McGill University
Department of Mathematics and Statistics
Part A Examination
Applied Mathematics 8

Date: Friday, September 15, 1995
Time: 13:00 - 17:00 hrs

Answer any six of the nine questions.
Partial Differential Equations
1. An elastic membrane subject to uniform gas pressure satisfies the equation
Yu + P =d’Vy,

where a? and P are constants.

Find the displacement of a circular membrane of radius b, if it is clamped on the
circumference, i.e. Y(b,t) =0.

The initial displacement is f(r) and the initial velocity is g(r).

9. Obtain the Green’s function and then solve the general Neumann problem for a semi-

infinite bar Py oy
025;;——0—[=h(1,t); 0<z<oo, t>0
with (i) ¥(z,0) = f(z) and (i) ¥%:(0,t) = g(t). You may assume that a? is
constant.
3. Solve

Yz +¥yy =0 >0, y>0
¢(01 y) = TO
py(z,0) = h[y(z,0) - Ti]
ylin;o c/)(:l:, y) = To,

and interpret physically.



McGiILL UNIVERSITY
DEPARTMENT OF MATHEMATICS AND STATISTICS
PART A EXAMINATION
APPLIED MATHEMATICS (3

Date: Friday, May 10, 1996
Time: 13:00 - 17:00 hrs

The best SIX answers will account for your final grade

PARTIAL DIFFERENTIAL EQUATIONS
1. Use the method of characteristics to solve the PDE

Ou du , 2
y—az—mgy—zxyu,z>0, with u=z°ony=0,1<z<4

Indicate with a sketch the region of the zy-plane over which the solution of this
problem is determined uniquely.

2. The nonlinear equations of shallow water theory are

hs + uhg + huz = 0,
U + uuy + ghy =0,

where h is the height of the water above a horizontal bottom, u is its velocity and g is
the gravitational constant. Given that this system is totally hyperbolic, determine the
equation of the characteristics and the ODEs that apply along them. Finally, show
that the latter can be integrated to obtain Riemann invariants, i.e., quantities that
are constant along each characteristic.
One of several ways to proceed is the following. Form a linear combination of the
above ODEs, multiplying the first by A; and the second by Az, say. Then, choose
A; and A, such that in the combined equation both u and h are differentiated in the
same direction. Show that two such directions exist, namely, dz/dt = u+ (gh)'/? and,
hence, that the wave propagation speeds satisfy c? = gh.
Use any solution procedure with which you are comfortable, i.e., you do not have to
use the method outlined above.

3. Use a Fourier transform to obtain the Green’s function for Laplace’s equation in the
upper half plane y > 0, —o0 <z < 0.



be a (global) optimal solution of the program. Is it true that there exists u* in
R™ with only non-negative components such that (z*, u*) is a saddle point of the
Lagrangian

L(z,u) = f(z) + _Zu.-f"(:c) ?

Give a proof or a counter-example.

(iii) Does your answer to (ii) change if f is convex?

Partial Diffferential Equations

. Use the method of characteristics to solve the PDE

— 4+ 22— =—zu, with »(0,y)=y, 0<y<5.

Indicate with a sketch the region of the zy-plane over which the solution of this
problem is determined uniquely.

. For a linear PDE of the form

a(z, Y)Uzz + b(T, Y) sy + c(Z, Y)uyy + d(z, y)uz + e(z, y)uy + f(z,y)u = g(z,y)

the characteristics (if they exist) are solutions of the ODE

ﬁiﬂ_ b+ Vb2 — 4ac
dr 2a )

Classify the following PDEs, transform them to canonical form and then obtain their
general solution making use of the above information:

(1) sy + Yyuyy +uy =0; and

(ii) 'u'xx - 2uzy + 'u:yy = 1.

. Find the Green’s function and then solve the Neumann problem

&*tgs — Py = h(z,t); 0<z <00, t>0.

(i) ¥(z,0) = f(z) and (ii) [¥z(z,¢)]z=0 = q(t). (o? is a positive constant).

e—b2 /4a®

[ ]
. _ T
Useful information: / e='% cosbzdr = yme " T
0

2a

2



7. Given the I.V.P. problem

{y' = f(z,y)
y(0) =yo

consider the linear multi-step method:

Yi+a — Y5 + (Y43 — Yi41) = h[B(fi43 = fis1) + 7 fizal).

(a) Determine (o, 8,<y) such that the method has order 3.

(b) Determine whether the resultant method is stable, convergent or not.

8. Given the I.V.P. problem

{y, = f(xv y)
¥(0) =yo

Determine the absolute stable region (A) for the method

h
Yi+1 — Y = 5(3fj — fj-1).

9. Given the elliptic equation
U Tz + Uyy + U = 0

in the region as shown in Figure 1. A :j A B
the boundary conditions are
U(z,y) =y (z,y) € (AD)
U(z,y)=y (z,y) € (BC)

Uz.y) =1 (5,3) € (4B) D/ I |<c .
%Z—:O (z,y) € (DC) / h h X

(a) Set h = 3. Write down the finite difference scheme for the above defined B.V.P.
in a matrix form.

(b) Using the Jacobi iteration method twice, find the approximation numerical solu-
tion.

(c) Discuss the convergence of the iteration.



2. Consider the program

Minz;
s.t.
(P) Ty Tr= 0
T1—x9= 0.

(a) Construct the corresponding Lagrangian function (with the leading co-efficient
Ao = 1). Show that the Method of Lagrange does not identify the origin z* =
(0,0) as a candidate for a local optimum of (P). Why not?

(b) State a general second-order optimality condition that can be used in this sit-
uation to verify that a feasible point is an isolated local optimum. Using this
condition verify that the origin is an isolated local optimum. Using this condition
verify that the origin is an isolated local optimum for the program (P).

3. Solve the problem

in 19’:2 z)dr
Bgt_/()( + 2z)d
z(0)=z(1)=0

using the Euler-Lagrange equation.

PARTIAL DIFFERENTIAL EQUATIONS
4. Solve Laplace’s equation for the steady-state temperature distribtion in a circular
cylinder of radius a and height H subject to the following boundary conditions:
uz(r,0) = u(r,H) =0 and u(a,z) = 2.
Laplace’s equation in cylindrical coordinates is
190 ( au) 1 6% 0%

ror\"or ) T2 T2 =

5. Employ a Green’s function to convert the following boundary value problem into an
integral equation:

o2y" + 2y + (A2 - 1)y =0,

y(0) =y(1) =0.

(Hint: Dispose, temporarily, of the most troublesome term by treating it as a nonho-
mogeneous term.)

6. Consider the propagation of a nonlinear wave as described by
ug + uug +yu =0, u(z,0)= f(z),

where v is a positive constant. Make a rough sketch of the characteristics on an
rt diagram and show that wave breaking will occur eventually only if f/(z) < —v
somewhere.
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PARTIAL DIFFERENTIAL EQUATIONS

1. (a) Let D be a finite domain with piecewise smooth bounding surface S. Explain how
you would solve the problem

Viu = f(x); x€D.

subject to u = h(x), x € S. Further, if you know the eigenfunctionsassociated with
the domain, the Laplacian and the homogeneous Dirichlet boundary condition, what
more can you do?

(b) Let D be the square 0 < z < 1, 0 < y < 1. Obtain the solution of
u,=V3u+1 x€D

subject to u(x,0) =0; wu(x,t) =0; x € S. Give the dominant term in the solution
fort > 1.

2. Let D be the semi-infinite strip 0 < £ < 00, 0 < y < 1. Solve the problem

Viu=f(z) x€D

u= 0 aty=1,
u 1 atz =0,
u= f

(z) aty=0.

subject to

where 0
1, 1<z<2,
flz) = { :

0, elsewhere.




3. (a) Let f: R® — R be a twice continuously differentiable function. If V f(z*) = 0 and
V2f(z*) is positive definite, then z* is an isolated local minimum of f. Prove this
. statement. Is the reverse claim true? Give a proof or a counter-example.

(b) Using an optimality condition check whether z* = (1,0,0.5)7 is an optimal solution
of the program
Max z/z3
s.t.
Ty +129 <1

T + T2T3 Z 17 Ty 201 T2 ZO) T3 205

PARTIAL DIFFERENTIAL EQUATIONS

1. Show that the system
U +uu, =0
v+ uvy +vu, =0

is not totally hyperbolic. Be an optimist and show that, nonetheless, the system can still
be solved using the method of characteristics. The reason is that the first equation is
independent of the second. Take as initial conditions u(z,0) = f(z) and v(z,0) = g(z).

' 2. Suppose that we wish to solve the Poisson equation

V2u = h(z,y).

(a) Green’s theorem in two dimensions takes the form

ou ov
2, .2 — Z
//R(UV u —uVv)dédn ﬁ:‘ (Uan u8n> ds.

Letting v = G, the Green’s function, write the solution u(z,y) in terms of integrals
for the case lim wu=0.
z2+y2—00

1
(b) Derive the free-space Green’s function G = o log R explaining each step.
(c) Suppose that the region of interest is the half-plane z > 0 and du/dz = f(y) on the
boundary z = 0. Write down the solution for u(z,y) in terms of integrals involving
G(z,y;¢,m), f(y) and the non-homogeneous term in Poisson’s equation.

3. Transform the following PDE to canonical form and then solve it:

TUgzg + Ugy + Uz = 0.



A. Introduce a small artifical diffusivity term in the original equation, namely

b2

Uy + U, = hUy.

B. Apply the forward and central difference for discretizing the resulting equation.

(b) Derive the truncation error for the Lax-Wendroff (L-W) scheme. Is this scheme
consistent with the original PDE?

(c) Derive the amplification factor with Von Neumann stability analysis.

(d) Discuss the dispersion and dispassion of (L-W) method with different parameter p.



DIFFERENTIAL EQUATIONS

1. (a) Write down the definition of the Fourier transform and its inverse. Applying this to
an odd function derive the formulae for the Fourier sine transform and its inverse.

(b) Solve the following initial boundary value problem (in which & is a positive constant):

du 0*u

- = k— > > 0;
Ee (x,t) k@xQ (x,t), forx >0, t > 0;
u(0,t) = h(t), for t > 0;

u(z,t) and uy(x,t) — 0 as v — oo;
u(z,0) =0, for x > 0.

o 1
(Note: /0 e~ coswy dy = 5\/§e_“’2/4a).

2. Let T'(z,t) denote the ground temperature at depth z below the surface, at time t.
Suppose that the surface temperature varies with time in the form:

T(0,t) =Ty + Ap - coswt (t >0) (1)

where T} is the average temperature, Ay is the amplitude of temperature fluctuation,
and w is the frequency (Tp, Ag,w are known). Suppose that the temperature distribution
underground is subject to the heat conduction equation:

oT o*T
ot~ "Moxe 2)
and that, as + — o0
T— T, (3)

where T, is a constant to be determined.
Find

(a) the underground temperature distribution T'(z,t),
(b) T, the temperature in the deep underground,

(c) the depth z,, where the temperature fluctuation is reduced to 1% .



3. Consider an infinite non-homogeneous string, which is composed of two different materials
joined at x = 0. The displacements u; and uy of the string segments are subject to the
wave equations:

0? 0?
@—C%@ Ul(l’,t)zo, z <0
0? 0?
@—Cg@ uz(l’,t):(), x>0

Suppose that starting from ¢ = 0, there is an incoming right running wave

x
ul(yc,t):{ <I><t—01) v al

0 T > cqt

This incoming wave will be reflected at = = 0 and also transmitted into the region (x > 0).
Determine
(a) the transmission wave and the reflection wave,

(b) the transmission rate 7" and reflection rate R of the wave energy, supposing that the
wave energy is measured by its magnitude.



PARTIAL DIFFERENTIAL EQUATIONS

’ 4. Consider the initial value problem for the heat equation

u—Au = f inlR" x (0,00)
u = g onlR" x {t =0}.

(a) Setting f = 0, use the Fourier transform to find the fundamental solution of the
heat equation in IR".

(b) Extend your previous argument to derive a formula for the solution of the given
inhomogeneous problem.

(c) Does the solution make sense for f = 17 What is lim;,ou(z,t)?

[z{2

( A useful identity: emv=’ gy = e 4, t>0.)

1
(2t)n/2

)
(2m)™/2 Jn
‘5. Consider the boundary-value problem

—Lu, + %uy —u? = 0, inQ:={(z,y)|z >0,y >0},
u = g, onI':={(z,y)|z >0,y =0}.
(a) Use the method of characteristics to find u(z,y).

(b) Give a condition on g(z) which guarantees the existence of a unique continuously
. differentiable solution on all of €.

(c) Sketch the base characteristics in the (z,y) plane.

6. Consider the wave equation

u = wuy onlRx{t=0}

Uy = C*ug, inIR x (0,00)
ug = w onlRx {t=0}

(a) Derive the d’Alembert formula for the solution explicitly in terms of the initial
data up and u;.

(b) In case up and u; both vanish outside the interval (—L, L) show that the solution
always vanishes when |z| > L + ct, taking ¢ > 0.

L
(c) If in addition to the hypothesis in (b) one assumes that / ui(z)dxr = 0 show
L

that the solution also vanishes identically in the cone |z <ect-1L

(Hint: Draw pictures)




PARTIAL DIFFERENTIAL EQUATIONS

4. Consider the PDE below with given initial curve ¢ parametrized by t:
Uy +uy = 1
C: xo(t) =1, yolt) =t, wue(t)=1t/2, 0<t<1

(a) Write down the characteristic equations for this problem, and solve for u(z,y) by
the method of characteristics. Draw the base characteristics. For what regions of
points (z,y) € R? can you find a unique, continuously differentiable solution by
this method?

(b) Now suppose £ : zo(t) = 2, yo(t) = 2t, ug(t) = ¢, ¢ € [0,1]. Can you find a
solution to this new initial value problem by the method of characteristics? If so,
what is it?

5. Consider the boundary value problem posed on 2 C R*, a bounded, simply connected

region with smooth boundary I'. Find u € C?(Q2) N C*(Q) such that

Au—k*u = f, z€Q
’\UJF.% = g, z€l.

Here 71 is the outward normal on I', A,k are real constants, and f, g are continuous
functions.

(a) Under what conditions on A, if any, are you guaranteed unique solutions to this
BVP?

(b) State and prove a uniqueness theorem concerning solutions to this problem.

6. Use the Fourier Transform Method to solve the following boundary value problem of
the modified Helmholtz equation:

Upr + Uy — K*u = f(2,y), (z,y) € R?,
with the boundary condition:
u(z,y) = 0 as (|z|, |y]) — oo.

Here we assume that £ > 0 and that the given function f(z,y) has a Fourier Transform.
Hint: Use the following properties of the zeroth order Bessel function and modified
Bessel function:

Jo(z) = Jo(—=2) = 51;/0 expliz cos @] do,

Kokr) = _/0oo pJo(pr) dp

p2_+_k2 ’

and




PARTIAL DIFFERENTIAL EQUATIONS

4. (a) Solve the initial value problem
v+ cvg = f(z,t), v(z,0) = F(z), z€Rt>0,
where f and F' are specified continuous functions, and ¢ is a positive constant.

(b) Draw the base characteristics associated with the problem above.
(c) Find the solution explicitly when f(z,t) = zt, F(z) = sin(z).

5. Consider the following initial-boundary value problem: Find u € C%((0,1) x (0, 00)) U
CY([0,1] x [0, 00)) such that

U — gy = 0, 0<z<l,t>0,
(IBVP) u(z,0) = f(z) 0<z <,
uz(0,t) = wug(l,t)=0, t>0.

Here ¢ > 0 and [ > 1 are real constants and f is a given continuous function.

(a) State and prove a theorem concerning uniqueness of solutions to (IBVP).
(b) Solve (IBVP)
(c) Find limy, o0 u(z, t).

6. (a) Use Fourier transforms to find a representation formula for the solution u(z,t) of
the initial value problem

buy — ugy, = 0, x€eRt >0,
u(z,0) =g(z) <zeR

Here b is a positive constant. Clearly identify the fundamental solution (free-space
o0 . 2
Green’s function) . (HINT: / e e P dy = \/Ee_i?)
p

o<

(b) Solve the heat equation
U — Upe = 0, reRt>0,
u(z,0) =1 <zeR

(c) What happens in the case b < 0, g(z) = 1?

(d) Write down the fundamental solution for Schrodinger’s equation, iu; — uze = 0.
For which range of t is there a well defined solution in case the initial data satisfies

/ lg(y)|* dy < o0?

x




Applied Partial Differential Equations
Q1) Use the method of characteristics to solve the PDE
—+2$—Z=:1:e",y>0, withu=yonz=0, 0<y<5.

Indicate with a sketch the region of the zy-plane over which the solution is determined
uniquely. '

Q2) (a) Find a series solution of the following initial boundary value problem:

[ w(z,y,t) — Du(z,y,t) = 0, 0<z<L,0<y<Mt>0,
uz(0,y,t) = 0, O0<y<M,t>0,

) uz(L,y,t) = 0, 0<y<M,t>0,
uy(z,0,t) = 0, 0<z<L,t>0,
u(z,M,t) = 0, 0<z<L,t>0,

{ w(z,y,0) = zy 0<z<L0<y<M.

(b) What can you say about the convergence of the series?

(c) What happens to the solution as t — co?

Q3) Consider the following regular Sturm-Liouville eigenvalue problem in a bounded region
G € R®: find M, X such that

V.- (pVM)+gM =XpM  inG (1)
M =0, on 0G (2)

Here, p(z) > 0, p(z) > 0,¢q(z) > 0 in G. Consider the Rayleigh quotient I%ﬁal’ where

E(u) = / (PIVul2+qu?) do,  |lul2 = / o da.
G fe.

Prove the following:

e Each eigenvalue A, and the corresponding eigenfunction M, satisfy the relation-
ship

E(M,

(| Mnllf

~—

Ap =

e The minimum of the Rayleigh quotient over all admissable functions w(zx) is the

smallest eigenvalue A;:
E
A = min{ (“’3} ,
l[wll3

and the minimizer w,(x) is the corresponding eigenfunction M;(z).




Applied Partial Differential Equations

Q1) Consider the PDE

0 ( ,0u o ( ,0u 9 9
_ . — ) = 2
ax( ax)*“ay( ay) R

with boundary condition u(z,y) = z? on z%2+y? = 2. Write the weak form of the PDE.
Show that the PDE has a unique weak solution (i.e., prove existence and uniqueness
of solutions).

Q2) Let u(x,y) be a harmonic function on the bounded domain Q which lies in the first
quadrant of R? and is bounded by the two axes and the parabola y = 4 — z2. Suppose
also that along the boundary of , u(0,y) = 0, u(z, 4 ~1%) = 0 and u(z,0) = z(4—z?).
Show that on €, 0 < u(z,y) < z(4 — 2 — y?). State precisely any theorems you use.

Q3) (a) Use Fourier transforms to solve the following initial boundary value problem

u(z,t) = uge(z,t) + Que(z,t), forzeR, t>0,
u(z,0) = ud(z), for z € R.
where u°(z) € L2(R).

(b) Verify that |ju(-,?)]] < ||u°|| for all ¢ > 0 and that lim;_, |[u(, t)|| = 0, where ||u]|
denotes the norm in L*(R

Hint:/ zfz —p§ df [ _z2/4p

Q4) The initial value problem

2uug, +u; = 0
0 ifr>0

wz0) = {\/H if 7 < 0.

has a shock along a curve of the form z = Ct2. Find the solution and the precise
location of the shock.




Applied Partial Differential Equations
Q1) Show that the following initial value problem has at most one solution u(z,t):
uy = [p(T)ug), + f(z,t); ©€(0,L),t>0
u(0,) = g(t), us(L,t) = h(t)
u(z,0) = u®(z), w(z,0)=u'(x).

(You may assume any regularity you need for your argument).

Q2) Consider the PDE

Uy + Uy = 1.

Suppose the integral surface of the differential equation passes through the curve C
whose parametric equations are

(7)) = - y(r)=7, wulr)=7, 0<7<1L

(a) Check the non-characteristic condition. What can you infer about the existence
and uniqueness of solutions?

(b) Locate all solutions.

(c) Sketch the base characteristics for two solutions in the z — y plane, and indicate
carefully the region of validity of the solutions.

(d) Does the solution describe a shock or a rarefaction wave?

Q3) Let Q := {(r,0)|r <1, 0 <6 < 27} denote the open unit disk in R?, with boundary
C.

(a) Consider the boundary value problem

—Au=0,in Q, 8—u:s'111200nC.
: or

Show that this problem does not possess a weak solution.

(b) Now consider the generalized Neumann problem for Poisson’s equation:
ou
—Au=f in ), — =gonC.
ar

i. Write down the weak form of this problem, carefully identifying the solution
space H in which solutions will be sought. Ensure that if a weak solution
u € H exists, it will be unique.

ii. What conditions on f and g are necessary for a weak solution to this problem
to exist?

Q4) Find the Fourier transform of e~I*l. Use this to solve the integral equation

/00 e"l7=sly(s)ds = g()

—00

for wu.




Applied Mathematics, May 2006

Applied Partial Differential Equations Module

Problem 1) Consider Burger’s equation,
U + vty = 0,

with the following initial conditions:

u(z, 0) = 1 forlz| > 1
’ |z|  for |z| < 1.

Sketch the (weak) solution u(z,t) for all ¢ > 0. Identify the time of shock
formation and give an explicit parametrization s(t) of the shock (hint: try
a parametrization of the form s(t) = ¢t + 1+ C/t +1). Write down u(z,t)
explicitly for all (z,t) € R x (0,00).

Problem 2) Show that F(x,y) = ~3 In|(z/a1,y/as)— satisfies —LF(z,y) = do
Ta1Aa92
where the differential operator L is defined by

u 0%u
2 2
Lu = a5 + agayQ,

with a; and ay both positive. ( You may assume that E(z,y) = —1/27In |(zy)|
satisfies — A E(z,y) = d.)
Problem 3) (a) Find the Fourier transform of exp(—2|z|) for z € R.

(b) Use Fourier transforms to solve
Uge + 4ty = 0, reR0<y<l,

with u(z,0) = exp(=2|z|),u(z,1) = 0,u(z,y) =— 0 as |z] — oo,
uniformly in y.

Here, we define the Fourier transform of an L'(R") function, f,
as f(s) = (2_7%% Jgn €xp(—iz- s) f(z) dz. The inverse transform is defined via

~

() = s Jan explic - ) f(5) .




Applied Mathematics, May 2006

Problem 4) Let D be the unit disk in R?, 9D it’s boundary.

(a)

(b)

Show that the Neumann problem

- ANu=0,7€D, QE:L:E’EGD
on

has no solution v € C*(D) N CY(D).

Now consider

Ou .
—Nu. =0, e D, azjteu(:l,:ceaD, 0<e<< 1.

Find u.. Can one solve this problem using a regular perturbation series
in €7 Justify your answer carefully.

Numerical Analysis Module

Problem 1) For this question do not worry about issues of floating point error.

Problem 2)

(a)

(b)

(c)

(a)

Let A be a 2 x 2 real matrix. Give the entries of a real orthogonal
2 x 2 matrix @) such that QA is upper triangular. The entries of ¢ will
depend on the entries of A.

Let A be an n X n matrix, and suppose 1 < ¢ < j < n Using your
answer to part (a), give the entries a real orthogonal n x n matrix @
such that Q) A has its jith component equal to 0, and such that ()A only
differs from A in rows 7 and j. You do not need to justify your answer.

Using only matrices of the form described in (b), write down an algo-
rithm that computes the upper triangular matrix R of a QR factoriza-
tion of an n x n matrix A You do not need to justify your answer.

Consider approximating the solution to the linear system Az = b, where
A is non-singular, with the simple iterative method

2# D) = Bz® 4 f.

We say that the method is stable if ||B|| < 1 for some induced matrix
norm || - ||, that it is consistent if f = (I — B)A~1b, and that it is con-
vergent if 28 — A~1p for all z(%. Show that consistency and stability
imply convergence.

Let A = L + ¢F where L is non-singular upper triangular and E is
some matrix. Describe a consistent simple iterative method for solving
Az = b that costs only O(n?) flops per iteration. Show that for fixed
A and b your method is convergent when ¢ is small enough.




Part A- Beta Examination ' _ August 2007

Applied PDE Module
Problem 1) Consider the problem

-Vl vul] = fx) forxeq,
: y-vu(x) = g(x) forx € 0.

where € is a bounded domain with smooth boundary, v is the normal to the
boundary and a(z) is a positive differentiable function on the closure of €.

(a) State a necessary condition for this problem to have a solution.
(b) Assuming (a), prove that the above problem has at most one solution
in C2(2).
(c) Use the divergence theorem to motivate and then carefully specify the
weak formulation of this problem. , :
(d) Assuming the condition in (a), briefly outline the proof of the existence
- of weak solutions.

Problem 2) (a) Derive formulae for the solutions u(z,t) and v(z, t)v of the system

B + 38,0

. o
8 + 30 0, subject to u(z,0) = w)z),
t T

0, o(z,0) = %)

o

(b) Evaluate the solutions at (z,t) = (1,1) and (z,t) = (2,0.5) in the case
that .

o) 0 forz<0 s oy ) 2 forz<l
u(x)'“{2 forz20 M@=y frpzt

(c) Note that the solutions are identically constant over certain regions in
the (z,t)—plane. Sketch these regions. Verify that the Rankine Hugo-
niot condition holds across the boundary between the regions containing
(z,t) = (1,1) and (z,t) = (2,0.5).
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The forced vibration of an infinitely long uniform beam is described by
8u | 16%u
52 * o = wrP D)

where u(z,t) is the lateral deflection of the beam, and c, E, &I are constants.
The forcing P(z,?) is localized and impulsive, ie,

P(z,t) = 6(z)5(t)

where & denotes the Dirac measure.

Use Fourier transforms to find u(a: t), given that u(x 0) = 0. Evaluate all the
integrals, and interpret the results physically. ’

- You may use the identity

7= [ expl—tta — iga)de = —= exp(—s*/4a)
where a can be complex. '

Consider a solid sphere 2 C R? of radius a, centered at the origin. Let the
sphere have constant mass density 4. By Newton’s law, the gravitational force
F exerted by this sphere on a unit mass at point £ is given by

F§)=c ‘T( EF‘)dm

Associated with thls force is a grawtatmnal potential u, which is harmonic

outside £2, vanishes at mﬁmty, is C*(R?), and satisfies

AquF in Q.

(a) Evaluate the gravitational potential, which is defined by |

. . I‘L :
u(€) .—c/]Ra ¢ dzx.

(b) Evaluate the force F', by ﬁr_sf showing that F' = Vu.
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Partial Differential Equations

1. Find the solution v = u(z,t) of
2ztu, +up = u, u(x,0) = f(x)

where f € C'(—o0, o0) and prove that when f(0) = 0 one has lim;_..u(z,t) = 0.

1
2. Assume the fact that on R? A= = —474 in the distribution sense where

r
r = (2?2 + x% 4+ 22)~"/2. Now consider the operator Lu = a?0?u + a202u + a203u and
the function E(x1, 22, x3) = (Jc%/a% + x%/q% + 22/a2)~'/% where a;, a, and as are positive
constants and J; denotes partial differentiation wrt x;. Prove that

LE = —4rmajaqsa30

in the distribution sense.

3. Suppose €2 C R" is a bounded domain with smooth boundary. Prove that there is a constant
C > 0 depending only on €2 such that

lullz2@) < CllVullza), Yu € Hy(9).

4. Let {uy(z,t)} be a monotone sequence of solutions of heat equation u; — A,u = 0 in
R™ x (0,00). Suppose there is a point (xg,%y) € R™ x (0, 00) such that {u(zo, o)}, is
bounded. Prove that for any compact subset X' C R”, any 7" > 0, the sequence {uy(z, ) }32,
is uniformly convergent in K X [to, ¢, + T, and the limit function satisfies the heat equation.
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Partial Differential Equations

1. Show that the distribution 7y defined by

<Tn,p >= Nodz, ¢e CF(R"),
R’VL
where | |2 p
i 27"
N = — n = —_—
@) = G- T Tw)
is for n > 3 a fundamental solution of the Laplacian A in R", that is
ATy =9,

where  denotes the Dirac measure in R™. Hint: You may use without proof the following
lemma: If f € L'(R") and g € LP(R™), then f * g. — af in the L” norm, where

o= / gdr, g(e) = glefo)

2. Suppose that u(z,t) is C?for0 <t <T, z € R" and that u solves the wave equation
02— Au = 0.
Suppose furthermore that « = 0 = d;u on the ball
B ={(2,0)] |z — xo| <to},

contained in the hyperplane ¢ = 0, where 7o € R™ and 0 < ¢y < T'. Show that u vanishes
identically in the backward solid cone

Q= {(z,8)|0<t<tg, |x—xo| <to—t}.

Hint: Calculate the time derivative ‘il—]f of the “energy”

1

B() = 5 [ [0 +[V.uflds

where
By ={x||x —xo| < tg—t},

and show that
dE
<0,

dat =
using the divergence theorem. Impose then the Cauchy data.

4
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. The governing equations for the one-dimensional, isentropic flow of a compressible gas are

v—1

ct+ucy + cuy = 0

Uy + uUUy + ce,= 0,

v—1

where c, u, and -y are, respectively, the sound speed, the velocity in the x direction and the
ratio of specific heats (a constant).

Try to find a solution of this system using the method of characteristics. You may use any
procedure with which you are comfortable, but one approach is the following. Form a linear
combination of the two PDEs by multiplying the second one by A and adding it to the first.
Then, choose A such that in the combined equation both ¢ and w are differentiated in the
same direction (i.e., dx/dt is the same for c as it is for u).

For each real value of ), determine the ODE that applies along the characteristics. Finally,
obtain integrals (“Riemann invariants™) that are constant along each characteristic. Use two
or three adjectives to classify the above system.

. Find a similarity solution of the following PDE using the procedure outlined in (a) and (b)
below:
A=A +A, —o<z<oo, t>0.

(a) Noting the resemblance of the above equation to the heat equation, make the change of
independent variables (¢, z) — (t,n), where n = 2% /4t.

(b) Taking advantage of its linearity, solve the resulting PDE by employing the separation of

variables
A(t,m) = f(t)e™.

(c) Employ a Fourier transform to solve the same problem and take as initial condition
A(x,0) = f(x). For what choice of f(x) will you recover the answer obtained in part (b)?
(See next page for Fourier transform table.)
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Partial Differential Equations Module

[PDE. 1]

(a) Using the method of characteristics, solve

ug + (ug)? = 0, u(z,0) = 2°.

(b) Find the entropy solution to Burgers’ equation u; + uu, = 0 with initial condition
1 ifr<—1
1/2 if —1l<a<1
3/2 ifl<az<?2
1 if x> 2.

u(z,0) =

[PDE. 2]
(a) Write down the Fundamental Solution ®(-) to —A on R? and write down the PDE it solves in the sense
of distributions.
(b) If Q@ C R3 is a bounded open set with smooth boundary, define the usual Green’s function (for ho-
mogeneous Dirichlet boundary conditions) for —A on € in terms of ® and a corrector function. For
f € C2(), write the solution to

—Au=finQ u =0 on 9N

in terms of the Green’s function.

(c) For the rest of this question, we let the dimension n = 1. Find the Fundamental Solution ®(-) of — 1D
2

d
Laplacian on R (i.e. —=—). Prove that if f € C2(R), then the solution to

daz?
d2
D @), e (ooi00),
is given by
uw) = [ @@y f)dy
d2
(d) Find the Green’s function for ——— on (—1,1) with Dirichlet boundary conditions (i.e. associated with

x
boundary conditions u(—1) = u(1) = 0).
2

d
(e) Does there exist a Green’s function (often referred to as a Neumann function) for ke (—1,1) with
x

Neumann boundary conditions?
[PDE. 3]
Let € be a bounded. connected open set in R3 with smooth boundary 99 which is the union of two nonempty
disjoint surfaces, say 92 = 'y U T'y. Suppose f € L2(Q).
(a) Consider the BVP
—Au=f in €,

0
872:0 on F17
u=20 on I'5.

Write down a weak formulation of this BVP and explain why it is the weak formulation.
Hint: The Hilbert space to work in is

H= {u € H'(Q) | u =0 in the sense of trace on Fo}.

Note that the Neumann condition is absent from the space but it will (naturally!) come in by noting
that HJ(Q2) C H, so if a statement holds for all v € H, it certainly holds for all v € Hg(Q).

(b) Prove that for all f € L?(f2), there is a weak solution u € H. You may assume that the usual Poincaré
inequality holds on H (it does).
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[PDE. 4]

Let Q be a bounded, connected open set in R"™ with smooth boundary. Let X denote the closed subspace of
HY(Q) that does NOT contain nonzero constant functions. Using the compactness of the embedding of H'(Q)
into L2(12), prove that there exists a constant C' < oo (independent of u) such that for u € X,

/|u|2dx§0/|Du\2dx.
Q Q
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[PDE. 1]
(a) Using the method of characteristics, solve
LUz + 2yuy + u, = 3u, u(z,y,0) = g(z,y).
(b) Consider the Burgers equation u; + uu, = 0 with initial data
u(z,0) =0 if |z| > 1 and u(z,0) = 1—|z| if |z| < 1.

By sketching the characteristics, describe the entropy solution, i.e. the solution with the property that
at its discontinuities (shocks), the entropy inequality is satisfied. Clearly indicate on your sketch of
the characteristics where the shock is. Is the shock a line? What is the equation of the shock? What
happens to u(-,t) as t — co?

[PDE. 2]
Define the Green’s function G(z,y) for the Dirichlet problem involving —A in three space dimensions and a

region 2. What can you say about the sign of G i.e. is it always positive, always negative, the answer depends
on the source point, just can’t say? Prove your answer.

[PDE. 3]
Let ©Q be a connected subset of R™ with smooth boundary.
(a) Give a definition for a weak solution u € H'(f2) of the Neumann problem
—Au=f in Q, @:OOHaQ.
ov
Clearly motivate why this is a natural definition.
(b) Prove that there is a weak solution to this problem iff

fdx =0.
Q

[PDE. 4]
Let 2 be a bounded domain in R™ with smooth boundary.

(a) For f € L?(£2), show that there exists a uy € H}(Q) such that
(frup)rz(o) = H“f”?{g(g)-
Hint: For v € HZ () define the functional
Ty(0) = (f0) e = | S@hola)da,
Q
Show that T is a bounded linear functional and apply the Riesz representation theorem.
(b) The H~! norm of f is given by
£ I3r-10) = ||uf||§{g(n)-

Of course this norm applies to a wider class of distributions which include L?, but using just the
restriction to L2, prove that L2?(f2) is compactly embedded in H~1()). You may use the fact that
HL(Q) is compactly embedded in L2(2).



