MATH 581 ASSIGNMENT 3

DUE FRIDAY FEBRUARY 17

- 1. Prove
 - a) $\partial_j(au) = (\partial_j a)u + a(\partial_j u)$ for $a \in C^{\infty}(\Omega)$ and $u \in \mathscr{D}'(\Omega)$.
 - b) $\partial_i \partial_k u = \partial_k \partial_i u$ for $u \in \mathscr{D}'(\Omega)$.
 - c) There is no distribution on \mathbb{R} such that its restriction to $\mathbb{R} \setminus \{0\}$ is $e^{1/x}$.
- 2. Find the limits of the following sequences in $\mathscr{D}'(\mathbb{R})$.
 - a) $\cos nx$.
 - b) $n^k \sin nx$, where k > 0 is a constant.
 - c) $x^{-1}\sin nx$.
- 3. Let $f, g \in L^1_{\text{loc}}(\mathbb{R})$ and let u(x,t) = f(x-t) + g(x+t). Show that $\partial_t^2 u \partial_x^2 u = 0$ in the sense of distributions.
- 4. Prove the following properties of convolution.
 - a) (u * v) * w = u * (v * w).
 - b) $\operatorname{supp}(u * v) \subset \operatorname{supp} u + \operatorname{supp} v$.
 - c) $\partial^{\alpha}(u * v) = (\partial^{\alpha}u) * v = u * (\partial^{\alpha}v).$
 - d) If $u \in L^1(\mathbb{R}^n)$ and $v \in L^p(\mathbb{R}^n)$ for some $1 \le p \le \infty$, then $||u * v||_{L^p} \le ||u||_{L^1} ||v||_{L^p}$.
- 5. Show that any continuous function satisfying the Laplace equation in distribution sense must have the mean value property (therefore harmonic in the classical sense).
- 6. a) Find all fundamental solutions of the ordinary differential operators $\frac{\mathrm{d}}{\mathrm{d}x} + \lambda$ and $\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \lambda$, where $\lambda \in \mathbb{C}$. How many of those are supported in $[0, \infty)$?

b) Let A_1, \ldots, A_m be $n \times n$ matrices. Describe all fundamental solutions of the ordinary differential operator

$$\frac{\mathrm{d}^m}{\mathrm{d}x^m} + A_1 \frac{\mathrm{d}^{m-1}}{\mathrm{d}x^{m-1}} + \ldots + A_{m-1} \frac{\mathrm{d}}{\mathrm{d}x} + A_m.$$

- 7. Write down a fundamental solution of
 - a) the heat operator in \mathbb{R}^n .
 - b) the wave operator in \mathbb{R}^n , n = 1, 2, 3.

Are these operators hypoelliptic?

Date: Winter 2012.