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Abstract. We collect some basic results of functional analysis with applications to elliptic
partial differential equations in mind.
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1. The Banach fixed point theorem

A distance function, or a metric, on a set M is a function ρ : M×M → R that is symmetric:
ρ(u, v) = ρ(v, u), nonnegative: ρ(u, v) ≥ 0, nondegenerate: ρ(u, v) = 0 ⇔ u = v, and satisfies
the triangle inequality: ρ(u, v) ≤ ρ(u,w)+ρ(w, v). Then a metric space is a set with a metric.
If a sequence {un} in M satisfies ρ(un, u) → 0 as n → ∞ for some u ∈ M , we say that the
sequence converges to u, and write un → u in M . It is obvious that convergent sequences are
Cauchy, meaning that ρ(un, um) → 0 as n,m → ∞. In general, however, Cauchy sequences
do not have to converge in the space, as can be seen from, e.g, the example M = Q and
ρ(x, y) = |x− y|. If the metric space M is such that every Cauchy sequence converges to an
element of M , we call it a complete metric space. A mapping φ : M →W between two metric
spaces is called continuous if un → u in M implies φ(un)→ φ(u) in W . With % denoting the
metric of W , if

%(φ(u), φ(v)) ≤ kρ(u, v), u, v ∈M, (1)

with some constant k ∈ R, then we say that φ is Lipschitz continuous. In this setting, φ is
called a nonexpansive mapping if k ≤ 1, and a contraction if k < 1.

Theorem 1. Let M be a non-empty, complete metric space, and let φ : M → M be a
contraction. Then φ has a unique fixed point, i.e., there is a unique u ∈M such that φ(u) = u.

Proof. Uniqueness follows easily from nondegeneracy of the metric. For existence, starting
with some u0 ∈ M , define the sequence {un} by un = φ(un−1) for n = 1, 2, . . .. Then this
sequence is Cauchy, because

ρ(un, un+1) = ρ(φ(un−1), φ(un)) ≤ kρ(un−1, un) ≤ . . . ≤ knρ(u0, u1), (2)

and so

ρ(un, um) ≤ ρ(un, un+1) + . . .+ρ(um−1, um) ≤ (kn + . . .+km−1)ρ(u0, u1) ≤
knρ(u0, u1)

1− k
, (3)
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for n < m. Since M is complete, there is u ∈M such that un → u, which is a good candidate
for the fixed point we are looking for. Indeed, we have

ρ(u, φ(u)) ≤ ρ(u, un) + ρ(φ(un−1), φ(u)) ≤ ρ(u, un) + kρ(un−1, u)→ 0, (4)

as n→∞, showing that u = φ(u). �

2. A convex minimization problem

Let X be a vector space over R. Then a norm on X is a function ‖ · ‖ : X → R satisfying
the positive homogeneity: ‖αu‖ = |α|‖u‖, the triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖, and
a nondegeneracy condition: ‖u‖ = 0 ⇒ u = 0. Equipping X with a norm makes X a normed
space. Note that a norm naturally defines the corresponding metric ρ(u, v) = ‖u− v‖. Then
a complete normed space is called a Banach space.

The subset C ⊆ M of the metric space M is called closed if un → u in M with {un} ⊂ C
implies u ∈ C. The subset C ⊆ X of the linear space X is called convex if u, v ∈ C implies
λu+ (1− λ)v ∈ C for λ ∈ (0, 1).

Theorem 2. Let X be a Banach space, and let C ⊆ X be a closed convex set. Let E : C → R
be a continuous mapping satisfying

µ := inf
u∈C

E(u) > −∞, u, v ∈ C, (5)

and
E(12u+ 1

2v) + f(‖u− v‖) ≤ 1
2E(u) + 1

2E(v), u, v ∈ C, (6)

for some strictly increasing continuous function f : [0,∞) → [0,∞) with f(0) = 0. Then
there is a unique u ∈ C such that E(u) = µ.

Proof. For u, v ∈ C we have

µ ≤ E(12u+ 1
2v) ≤ 1

2E(u) + 1
2E(v)− f(‖u− v‖), (7)

which implies
f(‖u− v‖) ≤ 1

2E(u) + 1
2E(v)− µ. (8)

It is immediate that E has at most one minimizer in C.
Let {un} ⊂ C be a minimizing sequence of E in C, meaning that

E(un)→ µ. (9)

From (8) it follows that {un} is Cauchy, hence there is u ∈ X such that un → u. Since C is
closed we have u ∈ C, and E(u) = µ by continuity of E. �

3. Hilbert spaces

An inner product on a vector space H over R is a map 〈·, ·〉 : H×H → R that is symmetric:
〈u, v〉 = 〈v, u〉, positive definite: 〈u, u〉 ≥ 0, nondegenerate: 〈u, u〉 = 0 ⇒ u = 0, and linear
in both arguments. Such an H with an inner product is called an inner product space, or
sometimes a pre-Hilbert space. The inner product generates the norm ‖ · ‖ =

√
〈·, ·〉, thus

making H a normed (and therefore metric) space. A complete inner product space is called
a Hilbert space.

An important property of inner products is the Cauchy-Bunyakovsky-Schwarz inequality

〈u, v〉 ≤ ‖u‖‖v‖, u, v ∈ H, (10)

where H is a pre-Hilbert space. This can be proven by observing that

‖u‖2 + 2〈u, v〉t+ ‖v‖2t2 = 〈u+ tv, u+ tv〉 ≥ 0, (11)

so the discriminant D = 4〈u, v〉2 − 4‖u‖2‖v‖2 must be nonpositive.
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Exercise 1. Prove the parallelogram law

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2, (12)

as well as the polarization identity

4〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2, (13)

where u and v are elements of a Hilbert space.

One can show that a linear operator A : X → Y between two normed spaces is continuous
iff it is bounded, i.e., iff

‖A‖ = ‖A‖X→Y := sup
u∈X\{0}

‖Au‖Y
‖u‖X

<∞, (14)

where ‖A‖ is called the operator norm of A. We denote by B(X,Y ) the space of all bounded
linear operators between X and Y . A linear functional on X is simply a linear operator
mapping X to R. Then the dual of X, denoted by X ′ ≡ B(X,R), is the space of all bounded
linear functionals on X.

Exercise 2. Let X and Y be normed spaces. Show that

(a) a linear operator between X and Y is continuous iff it is bounded.
(b) the operator norm indeed defines a norm.
(c) B(X,Y ) is a normed linear space.
(d) if Y is Banach, so is B(X,Y ). In particular, X ′ is always Banach.

Theorem 3. Let H be a Hilbert space, and let C ⊆ H be a closed convex set. Let ` ∈ H ′,
and let A : H → H ′ be a bounded linear operator satisfying

(Au−Av)(u− v) ≥ α‖u− v‖2, u, v ∈ C, (15)

for some constant α > 0. Then the function

E(u) = (Au+ `)(u), u ∈ C, (16)

has a unique minimum in C.
Moreover, u ∈ C is the minimizer of E if and only if

(Au)(h) + (Ah)(u) + `(h) ≥ 0, for all h ∈ H such that u+ h ∈ C. (17)

Proof. Let us show that E satisfies the conditions of Theorem 2. For u, v ∈ C we have

E(u)− E(v) = (Au−Av)(u− v) + (Au−Av)v + (Av)(u− v) + `(u− v), (18)

so one can bound E(u) from below as

E(u) ≥ E(v) +α‖u− v‖2− (2‖A‖‖v‖+ ‖`‖) ‖u− v‖ ≥ E(v)− (2‖A‖‖v‖+ ‖`‖)2 /(2α). (19)

We also have

E(12u+ 1
2v) = (12Au+ 1

2Av)(12u+ 1
2v) = 1

2E(u) + 1
2E(v)− 1

4(Au−Av)(u− v), (20)

implying that
E(12u+ 1

2v) + α
4 ‖u− v‖

2 ≤ 1
2E(u) + 1

2E(v). (21)

The first part of the theorem is established.
For the second part, we write (18) as

E(u+ h) = E(u) + (Ah)(u) + (Au)(h) + `(h) + (Ah)(h), (22)

for u ∈ C and u+ h ∈ C. Since the last term is of second order in h, the minimality of E(u)
implies the property (17). The converse direction follows upon noting the positivity of the
last term. �
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Given a subset C ⊆ X of the linear space X, we call TC = {α(u− v) : u, v ∈ C,α ∈ R} the
tangent space of C. It is obvious that TC is a linear subspace of X. The subset C is called
an affine subspace of X if u, v ∈ C implies λu+ (1− λ)v ∈ C for λ ∈ R.

Corollary 4 (Symmetric elliptic equation). In addition to the conditions of the preceding
theorem, assume that C is an affine subspace of H, and that A satisfies

(Au)(h) = (Ah)(u), ∀u ∈ C, ∀h ∈ TC. (23)

Then there exists a unique u ∈ C satisfying

(2Au)(h) + `(h) = 0, for all h ∈ TC. (24)

Corollary 5 (Ritz-Galerkin approximation). In the setting of Theorem 3, suppose that the
minimizer u ∈ C of E is in the interior of C. Let C ′ ⊂ C be a closed convex set, and let
u+ h ∈ C ′ be the minimizer of E in C ′. Then h minimizes the quantity (Ah)(h) over the set
{h : u+ h ∈ C ′}.

Every u ∈ H defines a bounded linear functional via v 7→ 〈u, v〉. Let us denote this
correspondence by J : H → H ′, i.e., J(u)(v) = 〈u, v〉. The following corollary states that this
mapping J is invertible.

Corollary 6 (Riesz representation theorem). Let H be a Hilbert space and let f ∈ H ′. Then
there exists a unique u ∈ H such that

〈u, v〉 = f(v), v ∈ H. (25)

Moreover, we have ‖u‖ = ‖f‖.

In view of this result, we write the action f(u) of f ∈ H ′ on u ∈ H also as 〈f, u〉 or 〈u, f〉.

Corollary 7 (Orthogonal projection). Let C ⊂ H be an affine subspace of the Hilbert space
H, and let x ∈ H be given. Then there exists a unique y ∈ C satisfying

‖x− y‖ = inf
z∈C
‖x− z‖, (26)

and moreover this y is characterized by the condition

〈x− y, z〉 = 0, for all z ∈ TC. (27)

Theorem 8. Let H be a Hilbert space, and let f : H → H be a Lipschitz continuous map
satisfying

〈f(u)− f(v), u− v〉 ≥ α‖u− v‖2, u, v ∈ H, (28)

for some constant α > 0. Then there is a unique u ∈ H such that f(u) = 0.

Proof. Define the mapping φ : H → H ′ by φ(u) = u − ωf(u), where ω > 0 is a parameter
to be chosen later. Then φ(u) = u if and only if f(u) = 0, so the proof is established upon
showing that φ is a contraction for some choice of ω. By using the Lipschitz continuity and
the strong montonicty (28), we infer

‖φ(u)− φ(v)‖2 = ‖u− v‖2 + ω2‖f(u)− f(v)‖2 − 2ω〈f(u)− f(v), u− v〉
≤ (1 + β2ω2 − 2αω)‖u− v‖2,

(29)

where β > 0 is the Lipschitz constant of f . Now we see that, e.g., the choice ω = α/β2 ensures
that φ is a contraction. �

Corollary 9 (Lax-Milgram lemma). Let H be a Hilbert space, and let ` ∈ H ′. Let A : H → H ′

be a bounded linear operator satisfying

〈Au, u〉 ≥ α‖u‖2, u ∈ H, (30)

for some constant α > 0. Then there is a unique u ∈ H such that Au = `.
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4. Baire’s theorem and its consequences

In a metric space X with metric ρ, we define the ball centered at x ∈ X, of radius r, to be
the set Br(x) ≡ B(x, r) = {y ∈ X : ρ(x, y) < r}. A subset S ⊆ X is called open if for any
x ∈ S, there is ε > 0 such that Bε(x) ⊂ S. Then S is closed iff its complement X \S is open.
Indeed, S is not closed means that there is a sequence {xn} ⊂ S such that xn → x ∈ X \ S.
On the other hand, X \ S is not open means that there is some x ∈ X \ S and a sequence
{xn} ⊂ S such that xn → x. The following lemma clarifies to what extent continuity of a
function is determined by the metrics we put on the domain and target spaces.

Lemma 10. Let φ : X → Y be a map between two metric spaces. Then the followings are
equivalent.

a) φ is continuous.
b) Whenever U ⊂ Y is open, its preimage φ−1(U) = {x ∈ X : φ(x) ∈ U} is open.
c) The preimage of any closed U ⊂ Y is closed.

Proof. The parts b) and c) are easily seen to be equivalent, since φ−1(U) ∪ φ−1(Y \ U) = X
is a disjoint union. Now let φ be continuous, and let U ⊂ X be closed. Suppose that
{xn} ⊂ φ−1(U) is a sequence with xn → x ∈ X. Then from continuity we have φ(xn)→ φ(x),
and from closedness of U we infer φ(x) ∈ U . This establishes that a) implies c).

Suppose that b) holds. Then for any ε > 0 and y = φ(x) with x ∈ X, the preimage of
Bε(y) contains a ball Bδ(x) with δ = δ(ε, x) > 0. In other words, the δ-closeness in X implies
the ε-closeness in Y , which is continuity. �

It is immediate from the definition that the intersection of any collection of closed sets is
again closed. The closure S of a subset S ⊂ X is the intersection of all closed sets C ⊆ X
such that C ⊇ S.

Exercise 3. Show that S = {x ∈ X : {xn} ⊂ S and xn → x}.
Theorem 11 (Baire). Let X be a complete metric space, and let {Cn} be a countable collection
of closed subsets of X such that

⋃
nCn = X. Then at least one of Cn contains an open ball,

i.e., there exist n, x ∈ X, and ε > 0 such that Bε(x) ⊂ Cn.

Proof. Suppose that Cn does not contain any open ball, for any n. This means that any open
ball B in X contains a point from X \Cn, and so B∩(X \Cn) contains a nontrivial closed ball,
because X \ Cn is open. Applying this with B equal to a ball of radius 1, we obtain x1 ∈ X
and r1 ∈ (0, 1) such that B(x1, r1) ⊂ X \C1. Similarly, there are x2 ∈ X and r2 ∈ (0, 12) such

that B(x2, r2) ⊂ B(x1, r1)∩(X \C2), and so on, we get a sequence of balls B(xn, rn) such that

rn ∈ (0, 1n) and B(xn, rn) ⊂ B(xn−1, rn−1) ∩ (X \ Cn). In particular, we have xn ∈ B(xk, rk)
for n > k, hence {xn} is Cauchy, and by completeness, there is x ∈ X such that xn → x in

X. By closedness, we have x ∈ B(xn, rn), and since B(xn, rn) ⊂ X \Cn, we have shown that
there is x ∈ X such that x 6∈ Cn for all n. �

This proof can be slightly modified to get the following forms of the Baire theorem.

• A complete metric space cannot be written as a countable union of nowhere dense
sets.
• The intersection of a countable collection of open dense subsets of a complete metric

space is again dense.

Exercise 4. Prove the above statements.

Theorem 12 (Uniform boundedness). Let X be a complete metric space, and let F be a
collection of continuous functions f : X → [0,∞) such that

sup
f∈F

f(x) <∞, (31)
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for each x ∈ X. Then there is a nonempty open set B ⊂ X such that

sup
x∈B

sup
f∈F

f(x) <∞. (32)

In other words, pointwise boundedness of continuous functions on a complete metric space
implies uniform boundedness on a nonempty open set.

Proof. The sets

Cn =
⋂
f∈F
{x ∈ X : f(x) ≤ n}, (33)

are closed, and
⋃
nCn = X, so by Baire’s theorem at least one of Cn contains an open ball. �

Theorem 13 (Banach-Steinhaus). Let X and Y be a Banach and normed spaces, respectively,
and let A be a collection of bounded linear operators A : X → Y such that

sup
A∈A
‖Ax‖ <∞, (34)

for each x ∈ X. Then we have
sup
A∈A
‖A‖ <∞. (35)

In other words, pointwise boundedness of linear operators on a Banach space implies uniform
boundedness.

Proof. For each A ∈ A, define the function fA : X → [0,∞) by fA(x) = ‖Ax‖. We apply
Theorem 12 to the collection F = {fA : A ∈ A} to conclude that there is a ball Bε(z) with
ε > 0 (and z ∈ X) such that

α := sup
x∈Bε(z)

(
sup
A∈A
‖Ax‖

)
<∞. (36)

Now if x ∈ Bε(0), then we can bound ‖Ax‖ by using the triangle inequality as

‖Ax‖ = ‖A(z + x)−Az‖ ≤ ‖A(z + x)‖+ ‖Az‖ ≤ 2α. (37)

Finally, for arbitrary x ∈ X, a simple scaling argument gives

‖Ax‖ =
2‖x‖
ε

∥∥∥∥A( εx

2‖x‖

)∥∥∥∥ ≤ 4α

ε
‖x‖, (38)

meaning that ‖A‖ ≤ 4α/ε independent of A ∈ A. �

A mapping is called open if it sends open sets to open sets. Note that in view of Lemma
10, openness is “continuity in the wrong direction”, in the sense that if exists, the inverse of a
continuous mapping is open. To get some rough feeling of what open mappings do, if a set is
“expanding in all possible directions”, then the image of this process under an open mapping
will look similar, “expanding in all possible directions”. As an example of this behavior, if a
linear operator between normed spaces is open, it must be surjective. Indeed, under an open
linear mapping T : X → Y , an open neighborhood of 0 ∈ X goes to an open neighborhood
U of 0 ∈ Y , and for any y ∈ Y there is α 6= 0 such that αy ∈ U . The following theorem says
that the converse is also true when the two spaces are complete.

Theorem 14 (Open mapping). Let A : X → Y be a bounded linear operator between two
Banach spaces. Then A is surjective iff it is open.

Proof. Suppose that A is surjectve. This implies Y =
⋃
n∈NA(Bn(0)), and hence by Baire,

there is a nonempty ball Bδ(y) ⊂ Y and n ≥ 1 such that Bδ(y) ⊂ A(Bn(0)). By choosing
x ∈ X such that y = Ax, and ε > 0 so large that Br(x) ⊃ Bε(0), we can guarantee Bδ(y) ⊂
A(Bε(x)). By linearity, with α = δ/ε we have Bαr(Ax) ⊂ A(Br(x)) for all x ∈ X and all
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r > 0. If the inclusion did not have the closure in the right hand side, this statement is exactly
what we wanted.

Now we shall remove the closure. Let z ∈ Bαr(Ax), and fix some ε ∈ (0, 1). Then there is

x0 ∈ Br(x) such that ‖z − Ax0‖ < αε, which implies that z ∈ Bαε(Ax0) ⊂ A(Bε(x0)). This
means that there is x1 ∈ Bε(x0) such that ‖z −Ax1‖ < αε2. By iterating, we get a sequence
{xn} in X satisfying ‖xn − xn−1‖ < εn and ‖z − Axn‖ < αεn for n ∈ N. From the latter
property we have z = Ax∗ with x∗ = limxn, and from the former we infer ‖x∗‖ < r∗ :=
r+ ε/(1− ε), meaning that Bαr(Ax) ⊂ A(Br∗(x)). If we squeze this argument we can get the
result with r∗ = r, but what we have is already sufficient for establishing the theorem. �

In view of Lemma 10, the open mapping theorem implies that if the inverse A−1 exists,
then it must be continuous. Since continuity is equivalent to boundedness for linear operators
on normed spaces, we obtain the following.

Corollary 15 (Bounded inverse). Let A : X → Y be an invertible bounded linear operator
between two Banach spaces. Then the inverse A−1 : Y → X is bounded.

A map T : X → Y can be identified with its graph

graph(T ) = {(x, Tx) : x ∈ X} ⊂ X × Y. (39)

Suppose that (X, ρ) and (Y, σ) are complete metric spaces, and equip X × Y with the metric
ρ + σ. If T is continuous, obviously graph(T ) is closed, since (xn, Txn) → (x, y) in X × Y
implies y = Tx. In the linear world, the converse is also true.

Theorem 16 (Closed graph). Let A : X → Y be a linear operator between two Banach
spaces. Then A is bounded iff its graph is closed.

Proof. Suppose that graph(A) is closed in X × Y , i.e., that it is a Banach space. Define the
two operators π1 : graph(A) → X and π2 : graph(A) → Y by π1(x, y) = x and π2(x, y) = y,
respectively. It is clear that the both operators are bounded linear, and that π1 is invertible.
Since we have A = π2π

−1
1 , the claim follows from an application of Corollary 15 to π1. �
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