MATH 581 ASSIGNMENT 5

DUE FRIDAY MARCH 16

1. Prove the followings. The results in b) and c) are part of the *Paley-Wiener theorem*. a) For a compactly supported distribution $u \in \mathscr{E}'$, its Fourier transform is equal to

$$\hat{u}(\xi) = \langle u(x), e^{-i\xi \cdot x} \rangle$$

where the notation u(x) is to indicate that the distribution u acts on $e^{-i\xi \cdot x}$ as a function of x. The above expression also makes sense for $\xi \in \mathbb{C}^n$, defining an entire analytic function \hat{u} . This is called the *Fourier-Laplace transform* of u.

b) In this setting, if u is supported in a ball of radius r centred at the origin, then \hat{u} satisfies the growth estimate

$$|\hat{u}(\xi)| \le C(1+|\xi|)^N e^{r|\mathrm{Im}\,\xi|},$$

with some constants C and N. Hence the Fourier-Laplace transform of a compactly supported distribution is an entire function of growth order at most 1.

c) If $u \in \mathscr{D}$ and is supported in a ball of radius r centred at the origin, then for every integer N there is a constant C_N such that

$$|\hat{u}(\xi)| \le C_N (1+|\xi|)^{-N} e^{r|\operatorname{Im}\xi|}.$$

Hence the Fourier-Laplace transform of a compactly supported smooth function is an entire function of growth order at most 1, with rapid decay in the real directions.

- d) If the set of real zeroes of p is bounded, then every tempered distribution solution of p(D)u = 0 is an entire function of growth order at most 1.
- 2. In this exercise, we will construct a fundamental solution for an arbitrary (nontrivial) constant coefficient operator by using a construction known as *Hörmander's staircase*. Let p be a nontrivial polynomial in 2 variables.
 - a) Show that without loss of generality we can assume

$$p(\xi) = \xi_1^m + \sum_{k=0}^{m-1} q_k(\xi_2)\xi_1^k,$$

where m is the degree of p, and q_k are polynomials of a single variable.

b) Consider a subdivision of the ξ_2 -axis into a countably many disjoint intervals $\{I_k\}$, and consider a sequence $\{\eta_1^{(k)}\}$ of real numbers. Then the set of points $(\xi_1, \xi_2, \eta_1) \in \mathbb{R}^3$ where $(\xi_1, \xi_2) \in \mathbb{R}^2$ and $\eta_1 = \eta_1^{(k)}$ for $\xi_2 \in I_k$, can be visualized as a staircase, with steps of heights $\eta_1^{(k)}$ and widths $|I_k|$ and that are infinitely long in the ξ_1 -direction.

Date: Winter 2012.

DUE FRIDAY MARCH 16

Under the identification of \mathbb{R}^3 with $\mathbb{C} \times \mathbb{R}$ by $(\xi_1, \xi_2, \eta_1) \mapsto (\xi_1 + i\eta_1, \xi_2)$, let us denote by $H \subset \mathbb{C} \times \mathbb{R}$ the above described staircase. Construct a staircase H (that is, sequences $\{I_k\}$ and $\{\eta_1^{(k)}\}$) such that $|p| \ge \alpha$ on H and $|\eta_1^{(k)}| \le \beta$ for all k, with some constants $\alpha > 0$ and β .

c) Let $E: \mathscr{D} \to \mathbb{C}$ be defined by

$$\langle E, \varphi \rangle = \frac{1}{4\pi^2} \int_H \frac{\tilde{\varphi}(\zeta)}{p(\zeta)} d\zeta \equiv \frac{1}{4\pi^2} \sum_k \int_{I_k} \int_{\mathbb{R}} \frac{\tilde{\varphi}(\xi_1 + i\eta_1^{(k)}, \xi_2)}{p(\xi_1 + i\eta_1^{(k)}, \xi_2)} d\xi_1 d\xi_2,$$

where $\varphi \in \mathscr{D}$, and the tilde $\tilde{}$ denotes the reflection. Prove that indeed $E \in \mathscr{D}'$ and that E is a fundamental solution of p(D).

- d) Extend the construction to n dimensions.
- 3. Let p be a nonzero polynomial. Show the followings.
 - a) The equation p(D)u = f has at least one smooth solution for every $f \in \mathscr{D}$.
 - b) If all solutions of p(D)u = 0 are smooth, then sing supp $u \subset \text{sing supp } p(D)u$ for any $u \in \mathscr{D}'$. So hypoelliptic operators can be defined as those p(D) such that all solutions of p(D)u = 0 are smooth.
- 4. Recall Hörmander's theorem that p(D) is hypoelliptic if and only if for any $\eta \in \mathbb{R}^n$ one has $p(\xi + i\eta) \neq 0$ for all sufficiently large $\xi \in \mathbb{R}$. Apply this criterion to show the followings.
 - a) All elliptic operators are hypoelliptic.
 - b) The wave operator is not hypoelliptic.
 - c) The heat operator is hypoelliptic.
- 5. Construct a non-hypoelliptic polynomial p in dimension n > 1 such that $|p(\xi)| \to \infty$ as $|\xi| \to \infty$ for $\xi \in \mathbb{R}^n$.
- 6. Consider the Cauchy problem

$$\partial_t u = \sum_{k=1}^n A_k \partial_k u, \qquad u|_{t=0} = f,$$

where u is a vector function with m components, each A_k is a (possibly complex) $m \times m$ matrix, and f is a given (vector) function. We say that the problem is *strongly well-posed* if for any $f \in L^2$, there exists a solution $u \in C^0(\overline{\mathbb{R}}_+, L^2)$, which satisfies the estimate

$$||u(t)||_{L^2} \le C e^{\alpha t} ||f||_{L^2}, \qquad t \ge 0,$$

with some constants α and C, and u is the only solution in $C^0(\mathbb{R}_+, L^2)$. In each of the following cases, prove that the corresponding Cauchy problem is strongly well-posed.

- a) Symmetric hyperbolic: All
 ${\cal A}_k$ are Hermitian.
- b) Strictly hyperbolic: For all nonzero $\xi \in \mathbb{R}^n$, the eigenvalues of $P(\xi) = \sum_{k=1}^n A_k \xi_k$ are real and distinct.
- 7. Prove the strong well-posedness of the Cauchy problem for the system

$$\partial_t u = P(\partial)u + Q(\partial)v,$$

$$\partial_t v = H(\partial)v + Mu,$$

where u and v are vector functions, $P(\partial)$ is a second order parabolic operator, $Q(\partial)$ is an arbitrary first order operator, $H(\partial)$ is a first order symmetric hyperbolic operator, and M is simply a matrix (i.e., a zeroth order operator). The operators $P(\partial)$, $Q(\partial)$, and $H(\partial)$ may contain lower order terms, and the spatial dimension is n.