using the Cauchy-Schwarz inequality and the ellipticity estimate we get
that

λ

ˆ

B(0,4)

η2|Dv|2 ≤
ˆ

B(0,4)

η2
∑

i,j

aijDivDjv ≤ 2

ˆ

B(0,4)

η
∑

i,j

aijDiηDjv

≤ 2Λ

[

ˆ

B(0,4)

η2|Dv|2
]1/2 [

ˆ

B(0,4)

|Dη|2
]1/2

We thus have that
ˆ

B(0,4)

η2|Dv|2 ≤ 4

(

Λ

λ

)2 ˆ

B(0,4)

|Dη|2 (23)

In order to apply Theorem 4, we need to bound the integral of |Dv| by a constant
times Rn−1. So let B(x,R) ⊂ B(0, 7/2) be any ball, and choose cut-off function
η such that

η ≡ 1 on B(x,R)

η ≡ 0 outside B(0, 4) ∩B(x, 2R)

|Dη| ≤ 6

R
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Thus (23) implies that there is some constant c such that
 

B(x,R)

|Dv|2 ≤ c
1

R2

and from here we can apply Hölder’s inequality to get that
ˆ

B(x,R)

|Dv| ≤ vol(B(x,R))
√
cRn−1

Now we can apply Theorem 4: let α be as in the theorem, and define µ :=
α√

cvol(B(0,1))
, and then apply the theorem to the function w defined by

w =
1√

cvol(B(0, 1))
v =

1√
cvol(B(0, 1))

log u

to get that
ˆ

B(0,3)

uµ

ˆ

B(0,3)

u−µ ≤ β2

which finally gives the desired inequality: φ(µ, 3) ≤ β2/µφ(−µ, 3) Having proved
(22), we deduce the theorem from (20) and (21).

4 Applications of Moser-Harnack inequality

With the inequalities proved in the previous section, we are in place to demon-
strate the Hölder continuity of weak solutions to the elliptic equation Lu = 0.
Both de Giorgi and Nash proved the following result, but we will follow Moser’s
proof which is based on the Moser-Harnack inequality.

Theorem 5. Let u ∈ W 1,2(Ω) be a weak solution to Lu = 0, i.e.,

Lu =
n
∑

i,j=1

∂

∂xj

[

aij(x)
∂

∂xj
u(x)

]

= 0 (24)

where the coefficients aij(x) are measurable and satisfy the ellipticity conditions:
for all x ∈ Ω and ξ ∈ R

n, we have that

λ|ξ|2 ≤
n
∑

i,j=1

aijξiξj , |aij(x)| ≤ Λ (25)

where 0 < λ < Λ < ∞ as before. Then there is some α ∈ (0, 1) such that
u ∈ Cα(Ω), i.e., u is Hölder continuous in Ω. Thus for any X ⊂⊂ Ω, there is
α ∈ (0, 1) and constant c > 0 such that for any x, y ∈ X,

|u(x)− u(y)| ≤ c|x− y|α (26)

where c depends only on the difference supX u− infX u, and α depends only on
the dimension n, the ellipticity ratio Λ

λ , and X

12



Proof. Let x ∈ Ω. For positive radius R > 0 and ball B(x,R) ⊂ Ω, we define
M(R) and m(R) as

M(R) = sup
B(x,R)

u, m(R) = inf
B(x,R)

u

We claim that both m(R) and M(R) are finite. To see this, define for any k > 0

v(x) = max{u(x), k}
Then by Lemma 3, we know that v is a positive subsolution to L. Then v is
locally bounded by Theorem 1, and by the proof used in the Harnack inequality,
we get that u is bounded as well.

So now let us define the oscillation of u in the ball:

ω(R) := M(R)−m(R)

Notice that ω(r) is an increasing function. If we can prove the following in-
equality

ω(r) ≤ c
( r

R

)α

ω(R) 0 < r ≤ R

4
(27)

for some α ∈ (0, 1), then this will prove that u is Hölder continuous, as for any
y ∈ B(x, r) we would have that

u(x)− u(y) ≤ sup
B(x,r)

u− inf
B(x,r)

u = ω(r) ≤ c
ω(R)

Rα
|x− y|α (28)

Now, for any ε > 0, we have that the functions

M(R)− u+ ε > 0

u−m(R) + ε >

are positive solutions to Lu = 0 in B(x,R). We thus have the inequalities

M(R)−m

(

R

4

)

= sup
B(x,R4 )

(M(R)− u) ≤ c′ inf
B(x,R4 )

(M(R)− u)

= c′
[

M(R)−M

(

R

4

)]

M

(

R

4

)

−m(R) = sup
B(x,R4 )

(u−m(R)) ≤ c′ inf
B(x,R4 )

(−M(R) + u)

= −c′
[

m(R)−m

(

R

4

)]

Adding these together we get that

M

(

R

4

)

−m

(

R

4

)

≤ c′ − 1

c′ + 1
[M(R)−m(r)] (29)

13



So define κ = c′−1
c′+1 . Then κ < 1, so that we have ω

(

R
4

)

≤ κω(R). Therefore

ω
(

R
42

)

≤ κ2ω(R), and inductively for any m ∈ N, we have that

ω

(

R

4m

)

≤ κmω(R) (30)

So let r > 0 be such that R
4n+1 ≤ r ≤ R

4n , and choose α > 0 such that

κ ≤ 1

4α

Then this proves (27), since we have

ω(r) ≤ ω

(

R

4m

)

(ω(r) is increasing)

≤ κmω(R) (inequality (30))

≤
(

1

4m

)α

ω(R) ≤
(

4

4R

)α

ω(R) (since r ∈
(

R

4m+1
,
R

4m

)

)

= 4−α
( r

R

)α

ω(R)

So we have shown that any weak solution u ∈ W 1,2 to the elliptic Lu = 0
is Hölder continuous for some α ∈ (0, 1). This regularity result has significant
applications, the first of which is a stronger version of the maximum principle,
and the second of which is an analogue of Liouville’s theorem.

Theorem 6. Let u ∈ W 1,2(Ω) be a weak subsolution to L, i.e., Lu ≥ 0 weakly.
Let the coefficients {aij} of L satisfy the ellipticity estimates

λ|ξ|2 ≤
∑

i,j

aij(x)ξiξj , |aij(x)| ≤ Λ

for all ξ ∈ R
n and x ∈ Ω. Suppose that for some open ball B(y0, R) ⊂⊂ Ω we

have
sup

B(y0,R)

u = sup
Ω

u (31)

Then we have that u is constant on the whole domain Ω.

Proof. We first note that if (31) is true, then there is another ball B(x0, r0)
with B(x0, 4r0) ⊂ Ω such that

sup
B(x0,r0)

= sup
Ω

u (32)

Moreover, by Theorem 5, we can take supΩ u to be finite since supB(y0,R) u < ∞.
If M is a number such that M > supΩ u, then M − u is a positive subsolution
to L, and hence we can apply Theorem 2; taking the limit we get that

M = sup
Ω

u (33)

14



Again by Theorem 2, relations (32) and (33) imply that
 

B(x0,2r0)

(M − u) ≤ c inf
B(x0,r0)

(M − u) = 0

Since M is equal to the supremum of u over the domain, we also have that
u ≤ M , and hence in the ball B(x0, 2r0), we have that

u = M (on B(x0, 2r0)) (34)

Now we have found that u is constant in a ball of radius 2r0; we would like
to extend this result to the whole domain. So let y ∈ Ω be arbitrary. Then there
is a sequence of balls Bi := B(xi, ri) for i = 0, . . . , N such that B(xi, 4ri) ⊂ Ω,
and Bi−1 ∩ Bi 6= ∅ for i = 1, . . . , N , and that y ∈ BN . Since B0 ∩ B1 6= ∅, and
since we have already shown that u = M on B(x0, 2r0), we thus have that

sup
B1

u = M

and hence by the same argument as before, we get that u = M on the ball
B(x1, 2r1). Evidently we can iterate this process for each ball to obtain that

u = M on B(xN , 2rN )

Since y ∈ B(xN , rN ), we get that u(y) = M , and since y ∈ Ω was arbitrary, we
get that u ≡ M on all of Ω.

One last result of the Harnack inequality is the following.

Theorem 7. Let u be a bounded weak solution to Lu = 0 defined on all of Rn,
where again L has measurable coefficients aij that satisfy the ellipticity condition

λ|ξ|
∑

i,j

aij(x)ξiξj , |aij(x)| ≤ Λ

for some constants 0 < λ ≤ Λ < ∞, and all x, ξ ∈ R
n. Then u is a constant

function.

Proof. Since u is bounded, we know that its supremum and infimum over R
n

are finite, and so if α is an constant such that

α < inf
Rn

u

then we know that u−α is a positive subsolution to Lu = 0 on all of Rn. Thus
we know that for any R > 0 and such an α,

0 ≤ sup
B(0,R)

−α ≤ c

[

inf
B(0,R)

u− α

]

Therefore, taking the limit as R → ∞, we get that α = infRn u. We thus have
that

0 ≤ sup
Rn

u− α ≤ c
[

inf
Rn

−α
]

= 0

which implies that u is constant on all of Rn.
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5 Regularity for variational problems

We will prove a special case of de Giorgi’s work [1], again following Jost [3].
The focus will be on elliptic Euler-Lagrange equations, and the main result is
the following; the proof of which will take considerable work.

Theorem 8. Let F : Rn → R be a C∞ function satisfying the following for
some constants K,Λ < ∞ and λ > 0 for all y ∈ R

n:

(i)
∣

∣

∣

∂F
∂yi

(y)
∣

∣

∣ ≤ K|y| for each i = 1, . . . , n

(ii) λ|ξ|2 ≤∑i,j
∂2F (y)
∂yi∂yj

ξiξj ≤ Λ|ξ|2 for all ξ ∈ R
n

and let Ω ⊂ R
n be a bounded domain. Let u ∈ W 1,2(Ω) be a minimizier of the

variation problem

I(v) :=

ˆ

Ω

F (Dv(x))dx

In particular, for all φ ∈ H1,2
0 (Ω), we have that

I(u) ≤ I(u+ φ) (35)

Then u itself is a C∞(Ω) function.

The variational problem makes sense because (i) implies that F is bounded
by some constant multiple of (1+ |y|2), and since Ω is bounded this implies that
for any v ∈ W 1,2(Ω), we have that

I(v) =

ˆ

Ω

F (Dv) < ∞

So we first get the Euler-Lagrange equations for the minimizer of the functional
I. In the rest of the problem we will use the notation Fyi

:= ∂F
∂yi

.

Lemma 6. In the settings of Theorem 8, we have for all φ ∈ H1,2
0 (Ω) that

ˆ

Ω

n
∑

i=1

Fyi
(Du)Diφ = 0 (36)

where Du is the vector Du = (D1u1, . . . , Dnun).

Proof. By property (i) in the referred theorem, we have that

ˆ

Ω

n
∑

i=1

Fyi
(Dv)Diφ ≤ nK

ˆ

Ω

|Dv||Dφ| ≤ dK ‖Dv‖L2 ‖Dφ‖L2 < ∞

Thus by the Lebesgue differentiation theorem we can differentiate through the
integral sign to compute

d

dt
I(u+ tφ) =

ˆ

Ω

n
∑

i=1

Fyi
(Du+ tDφ)Diφ (37)
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Since u is the minimizer, this implies that

d

dt
I(u+ tφ)|t=0 = 0 (38)

Substituting t = 0 into (37) with (38) gives the desired inequality.

With the help of this lemma, we now need only prove the following theorem:

Theorem 9. Let Aj : Rn → R be smooth functions for i = 1, . . . , n, satisfying
three conditions for some constants K,Λ < ∞ and positive constant λ > 0 for
all y ∈ R

n:

(i) |Ai(y)| ≤ K|y| for all i = 1, . . . , n.

(ii) λ|ξ|2 ≤∑n
i,j=1

∂Ai(y)
∂yj

ξiξj for all ξ ∈ R
n.

(iii)
∣

∣

∣

∂Ai(y)
∂yj

∣

∣

∣
≤ Λ

Then if u ∈ W 1,2(Ω) is a weak solution to
∑

∂xjA
j(Du) = 0 in Ω ⊂ R

n, i.e.,

for all φ ∈ H1,2
0 (Ω) we have

ˆ

Ω

n
∑

i=1

Ai(Du)Diφ = 0 (39)

Then u ∈ C∞(Ω).

We will prove this theorem after a few lemmas. We will see that the most
essential part of the proof relies on Theorem 5, which we recall were initially
proved by de Giorgi and Nash.

Lemma 7. Assuming the setup of Theorem 9, for any X ⊂⊂ Ω we have that
u ∈ W 2,2(X), and the inequality

‖u‖W 2,2(X) ≤ c ‖u‖W 1,2(Ω)

where c depends on λ,Λ, and dist(X, ∂Ω).

Proof. Let ej denote the j-th unit vector in R
n, and let h be such that

|h| < dist(suppφ, ∂Ω)

so that φk,−h(x) := φ(x− hek) ∈ H1,2
0 (Ω). We then have that

0 =

ˆ

Ω

n
∑

i=1

Ai(Du(x))Diφk,−h(x)dx =

ˆ

Ω

n
∑

i=1

Ai(Du(x))Diφ(x− hek)dx

=

ˆ

Ω

n
∑

i=1

Ai(Du(y + hek))Diφ(y)dy

=

ˆ

Ω

n
∑

i=1

Ai((Du)k,h)Diφ

17



We therefore have, by subtracting (39) from the above, that

ˆ n
∑

i=1

[

Ai(Du(x+ hek))−Ai(Du(x))
]

Diφ(x) = 0 (40)

We therefore have that for a.e. x ∈ Ω,

Ai(Du(x+ hek))−Ai(Du(x)) =

ˆ 1

0

d

dt
Ai(tDu(x+ hek) + (1− t)Du(x))dt

(41)

=

ˆ 1

0





d
∑

j=1

Ai
yj
(tDu(x+ hek) + (1− t)Du(x))Dj(u(x+ hek)− u(x))



 dt

We can now define coefficients aijh as the following:

aijh (x) :=

ˆ 1

0

Ai
yj
[tDu(x+ hek) + (1− t)Du(x))] dt

We can then use (??) to rewrite (48) as
ˆ

Ω

∑

i,j

aijh (x)Dj

(

∆h
ku(x)

)

Diφ(x)dx = 0 (42)

where ∆h
ku(x) is notation for the forward difference

∆h
ku(x) :=

u(x+ hek)− u(x)

h

Notice that the coefficients aijh also satisfy the ellipticity conditions. Then let
η ∈ C1

0 (X
′) where X ′ is such that

X ⊂⊂ X ′ ⊂⊂ Ω

with both of dist(X ′, ∂Ω) and dist(X, ∂X ′) greater than 1
4 dist(X, ∂Ω), such

that η is bounded as follows:
0 ≤ η ≤ 1

η(x) := 1 for x ∈ X

|Dη| ≤ 8

dist(X, ∂Ω)

and |2h| < dist(X ′, ∂Ω). We then continue with (??) to deduce that

λ

ˆ

Ω

|D∆h
ku|2η2 ≤

ˆ

Ω

n
∑

i,j=1

aijh
(

Dj∆
h
ku
)

(Di∆
h
ku)η

2

= −
ˆ

Ω

n
∑

i,j=1

aijh Dj∆
h
ku · 2η (Diη)∆

h
ku

18



But from here we can apply Young’s inequality to get that the above is bounded
by, for any ε > 0,

. . . ≤ εΛ

ˆ

Ω

|D∆u
k |2 +

Λ

ε

ˆ

Ω

|∆h
ku|2|Dη|2

In particular, we can take ε = λ/2Λ to get that

ˆ

Ω

|D∆h
k |2η2 ≤ c

ˆ

X′

|∆h
ku|2 ≤ c

ˆ

Ω

|Du|2

Therefore we have shown that
∥

∥D∆h
ku
∥

∥

L2(X)
≤ c ‖Du‖L2(Ω). We thus deduce

that D2u ∈ L2(X), and hence

∥

∥D2u
∥

∥

L2(X)
≤ c ‖Du‖L2(Ω) (43)

It follows that u ∈ W 2,2(X), as was to be shown.

Note that ∆h
k is an approximation to the derivative, so that in the limit as

h → 0, if we let aij and v be defined as

aij(x) = Ai
yj
(Du(x))

v = Dku

Then we get that

ˆ

Ω

n
∑

i,j=1

aij(x)DjvDiφ = 0 for all φ ∈ H1,2
0 (Ω)

Therefore, applying Theorem 5 to v, we get the following lemma.

Lemma 8. Assuming the conditions of Theorem 5, we have that Du ∈ Cα(Ω)
for some Hölder exponent α ∈ (0, 1). In particular, this means that

u ∈ C1,α(Ω)

for some 0 < α < 1.

Therefore for each k = 1, . . . , n, we have that v = Dku is a solution to the
divergence-type equation

n
∑

i,j=1

Di

(

aij(x)Djv
)

= 0 (44)

where te coefficients aij(x) again satisfy the ellipticity requirements

λ|ξ|2 ≤
n
∑

i,j=1

aijξiξj , |aij(x)| ≤ Λ
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for all ξ ∈ R
n and x ∈ Ω. But by the above lemma, we know that since the

Ai are smooth and Du is Hölder continuous, we also know that the coefficients
aij are Hölder continuous as well. So in order to prove Theorem 9, we need to
develop some results for these particular types of equations. We will bring in a
few lemmas in order to do so. The first of which is known as the Caccioppoli
inequality.

Lemma 9. Let (Aij), i, j = 1, . . . , n be a matrix such that |Aij | ≤ Λ for each
i, j as well as

λ|ξ|2 ≤
n
∑

i,j=1

Aijξiξj

for all ξ ∈ R
n. Say u ∈ W 1,2(Ω) is a weak solution to the differential equation

n
∑

i,j=1

Dj(A
ijDiu) = 0 (45)

inside Ω. Then for any x0 ∈ Ω and radius r with r < R < dist(x0, ∂Ω), we have
that

ˆ

B(x0,r)

|Du|2 ≤ c

(R− r)2

ˆ

B(x0,R)\B(x0,r)

|u− k|2 (46)

for any k ∈ R.

Proof. We define a cut-off function η ∈ H1,2
0 (B(x0, R)) by confining 0 ≤ η ≤ 1

with the following conditions

η = 1 on B(x0, R) ⇒ Dη ≡ 0 on B(x0, R)

|Dη| ≤ 2

R− r
Then let φ be a test function defined by

φ = (u− µ)η2

so that we can get

0 =

ˆ

Ω

n
∑

i,j=1

AijDiuDj

(

(u− µ)η2
)

=

ˆ

Ω

n
∑

i,j=1

AijDiuDjuη
2 +

ˆ

Ω

2

n
∑

i,j=1

AijDiu(u− µ)ηDjη

From this we can use the fact that we are dealing with elliptic coefficients and
the fact that Dη = 0 on the ball B(x0, r) to deduce from Young’s inequality
that

λ

ˆ

B(x0,R)

|Du|2η2 ≤
ˆ

B(x0,R)

n
∑

i,j=1

AijDiuDjuη
2

≤ εΛn

ˆ

B(x0,R)

|Du|2η2 + Λ

ε
n

ˆ

B(x0,R)\B(x0,r)

|Dη|2|u− µ|2
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for any ε > 0. In particular, we can take ε = 1
2

λ
Λn to get that

ˆ

B(x0,R)

|Du|2η2 ≤ c

(R− r)2

ˆ

B(x0,R)\B(x0,r)

|u− µ|2

Using the fact that
´

B(x0,r)
|Du|2 ≤

´

B(x0,R)
|Du|2η2, the lemma is now proved.

We now will show the Campanato inequalities.

Lemma 10. Under the setting of Lemma 9, we also have the following two
inequalities.

ˆ

B(x0,r)

|u|2 ≤ c3

( r

R

)n
ˆ

B(x0,R)

|u|2 (47)

ˆ

B(x0,r)

∣

∣

∣u− uavgB(x0,R)

∣

∣

∣

2

≤ c4

( r

R

)n+2
ˆ

B(x0,R)

∣

∣

∣u− uavgB(x0,R)

∣

∣

∣

2

(48)

Proof. It is of no loss of generality to assume that r < R
2 . So choose k > n; by

the Sobolev embedding theorem, we then have that

W k,2(B(x0, R)) ⊂ C0(B(x0, R))

So u ∈ W k,2(B(x0,
R
2 )), and hence we have

ˆ

B(x0,r)

|u|2 ≤ c5r
n sup

B(x0,r)

|u|2 ≤ c6
rn

Rn−2k
‖u‖Wk,2(B(x0,

R
2 ))

≤ c3
rn

Rn

ˆ

B(x0,R)

|u|2

We therefore have (47). Since the equation in question has constant coefficients,
we also know that Du is a solution, so that when r < R

2 we get that

ˆ

B(x0,r)

|Du|2 ≤ c7
rd

Rd

ˆ

B(x0,
R
2 )

|Du|2 (49)

and so by the Poincarè inequality, we get that
ˆ

B(x0,r)

|u− uavg|2 ≤ c8r
2

ˆ

B(x0,r)

|Du|2 (50)

Lemma 9 then implies
ˆ

B(x0,
R
2 )

|Du|2 ≤ c9
R2

ˆ

B(x0,R)

|u− uavg|2 (51)

The inequalities (49), (50), (51) together prove the lemma.

Using Campanato’s inequalities, we can derive the desired regularity result.
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Theorem 10. Let aij(x) be Cα functions on Ω ⊂ R
n for i, j = 1, . . . , n, satis-

fying the elliptic bounds

λ|ξ|2 ≤
n
∑

i,j=1

aij(x)ξiξj , |aij(x)| ≤ Λ

for each ξ ∈ R
n and x ∈ Ω, and i, j = 1, . . . , n, for some 0 < λ ≤ Λ < ∞. We

then have that any weak solution v to

n
∑

i,j=1

Dj

(

aij(x)Div
)

= 0 (52)

is a C1,α′

(Ω) function for any α′ ∈ (0, α).

Proof. For arbitrary x0 ∈ Ω we rewrite aij as

aij = aij(x0) +
(

aij(x)− aij(x0)
)

Then if we define Aij := aij(x0), equation (??) turns into

n
∑

i,j=1

Dj(A
ijDiv) =

n
∑

i,j=1

Dj

(

(aij(x0)− aij(x))Div
)

=

n
∑

j=1

Dj(f
j(x))

where we define f j as the sum

f j(x) :=
d
∑

i=1

(

(aij(x0)− aij(x))Div
)

(53)

We therefore have the following equality for each φ ∈ H1,2
0 (Ω):

ˆ

Ω

n
∑

i,j=1

AijDivDjφ =

ˆ

Ω

n
∑

j=1

f jDjφ (54)

From here, we proceed by taking some ball in B(x0, R) ⊂ Ω, and letting w ∈
H1,2 be the weak solution inside the ball to

n
∑

i,j=1

Dj(A
ijDiw) = 0 inside B(x0, R); w ≡ v on ∂B(x0, R) (55)

Such a function exists by the Lax-Milgram lemma. Then we know that w is the
solution to the differential equation for all φ ∈ H1,2

0 inside the ball:

ˆ

B(x0,R)

n
∑

i,j=1

AijDiwDjφ = 0 (56)
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Recall that we are trying to find some z = w − v such that

B(φ, z) : =

ˆ

∑

AijDizDjφ = −
ˆ

∑

AijDivDjφ

=: F (φ)

for all φ ∈ H1,2
0 (B(x0, R)).

Now, noting that (55) is a linear differential equation with constant coef-
ficients, we know that w is a solution implies that Dkw is as well for each k.
Thus we get that

ˆ

B(x0,r)

|Dw|2 ≤ c10
( r

R

)n
ˆ

B(x0,R)

|Dw|2 (57)

and since w and v are equal on the boundary of the ball B(x0, R), we can set
φ = v − w to be a test function in (56) to get that

ˆ

B(x0,R)

n
∑

i,j=1

AijDiwDjw =

ˆ

B(x0,R)

n
∑

i,j=1

AijDiwDjv (58)

We then use the Cauchy-Schwarz inequality together with (??) and (??) to get
that

ˆ

B(x0,R)

|Dw|2 ≤
(

nΛ

λ

)2 ˆ

B(x0,R)

|Dv|2 (59)

So then (54) and (56) give us that for any φ ∈ H1,2
0 (B(x0, R)), we have

ˆ

B(x0,R)

n
∑

i,j=1

AijDi(v − w)Djφ =

ˆ

B(x0,R)

n
∑

i,j=1

f jDjφ

Since this holds for any φ, we can take φ := v − w to get that

ˆ

B(x0,R)

|D(v − w)|2 ≤ 1

λ

ˆ

B(x0,R)

n
∑

i,j=1

AijDi(v − w)Dj(v − w)

=
1

λ

ˆ

B(x0,R)

n
∑

j=1

f jDj(v − w)

≤ 1

λ

[

ˆ

B(x0,R)

|D(v − w)|2
]1/2





ˆ

B(x0,R)

n
∑

j=1

|f j |2




1/2

(by Cauchy-Schwarz)

We thus have that

ˆ

B(x0,R)

|D(v − w)|2 ≤ 1

λ2

ˆ

B(x0,R)

n
∑

j=1

|f j |2 (60)
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Putting all of the previous inequalities together, we have by (57) and (59) that
for any 0 < r ≤ R,

ˆ

B(x0,r)

|Dv|2 ≤ 2

ˆ

B(x0,R)

|Dw|2 + 2

ˆ

B(x0,R)

|D(v − w)|2

≤ c11

( r

R

)d
ˆ

B(x0,R)

|Dv|2 + 2

ˆ

B(x0,R)

|D(v − w)|2

Therefore we have that
ˆ

B(x0,r)

|D(v − w)|2 ≤
ˆ

B(x0,R)

|D(v − w)|2 (since r ≤ R)

≤ 1

λ2

ˆ

B(x0,R)

n
∑

j=1

|f j |2 (by (60))

≤ 1

λ2
sup
i,j

∣

∣aij(x0)− aij(x)
∣

∣

2
ˆ

B(x0,R)

|Dv|2 (by (53))

≤ CR2α

ˆ

B(x0,R)

|Dv|2 (since aij ∈ Cα)

(61)

Finally, this means that we have the good estimate

ˆ

B(x0,R)

|Dv|2 ≤ γ
[( r

R

)n

+R2α
]

ˆ

B(x0,R)

|Dv|2 (62)

We need only worry about the R2α term in the above. We can make this term
bounded by the following lemma.

Lemma 11. Let σ(r) be a positive increasing function such that for any 0 <
r ≤ R ≤ R0 with µ > ν and δ ≤ δ0(γ, µ, ν),

σ(r) ≤ γ
(( r

R

)µ

+ δ
)

σ(R) + κRν

If δ0 is small enough, then again for 0 < r ≤ R ≤ R0 we have that

σ(r) ≤ γ1

( r

R

)ν

σ(R) + κ1r
ν

where γ1 = γ1(γ, µ, ν) and κ1 = κ1(γ, µ, ν, κ).

Proof of Lemma. Let t ∈ (0, 1) and R < R0. By assumption, we thus have that

σ(tR) ≤ γtµ
(

1 + δt−µ
)

σ(R) + κRν

So let t be such that tλ = 2γtµ, with ν < λ < µ, and assume that δ0t
−µ ≤ 1.

We then have that
σ(tR) ≤ tλσ(R) + κRν
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We can continue this inequality iteratively to get for any m ∈ N,

σ(tm+1(R) ≤ tλσ(tmR) + κtmνRν

≤ t(m+1)λσ(R) + κtmνRν
m
∑

j=0

tj(λ−ν)

≤ γ0t
(m+1)ν [σ(R) + κRν ]

So let m ∈ N be large enough such that tm+2R < r ≤ tm+1R, and then we get
the desired inequality:

σ(r) ≤ σ
(

tm+1(R)
)

≤ γ1

( r

R

)ν

σ(R) + κ1r
ν

This lemma will allow us to deal with the R2α term in (62), but we will
prove one last lemma before doing so.

Lemma 12. Let f ∈ L2. Then if we denote fav as the average of f over the
ball B(x0, R), then we have that

ˆ

B(x0,R)

|f − fav|2 = inf
β∈R

ˆ

B(x0,R)

|f − β|2

Proof. The function F (β) :=
´

Ω
|g−β|2 is convex and differentiable since f ∈ L2.

Its derivative is given by

F ′(β) = 2

ˆ

Ω

(β − f)

and so F ′(0) = 0 when β = 1
vol(Ω)

´

Ω
f . Since F is convex, this critical point is

a minimizer of the functional.

Finally we return to the proof of Theorem 10. Let us use Lemma 11 in
equation (62) for 0 < r ≤ R ≤ R0 and R2α

0 ≤ δ0 to get that for any ε > 0,

ˆ

B(x0,R)

|Dv|2 ≤ c3

( r

R

)n−ε
ˆ

B(x0,R)

|Dv|2 (63)

Repeating this procedure, we get that

ˆ

B(x0,R)

|Dw − (Dw)avg|2 ≤ c4

( r

R

)n+2
ˆ

B(x0,R)

|Dw − (Dw)avg|2 (64)

where the average is taken over the ball B(x0, R). From Lemma 12, we also
have that

ˆ

B(x0,R)

|Dw − (Dw)avg|2 ≤
ˆ

B(x0,R)

|Dw − (Dv)avg|2
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By (58), this means that

ˆ

B(x0,R)

|Dw − (Dv)av|2 ≤ 1

λ

ˆ

B(x0,R)

n
∑

i,j=1

Aij (Diw − (Div)av) (Djw − (Djv)av)

=
1

λ

ˆ

B(x0,R)

n
∑

i,j=1

Aij(Diw − (Div)av)(Djv − (Djv)av)

+
1

λ

ˆ

B(x0,R)

n
∑

i,j=1

Aij(Div)av(Djv −Djw)

Since u− v ∈ H1,2
0 (B(x0, R)) and Aij(Div)av is constant the last term is zero,

and so by Cauchy-Schwarz we get that

ˆ

B(x0,R)

|Dw − (Dw)av|2 ≤ Λ2

λ2
n2

ˆ

B(x0,R)

|Dv − (Dv)av|2 (65)

So by Hölder inequality and (61), we get that

ˆ

B(x0,r)

|Dv − (Dv)av|2 ≤ 3

ˆ

B(x0,r)

|Dw − (Dw)av|2

+ 3

ˆ

B(x0,r)

|Dv −Dw|2 + 3

ˆ

B(x0,r)

[(Dv)av − (Dw)av]
2

≤ 3

ˆ

B(x0,r)

|Dw − (Dw)av|2 + 6

ˆ

B(x0,r)

|Dv −Dw|2

≤ 3

ˆ

B(x0,r)

|Dw − (Dw)av|2 + c5R
2α

ˆ

B(x0,r)

|Dv|2

(66)

where all the averages here are taken over the ball B(x0, r). Putting this all
together, (63), (64), (65), and (66) give us that

ˆ

B(x0,r)

|Dv − (Dv)av|2 ≤ c6

( r

R

)n+2
ˆ

B(x0,r)

|Dv − (Dv)av|2 + c7R
2α

ˆ

B(x0,R)

|Dv|2

≤ c6

( r

R

)n+2
ˆ

B(x0,R)

|Dv − (Dv)av|2 + c8R
n−ε+2α

We then use Lemma 11 to finally get that

ˆ

B(x0,r)

|Dv − (Dv)av|2 ≤ c9

( r

R

)n−ε+2α
ˆ

B(x0,R)

|Dv − (Dv)av|2 + c′rn−ε+2α

(67)

Campanato’s theorem thus proves the theorem.

We can now finally complete the proof of Theorem 9.
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Proof. Let v = Du and use Theorem 10 to deduce that v ∈ C1,α′

for any α′ < α
non-zero. Therefore we have that u ∈ C2,α′

for any 0 < α′ < α. We can then
differentiate with respect to xk and use that each of the derivatives

DiDku, j, k = 1, . . . ,m

satisfy the same equation, so that we can apply the theorem again to deduce
that D2u ∈ C1,α′′

, and so that u ∈ C3,α′′

. Evidently we can iterate this process
to deduce that u ∈ Ck,αk for each natural number k, with αk ∈ (0, 1) for all k.
This means u ∈ C∞.
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