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1 Introduction
In this project we will study non linear equations of the form

�u = f(t, x, u,Du) (1)

where � is called the d’Alembertian, the d’Alembert operator or the wave op-
erator, � = (−∂2t +∇) on R×Rm and Du = (∂tu,∆u) is the vector space-time
derivatives of u . A wave map is a map u : R × Rm → N from an n+1-
dimensional Minkowski space to a Riemannian manifold N that satisfies the
wave equation with partial derivatives replaced by covariant derivatives. Wave
equations can be viewed as wave maps specialized to the case when the manifold
N is Euclidean and the prototypes of geometrics wave equations are wave maps.

We can think of wave maps as describing the free motion of an n-dimensional
surface in a non-Euclidean space; for instance the motion of a string that is
constrained to lie on a sphere would be given as a wave map. They are one of
the fundamental equations used to describe geometric motion, although they are
not as well understood as other geometric flows as Ricci flows. There are still
major gaps in our understanding of wave maps, notably in knowing when they
can form singularities and if so what types of singularities. A major difficulty is
that they are non linear, what is not obvious in equation (1) but will be shown
in an example. One contrast between the wave equations and the other flows
is that the wave map equation is time reversible and non dissipative; a surface
never gains or looses energy.

The natural problem when we study wave maps is to consider initial data

(u0, u1) = (u(o, x), ∂tu(0, x)) ∈ Hs ×Hs−1(Rm;TN) (2)

and study:
-the local well-posedness of the Cauchy problem: For what values of s does
initial value problem (1), (2), admit a unique local solution u ∈ Hs?
-the global well-posedness: For what values of s does this solution extend for all
time ?
-the global regularity: Does this solution preserve the regularity properties of
the initial data?
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The goal of this project is to introduce wave maps and to prove the local
well-posedness for (u0, u1) ∈ H2 ×H1(Rm;TN) when u of class H2 and m ≤ 3
and the global well-posedness for m = 1.

2 Some preliminaries
First, we have to introduce some notations and some concepts from geometry.

-An arbitrary point in the (m+1)-dimensional Minkowski space R×Rm will
be denoted by z = (t, x) = (xα)0≤α≤m.

-The space-time derivatives of a function u : R× Rm → R are denoted by

Du = (∂tu,∇u) = (∂αu)0≤α≤m = (ut, (ui)1≤i≤m).

-On the Minkowski space R× Rm we have the pseudo-Riemannian metric

η = (ηαβ) = η−1 = (ηαβ) = diag(−1, 1, ..., 1).

We use the summation convention so we can rewrite the wave equation in the
form

−∂α∂αu = 0

where ∂t = −∂t and ∂x = ∂x.
-On a k-dimensional Riemannian manifold N with metric g we let 〈., .〉g

denote the scalar product. In local coordinates we write g = (gab) and

|v|2g =

n∑
j,k=1

gjk(x)xjxk

.
-For a map u : R × Rm → N we consider vector fields V along u, which

are vector fields having the property V (z) ∈ Tu(z)N for all z, where TpN is the
tangent space of N at any point p ∈ N . We also say that V is a section of
the pullback bundle u−1TN . Any vector field X on N by composition with u
induces a vector field V = X ◦u. The components ∂αu of Du may be interpreted
in this way.

-We denote DV = (DαV )0≤α≤m as the covariant derivatives of any V ∈
u−1TN . In local coordinates on N we have:

DαV a = ∂αV
a + Γabc(u)(V b, ∂αu

c)

where Γabc are the Christoffel symbols of the metric g:

Γabc :=
1

2

n∑
l=1

gal(
∂gbl
∂xc

+
∂gcl
∂xb
− ∂gbc
∂xl

)

and gal is the inverse matrix to gal.
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-In general, covariant derivatives do not commute. Their commutator is
measured the Riemann curvature tensor R

DαDβV = DβDαV +R(∂αu, ∂βu)V.

-Nash’s embedding theorem states that any manifold may be isometrically
embedded in some Euclidean space Rn.

-If the manifold N is isometrically embedded in some Euclidean space Rn,
the covariant derivative of a section V ∈ u−1TN at a point z0 ∈ R × Rm is
the standard derivative of V , viewed as a map V : R × Rm → Rn projected
orthogonally into the tangent space Tu(z0)N .

-In the following, for simplicity, we will consider that N is compact.

3 Extrinsic and Intrinsic descriptions

3.1 Intrinsic description
We said earlier that wave maps are prototypes of geometric wave equations, sat-
isfying the wave equation with partial derivatives replaced by covariant deriva-
tives. So, in local coordinates, we obtain:

Dα∂
αua = ∂α∂αu

a + Γabc(u)∂αu
b∂αuc = 0 (3)

u(0, x) = u0(x) ∂tu(0, x) = u1(x)

where u0 and u1 are given. The equations (3) are the intrinsic description of
the wave maps.

3.2 Extrinsic description
Wave maps can also be derived extrinsically by isometrically embedding N ↪→
Rn.

Indeed, thanks to Nash’s theorem, N is isometrically embedded in some
Euclidean space Rn and the covariant derivative of a vector fieldW at a point p ∈
N is the standard derivative of W in the ambient space, projected orthogonally
into the tangent space TpN . At a point p ∈ N , let TpN ⊂ TpRn ' Rn. Let 〈., .〉
denote the inner product in Rn.
Then u = (u1, ..., un) : R × Rm → N ↪→ Rn is a wave map if at every point
z = (t, x) we have

�u(z) ⊥ Tu(z)N

where �u(z) = (�u1(z), ...,�un(z)).
To understand this orthogonality relation in more explicit terms, we fix a point
z0 ∈ R × Rn and let ν̄k+1, ..., ν̄n be an orthonormal frame for T⊥p N depending
smoothly on p ∈ N for p near p0 = u(z0). Then we can find scalar functions
λl : R×M → R, k < l ≤ n, such that near z = z0

�u = λlνl
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holds, where νl = ν̄l ◦ u.
Then, since 〈∂αu, νl〉 = 0, we have

λl = 〈�u, νl〉
= −∂α〈∂αu, νl〉+ 〈∂αu, ∂α(νl)〉
= 〈∂αu, dν̄l(u).∂αu〉
= Al(u)(∂αu, ∂

αu)

where Al is the second fundamental form of N with respect to ν̄l. So, if we use
the extrinsic concept to derive the wave map equation, we obtain the following
form

�u = A(u)(∂αu, ∂
αu) ⊥ TuN, (4)

where A = Alν̄l is the second fundamental form of N .

3.3 Example
Let N = Sk ⊂ Rk+1, we want to derive the extrinsic wave map equation. At
any point p ∈ N the outer unit normal is given by ν̄(p) = p. So, if u is a wave
map, there exists a scalar function λ : R× Rn → R such that

�u = λu.

Using the relation 〈u, u〉 ≡ 1, we obtain

λ = 〈�u, u〉
= −∂α〈∂αu, u〉+ 〈∂αu, ∂αu〉
= 〈∂αu, ∂αu〉
= |∇u|2 − |ut|2

and equation (4) simplifies to

�u = (|∇u|2 − |ut|2)u.

Thanks to this equation we can easily see that the wave map equation is non-
linear.

�

3.4 Equivalence of the two descriptions
The wave map system is a "geometric" wave equation in the sense that it is
invariant under coordinate changes.
In fact, let φ : N → Ñ be totally geodesic, that is, φ satisfies Ddφ = 0, and let
u : R× Rm → N be a wave map. Then ũ = φ ◦ u : R× Rm → Ñsatisfies

Dα∂αũ = Dα(dφ ◦ u)∂αu
= Ddφ(u)(∂αu, ∂αu) + dφ(u)Dα∂αu
= 0.
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So we proved that ũ is also a wave map.
In particular, these considerations apply if φ : N → Ñ is an isometry. So,
because N is isometrically embedded in some Euclidean space Rn thanks to
Nash’s embedding theorem, the extrinsic and intrinsic concepts are completely
equivalent.

4 Variational Formulation
Solutions of the equations (3) and (5) can be characterized variationally.

For wave maps u : R× Rm → N we can formulate the corresponding varia-
tional principles either intrinsically, viewing N as an abstract Riemannian man-
ifold with metric g = (gij)1≤i,j≤k, or extrinsically, by isometrically embedding
N ⊂ Rn. Instead of requiring that u be a maximizer or a minimizer for the
action A, as we do for geodesics, we require the slightly weaker condition that
u be critical point for the action A.

4.1 Intrinsic description
Intrinsically, the Lagrangian is given by

L(u) =
1

2
〈∂αu, ∂αu〉g

and the action by

A(u;Q) =

∫
Q

L(u)dz.

Compactly supported variations of u are defined in terms of local coordinates
(y1, ..., yk) on (N, g) by

uaε(z) = ua(z) + εφa(z)

where φ ∈ C∞0 (R × Rm;Rk), and where we assume that the image u(supp(φ))
is strictly contained in a coordinate chart U on N . For z fixed and ε small,
ε → uε(z) is a well-defined curve on N and φ(.) ∈ Tu(.)N . The variation of A
is given by

d

dε
A(uε;Q) |ε=0=

∫
Q

〈∂αu,Dαφ〉gdz = −
∫
Q

〈Dα∂αu, φ〉gdz,

where we used the identity

∂α〈φ, ψ〉g = 〈Dαφ, ψ〉+ 〈φ,Dαψ〉

for any pair of vector fields φ, ψ. Therefore, u is a stationary point of A with
respect to compactly supported variations if and only if u solves the wave map
equation

Dα∂αu = 0.
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If we introduce local coordinates on N , then we can express the Lagrangian
as

L(u) =
1

2
gab(u)∂αua∂αu

b

and the variation of A as∫
Q

(−∂α(gab(u)∂αu
b)φa +

1

2
gab,c(u)∂αua∂αu

bφc)dz

where gab,c = ∂
∂xc gab This implies that the equations are

0 = −∂α(gab(u)∂αu
b) + 1

2gdb,a(u)∂αud∂αu
b

= −gab(u)�ub − gab,e(u)∂αu
b∂αue + 1

2gdb,a(u)∂αud∂αu
b

for 1 ≤ a ≤ k. Multiplying by gca(u), and observing that

Γcdb =
1

2
gca(−gdb,a + gba,d + gad,b)

we obtain the intrinsic formulation

�uc + Γcdb(u)∂αud∂αu
b = 0

of the wave map system.

4.2 Extrinsic description
Extrinsically, for u : R × Rm → N ↪→ Rn the Lagrangian and the action are
given by

L(u) =
1

2
〈∂αu, ∂αu〉 =

1

2
(|∇u|2 − |ut|2)

and
A(u,Q) =

∫
Q

L(u)dz.

We consider compactly supported variations uε : R × Rm → N ↪→ Rn, for
|ε| < |ε0|, so that uε = u at ε = 0 as well as away from some compact set
for ε > 0. Since N is compact, there exists a tubular neighborhood, which is
an open set around N resembling the normal bundle, Uδ(N) of uniform width
δ > 0 and a smooth nearest neighbor projection πN : Uδ(N) → N . Given
φ ∈ D(R×Rm,Rn) , for |ε| < δ

||φ||∞ we may let uε = πN (u+ εφ). Now suppose
that u is stationary for A with respect to such variations then

0 =
d

dε
A(uε, Q)|ε=0 =

∫
Q

〈∂α[dπN (u) ◦ φ], ∂αu]〉dz

for any φ ∈ D(R × Rm,Rn) and supp(φ) ⊂ Q. By integrating by parts and
because 〈dπN (u).φ,�u〉 = 〈φ, dπN (u).�u〉 we deduce dπN (u).�u = 0. So we
obtain the extrinsic form �u ⊥ TuN . Conversely, if u : R × Rm → N ↪→ Rn
solves the above relation, it is immediate that u is stationary for A.

Space-time symmetry and other invariances of A implies that solutions to
wave map equations satisfy conservation laws.
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5 Local and Global well-posedness
In this section we want to prove the following theorem:

Theorem 5.1 Suppose m ≤ 3. Then for any data

(u0, u1) ∈ H2 ×H1(Rm;TN)

there exists a unique local solution u of class H2. If m = 1, the solution extends
uniquely for all time.

Proof
To prove the existence of a solution we’ll first prove that if we approximate the
initial data by smooth functions, there is a smooth solution to equation (7.1).
Then, using an a priori bound, we’ll prove that the smooth functions converge
to a solution in H2. To find an a priori bound we’ll use the following form of
the wave map equation

�u = A(u)(Du,Du) ⊥ TuN. (5)

which implies the energy momentum conservation

0 = 〈�u, ut〉 =
1

2
∂t|Du|2 − div〈∇u, ut〉,

and the energy identity

E(u(t)) :=
1

2
||Du(t)||2L2(Rm) =

1

2
||Du(0)||2L2(Rm).

Let apply ∂, any first-order spatial derivative, to equation (5)

�(∂u) = ∂[A(u)(∂αu, ∂
αu)] = dA(u)(∂u, ∂αu, ∂

αu) + 2A(u)(∂α∂u, ∂
αu)

Multiplying the resulting equation by ∂t∂u and using that 〈ut, A(u)(., .)〉 = 0
by orthogonality, we have

〈∂ut, A(u)(∂α∂u, ∂
αu)〉 = −〈ut, dA(u)(∂u, ∂α∂u, ∂

αu)〉

So we obtain, because N is compact
d
dtE(∂u(t)) =

∫
Rm〈�(∂u), ∂ut〉dx

≤ C||dA(u)||L∞
∫
Rm |Du(t)|3|D2u(t)|dx.

For m = 1, 2, or 3 space dimensions, we have by Sobolev’s embedding∫
Rm

|Du(t)|3|D2u(t)|dx ≤ C||Du(t)||4−αL2 ||D2u(t)||αL2

where α = 2, 3, or 4 if m = 1, 2, or 3, respectively. So we arrive at a Gronwall-
type inequality

d

dt
||Du(t)||2L2 ≤ C||Du(t)||αL2 , (6)
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which implies a local in time H2 a priori bound. If m = 1, we have α = 2, and
thus the H2 bound is global.

Now that we have an a priori bound we approximate initial data (u0, u1) by
smooth data (ul0, u

l
1) ∈ C∞(Rm, TN) such that

(ul0, u
l
1)→ (u0, u1) in H2 ×H1(Rm;Rn × Rn)

as l→∞.
We consider the system  �ul = f

ul(0) = u0,
ult(0) = u1.

It is symmetric hyperbolic, so by reducing it to a first order system we can easily
prove that there is a smooth solution.
Then, we consider the following system

�ul+1 = f(ul)
ul+1(0) = u0,

ul+1
t (0) = u1,

for l = 0, 1, ... and f(ul) = A(ul)(Dul, Dul), continuous from Hs to Hs−1 for
s > m

2 + 1.
Moreover, if u and v are in Hs we have

||f(u)− f(v)||Hs ≤ C
∫ t
0
||f(u)− f(v)||Hs−1dτ

≤ CT ||u− v||Hs ,

where T doesn’t depend on l.
Because f is a contraction, ul converges to u in Hs by the Banach fixed-point
theorem. Besides, thanks the a priori bound (6) we can obtain higher regularity
so ul extends as smooth solution to (5) on a time interval whose length T
depends only on the norm of the data in H2 ×H1(Rm;TN).
We know that ul is in a L∞([0, T ], H2)-ball, which is L2H2-weakly compact, of
radius M < ∞ where M is such that ||ul||([0,T ],H2) ≤ M . So we can extract a
subsequence which converges weakly to u in L2H2. Furthermore, for K ⊂ Rm
we can extract a subsequence which converges to u in H1(K).
Besides, we have

�ul = A(ul)(Dul, Dul)

and
A(ul)(Dul, Dul)→ A(u)(Du,Du)

when l→∞, up to a subsequence, thanks to the a priori estimate (6). Moreover,
for v ∈ D([0, T ],Rm), we have

〈�ul, v〉 =
∫ ∫

[0,T ]×Rm ultvt −∇ul∇v
=

∫ ∫
[0,T ]×Rm A(ul)(Dul, Dul),
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which is finite because |A(ul)(Dul, Dul)| < |Dul|2 and ul is smooth. So, thanks
to the Gronwall-type inequality (6), we obtain

ult → ut

and
∇ul → ∇u

in L2, up to a subsequence, and u satisfies the equation (5) in the sense of
distribution and u is in H2.
So we proved the existence of a solution in H2.

Uniqueness on H2 solutions follows from the energy inequality. Recalling
that 〈ut, A(u)(., .)〉 = 0,if u and v are H2 solutions we have

1
2
d
dt ||D(u− v)(t)||2L2 ≤

∫
Rm〈ut − vt, A(u)(Du,Du)−A(v)(Dv,Dv)〉dx

=
∫
Rm(〈ut, A(u)(Dv,Dv)−A(v)(Dv,Dv)〉

−〈vt, A(u)(Du,Du)−A(v)(Du,Du)〉)dx

≤ C
∫
Rm |A(u)−A(v)||Du−Dv|[|Du|2 + |Dv|2]dx

This above inequality implies

d

dt
||D(u− v)||L2 ≤ C||(|u− v|)(|Du|2 + |Dv|2)||L2

and by Sobolev’s embeding we have

d

dt
||D(u− v)||L2 ≤ C||u− v||L6(||Du||2L6 + ||Dv||2L6) ≤ C||D(u− v)||L2 ,

and uniqueness follows by Gronwall’s inequality, because u and v satisfy the
same initial data equations.

�
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