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Abstract

In this project we study the Ricci flow equation introduced by Richard Hamilton in 1982. The Ricci
flow exhibits many similarities with the heat equation: it gives manifolds more uniform geometry
and smooths out irregularities. The Ricci flow has proven to be a very useful tool in understanding
the topology of arbitrary Riemannian manifolds. In particular, it was a primary tool in Grigory
Perelman’s proof of Thurston’s geometrization conjecture, of which Poincaré conjecture is a special
case.
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1. Introduction

Geometric flows, as a class of important geometric partial differential equations, have been high-
lighted in many fields of theoretical research and practical applications. They have been around
at least since Mullin’s paper [1] in 1956, which proposed the curve shortening flow to model the
motion of idealized grain boundaries. In 1964 Eells and Sampson [2] introduced the harmonic
map heat flow and used it to prove the existence of harmonic maps into targets with nonpositive
sectional curvature. Motivated by the work of Eells and Sampson, in 1975 Richard Hamilton [3]
continued the study of harmonic map heat flow by considering manifolds with boundary. [4]

In the late seventies, William Thurston suggested a classification of three-dimensional manifolds,
which became known as the geometrization conjecture. Thurston’s conjecture stated that any
compact 3-manifold can be decomposed into one or more types (out of 8) of components with
homogeneous geometry, including a spherical type, and thus implied the Poincaré conjecture. In
1982 Thurston won a Fields Medal for his contributions to topology. That year Hamilton [5]
introduced the so-called Ricci equation, which he suspected could be relevant for solving Thurston’s
conjecture. The Ricci flow equation has been called the heat equation for metrics, due to its
property of making metrics “better”. A large number of innovations that originated in Hamilton’s
1982 and subsequent papers have had a profound influence on modern geometric analysis. The
most recent result is Perelman’s proof of Thurston’s conjecture.

The structure of the project is as follows. In Section 2 we recall some basic facts in Riemannian
geometry. In section 3 we introduce the Ricci flow equation and prove the short-time existence for
the Ricci flow with an arbitrary smooth initial metric. In section 4, we describe Ricci solitons.
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2. Notational Preliminaries

2.1. Metrics and Connections

Throughout this project, we adopt Einstein’s summation convention on repeated indices.

LetM be a manifold and let p be a point ofM. Then TM denotes the tangent bundle ofM and
TpM is the tangent space at p. Similarly, T ∗M denotes the cotangent bundle of M and T ∗pM is
the cotangent space at p.

Definition 2.1. Let M be an n-dimensional smooth manifold. A Riemannian metric g on M is
a smooth section of T ∗M⊗ T ∗M defining a positive definite symmetric bilinear form on TpM for
each p ∈M.

Let {xi}ni=1 be local coordinates in a neighbourhood U of some point of M. In U the vector fields
{∂i}ni=1 form a local basis for TM and the 1-forms {dxi}ni=1 form a dual basis for T ∗M, that is,

dxi(∂j) = δij . (2.1)

The metric g may then be written in local coordinates as

g = gijdx
i ⊗ dxj , (2.2)

where gij := g(∂i, ∂j). We denote by g−1 = (gij) the inverse of the positive definite matrix (gij).
The pair (M, g) is called a Riemannian manifold.

Proposition 2.1. Any smooth manifold admits a Riemannian metric.

Proof. Take a covering of M by coordinate neighbourhoods {Uα} and a partition of unity {ϕi}
subordinate to the covering. On each open set Uα we have a metric

gα = dxi ⊗ dxi (2.3)

in the local coordinates. Define
g =

∑
ϕigα(i). (2.4)

This sum is well-defined because the supports of ϕi are locally finite. Since ϕi ≥ 0 at each point,
every term in the sum is positive definite or zero, but at least one is positive definite so the sum is
positive definite.

A Riemannian metric on M allows us to measure lengths of smooth paths in M. We define a
distance function on M by setting d(p, q) equal to the infimum of the lengths of smooth paths
from p to q.

Definition 2.2. Given a smooth map F : N →M and a metric g on M, we can pull back g to a
metric on N

(F ∗g)(V,W ) := g(F∗V, F∗W ), (2.5)

where F∗ : TN → TM is the tangent map. If F is a diffeomorphism, then the pull-back of
contravariant tensors is defined as the push forward by F−1.

2



Theorem 2.2. Given a Riemannian metric g on M, there exists a unique torsion-free connection
on TM making g parallel, i.e., there is a unique R-linear mapping ∇ : C∞(TM) → C∞(T ∗M⊗
TM) satisfying the Leibniz formula

∇(fX) = df ⊗X + f∇X, (2.6)

and the following conditions for all vector fields X and Y :

(i) g orthogonal
d(g(X,Y ) = g(∇X,Y ) + g(X,∇Y ); (2.7)

(ii) torsion-free
∇XY −∇YX − [X,Y ] = 0, (2.8)

where ∇XY := ∇Y (X) is the covariant derivative of Y and [X,Y ] is the Lie bracket acting
of functions.

The above connection is called the Levi-Civita connection of the metric (or Riemannian covariant
derivative).

In local coordinates {xi}ni=1 the Levi-Civita connection is given by ∇∂i(∂j) = Γkij∂k, where the

Christoffel symbols Γkij are the smooth functions

Γkij =
1

2
gkl(∂igkj + ∂jgil − ∂lgij). (2.9)

2.2. Curvature

Let (M, g) be a Riemannian manifold. The Riemannian curvature (1, 3)-tensor on M is given by

Rm(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (2.10)

It is easy to check that

Rm(fX, Y )Z = Rm(X, fY )Z = Rm(X,Y )(fZ) = fRm(X,Y )Z, (2.11)

thus Rm is indeed a tensor. To simplify the notations, it is useful to define

∇2
X,Y Z := ∇X∇Y Z −∇∇XY Z, (2.12)

so that
Rm(X,Y )Z = ∇2

X,Y Z −∇2
Y,XZ. (2.13)

Remark. The Lie bracket measures the noncommutativity of the directional derivatives acting
on functions, whereas Rm measures the noncommutativity of covariant differentiation acting on
vector fields.

The components of the Riemannian curvature tensor Rm are defined by

Rm(∂i, ∂j)∂k := Rlijk∂l, (2.14)
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where
Rlijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp. (2.15)

Using the metric tensor g we can transform Rm into a (0, 4)-tensor by

Rm(X,Y, Z,W ) = g(Rm(X,Y )W,Z) (2.16)

In local coordinates this gives

Rm(∂i, ∂j , ∂k, ∂l) = Rijkl = gplR
p
ijk. (2.17)

It can be verified that the Riemannian curvature tensor Rm satisfies the following properties:

(i) anti-symmetry: Rmijkl = −Rmjikl, Rmijkl = −Rmijlk, Rmijkl = Rmklij ;

(ii) first Bianchi identity: Rmijkl + Rmjkil + Rmkijl = 0;

(iii) second Bianchi identity: ∇iRmjklm +∇jRmkilm +∇kRmijlm = 0.

There are other important related curvatures. If P ⊂ TpM is a 2-plane, then the sectional curvature
of P is defined by

K(P ) := g(Rm(e1, e2)e2, e1), (2.18)

where {e1, e2} is an orthonormal basis of P . This definition is independent of the choice of such a
basis.

A Riemannian manifold is said to have constant sectional curvature if K(P ) is the same for all
p ∈ M and all 2-planes P ⊂ TpM. One can show that a manifold (M, g) has constant sectional
curvature λ if and only if

Rijkl = λ(gikg
jl − gilgjk). (2.19)

For instance, the sphere of radius r in Rn has constant sectional curvature 1/r2; Rn with the
Euclidean metric has constant curvature 0; the Poincaré hyperbolic disk Hn, which is given by the
unit disk with the metric

g =
4dx2

1 + · · ·+ dx2
n

(1− |x|2)2
, (2.20)

has constant sectional curvature −1 [6].

The Ricci curvature (0, 2)-tensor Ric is formed by taking the trace of the Riemannian curvature
tensor,

Ric(Y,Z) = tr(Rm(·, X)Y ). (2.21)

The components of the Ricci curvature, denoted by Rij = Ric(∂i, ∂j), are given by

Rij = Rkkij . (2.22)

The Ricci curvature is a symmetric bilinear form on TM, given in local coordinates by

Ric = Rij dx
i ⊗ dxj . (2.23)

We say that Ric ≥ k (or ≤ k) if all the eigenvalues of Ric are ≥ k (or ≤ k).

The scalar curvature function R :M→ R is given by the metric trace of the Ricci tensor:

R = tr(Ric(·, ·)) = gijRij . (2.24)

4



3. Ricci Flow Equation

3.1. Definition of Ricci Flow

The Ricci flow is a geometric evolution equation defined on Riemannian manifolds (M, g). The
geometry of (M, g) is altered by changing the metric g via a second-order nonlinear PDE on
symmetric (0, 2)-tensors:

∂

∂t
gij = −2Rij . (3.1)

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics g(t) on a smooth
manifold M, defined on a time interval I ⊂ R, and satisfying equation (3.1).

To get the insight into the Ricci flow, let us consider equation (3.1) in harmonic coordinates {xi}ni=1

about p, i.e., in a coordinate system whose coordinate functions xi are harmonic. By Lemma 3.32
in [7, p. 92], the Ricci tensor in harmonic coordinates is given by

Rij = Ric(∂i, ∂j) = −1

2
∆gij +Qij(g

−1, ∂g), (3.2)

where ∆(gij) denotes the Laplacian of the component gij of the metric regarded as a scalar function,
and Q is a quadratic form in the inverse g−1 and the first derivative ∂g. In particular, Q is a lower
order term in the derivatives of g. As a corollary, the Ricci flow in harmonic coordinates takes the
form of a system of nonlinear heat equations for the components of the metric tensor:

∂

∂t
gij = ∆(gij) +Qij(g

−1, ∂g). (3.3)

Because of the minus sign in the front of the Ricci tensor in the equation (3.1), the solution metric
to the Ricci flow shrinks in positive Ricci curvature direction and expands in the negative Ricci
curvature direction. For example, on the sphere S2, any metric of positive Gaussian curvature will
shrink to a point in finite time.

The Ricci flow does not in general preserve volume, so it is often useful to consider the normalized
Ricci flow defined by

∂

∂t
gij = −2Rij +

2

n
σggij , (3.4)

where σg denotes the average scalar curvature

σg =

∫
MRg dµg∫
M dµg

. (3.5)

Under this normalized flow, which is equivalent to the unnormalized Ricci flow (3.1) by reparametriz-
ing in time t and scaling the metric in space by a function of t, the volume of the solution metric
is constant in time.

We will prove the short-time existence and uniqueness results for the Ricci flow equation, and
it would be nice if we could transfer these results to the normalized Ricci flow equation as well.
Hamilton showed in [5, Section 3] that there is a bijection between solutions of the unnormalized
and normalized Ricci flow equations.

To see that there is a conversion from (3.1) to (3.4), let g(t) be a solution of the unnormalized
equation. For ψ(t) that is yet to be determined, set g̃(t) = ψ(t)g(t), and let tilde variables represent
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all of the geometric quantities associated with this metric. By examining the coordinate expressions
for the volume form dµ =

√
det(gij)dx

1 ∧ · · · ∧ dxn, we see that

dµ̃ = ψ(t)n/2dµ, R̃ij = Rij , R̃ =
1

ψ
R, σ̃ =

1

ψ
σ, (3.6)

so setting

ψ(t) =

(∫
M

dµ(t)

)−2/n

(3.7)

yields ∫
M

dµ̃(t) = 1. (3.8)

We now choose a new time scale t̃ =
∫
ψ(t)dt. Since t̃ is a strictly increasing function of t, we can

invert it to t(t̃) and change time variables to t̃ on the entire interval of existence of the original
solution g(t). Assuming the fact that

∂

∂t
logµ = −R (3.9)

for solutions of the Ricci flow, we compute

∂

∂t
log

∫
dµ = −σ, ∂

∂t
logψ =

2

n
σ. (3.10)

Then it follows that

d

dt̃
g̃ij =

∂

∂t
gij +

(
∂

∂t
logψ

)
gij = −2R̃ij +

2

n
σ̃g̃ij . (3.11)

3.2. Short-Time Existence

Since the Ricci flow system of equations is only weakly parabolic, the short-time existence does
not follow directly from standard parabolic theory. In his seminal paper [5] Hamilton showed that
for any C∞ metric g0 on a closed 3-manifold M, there exists a unique solution g(t), t ∈ [0, ε) for
some ε > 0, to the Ricci flow equation (3.1) satisfying g(0) = g0. Hamilton’s original proof relied
on the sophisticated machinery of the Nash-Moser inverse function theorem. Shortly thereafter,
Dennis DeTurck [8] [9] proposed a simplified proof by showing that the Ricci flow is equivalent to
a strictly parabolic system.

Theorem 3.1 (Hamilton, DeTurck. Short-time existence). IfMn is a closed Riemannian manifold
and if g0 is a C∞ Riemannian metric, then there exists a unique smooth solution g(t) to the Ricci
flow defined on some time interval [0, ε), ε > 0, with g(0) = g0.

The proof of Theorem 3.1 (called DeTurck’s trick) consists in finding a strictly parabolic flow which
is equivalent to the Ricci flow, i.e., where the principal symbol of the second-order operator on
the right-hand side is positive definite. As we will soon see, the principal symbol of the nonlinear
differential operator −2Ric(g) of the metric g is positive semidefinite and has a non-trivial kernel,
which is due to the diffeomorphism invariance of the Ricci tensor. For this reason the Ricci flow is
only weakly parabolic.
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Before proving the Theorem 3.1, we need to establish how curvature tensors and connections change
as the metric evolves. We assume that

∂

∂t
gij = hij , (3.12)

where h is a symmetric (0, 2)-tensor.

Lemma 3.2. The variation of the Christoffel symbols is given by

∂

∂t
Γkij =

1

2
gkl(∇ihjl +∇jhil −∇lhij). (3.13)

Proof. Recall that

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij), (3.14)

hence

∂

∂t
Γkij =

1

2

∂

∂t
gkl(∂igjl + ∂jgil − ∂lgij)

+
1

2
gkl
(
∂i

(
∂

∂t
gjl

)
+ ∂j

(
∂

∂t
gil

)
− ∂l

(
∂

∂t
gij

)) (3.15)

In geodesic coordinates1 centered at p ∈ M, one has Γkij(p) = 0. It follows that ∂iAjk = ∇iAjk at
p for any tensor A. In particular, ∂igjk(p) = 0 for all i, j, k. Thus we obtain

∂

∂t
Γkij(p) =

1

2
gkl(∇ihlj +∇jhil +∇lhij)(p) (3.16)

Since both sides of this equation are components of tensors, the result holds as a tensor equation,
i.e., it is true in any coordinate system and at any point.

Since the Riemann curvature tensor is defined solely in terms of the Levi-Civita connection, we
can readily compute its evolution.

Lemma 3.3. The evolution of the Riemann curvature tensor Rm is given by

∂

∂t
Rlijk =

1

2
glp(∇i∇khjp +∇j∇phik −∇i∇phjk −∇j∇khip)

− 1

2
glp(Rqijkhqp +Rqijphkq).

(3.17)

Proof. In local coordinates {xi}, the components of the Riemann curvature (3, 1)-tensor are given
by the standard formula

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp, (3.18)

1A coordinate system relative to which the components gij of the metric tensor g are locally constant in the
neighbourhood of an arbitrary point p0 of M. The point p0 is called the pole.
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so

∂

∂t
Rlijk = ∂i

(
∂

∂t
Γljk

)
− ∂j

(
∂

∂t
Γlik

)
+

(
∂

∂t
Γpjk

)
Γlip + Γpjk

(
∂

∂t
Γlip

)
−
(
∂

∂t
Γpik

)
Γljp − Γpik

(
∂

∂t
Γljp

)
.

(3.19)

As in the preceding lemma, we use geodesic coordinates centered at p ∈M to calculate that

∂

∂t
Rlijk(p) = ∇i

(
∂

∂t
Γljk

)
(p)−∇j

(
∂

∂t
Γlik

)
(p), (3.20)

and we observe that the result holds everywhere. Commuting derivatives yields

∂

∂t
Rlijk =

1

2
glp(∇i∇khjp +∇j∇phik −∇i∇phjk −∇j∇khip)

− 1

2
glp(Rqijkhqp +Rqijphkq).

(3.21)

Lemma 3.4. The evolution of the Ricci tensor Ric is given by

∂

∂t
Rjk =

1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp). (3.22)

Proof. This follows from contracting on i = l in the preceding lemma.

We shall now define what it means for an evolution equation on the vector bundle S+
2 T
∗M of

positive definite symmetric (0, 2)-tensors to be parabolic. Given{
∂
∂thij = P (hij)

hij(0) = αij ,
(3.23)

where P is a k-th order differential mapping from C∞(S+
2 T
∗M) into itself. The linearization of P

at a section hij is the linear bundle map DP : C∞(S+
2 T
∗M)→ C∞(S+

2 T
∗M) given by

DP (h)[b]ij =
d

ds

∣∣∣∣
s=0

P (h+ sb)ij =
∑
|p|≤k

P p,lmij (h)∂pblm. (3.24)

The principal symbol of P at h in the direction of a one-form ξ is a linear map σ̂[DP (h)](ξ) :
C∞(S+

2 T
∗M)→ C∞(S+

2 T
∗M) given by

σ̂[DP (h)](ξ)(b)ij =
∑
|p|=k

P p,lmij (h)ξpblm. (3.25)

A linear partial differential operator L is said to be elliptic if its principal symbol σ̂[L](ξ) is an
isomorphism whenever ξ 6= 0. A nonlinear differential operator P is said to be elliptic if its
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linearization DP is elliptic. An evolution equation of the form (3.23) is said to be parabolic if P
is an elliptic operator.

Rich existence and uniqueness theory for elliptic operators guarantees the short-time existence of
a solution to (3.23) on a closed manifold. Hence, to prove the short-time existence for the Ricci
flow we have to show that the second order nonlinear differential operator Ric is equivalent to an
elliptic operator.

Proof of Theorem 3.1. We have already computed the linearization of the Ricci tensor:

DRic(g)[h]ij =
1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp). (3.26)

This is a linear combination of derivatives of h involving the Christoffel symbols and their deriva-
tives, but the highest-order derivatives of h are simply partial derivatives. Therefore the principal
symbol for the Ricci tensor is

σ̂[DRic(g)](h)(ξ)jk =
1

2
gpq(ξqξjhkp + ξqξkhjp − ξqξphjk − ξjξkhqp). (3.27)

The curvature operator is certainly non elliptic, since for any ξ we can define hij = ξiξj and see
that the principal symbol evaluates to zero. The fact that the principal symbol has nontrivial
kernel is related to the invariance of the Ricci tensor under diffeomorphism,

Ric(ϕ∗g) = ϕ∗(Ric(g)). (3.28)

However, this is the only thing that goes wrong with the principal symbol. By modifying the
flow on the metric by a time-dependent set of diffeomorphisms, we could form a strictly parabolic
equation that would allow us to apply short-time existence results. Transforming this solution by
another set of diffeomorphisms, we obtain a short-time solution for the Ricci flow equation.

Following DeTurck’s proof, we fix a background metric g̃ and mark all geometric quantities related
to this metric with a tilde. We then define a vector fields W by

W i = gjk(Γijk − Γ̃ijk). (3.29)

Since the difference of two connections is a tensor, W is a globally well-defined vector field (in-
dependent of the coordinates used to describe it locally). We will also use the one-form which is
metric-dual to W , as usual denoting its components with lowered indices:

Wi = gikg
pq(Γkpq − Γ̃kpq). (3.30)

We now define Ricci-DeTurck flow :

∂

∂t
gij = −2Rij +∇iWj +∇jWi. (3.31)

We observe that W appears in the equation through the term ∇iWj + ∇jWi, which is the Lie
derivative LW gij of the metric g with respect to the vector field W . This term that will allow us
to modify the Ricci-DeTurck flow by a diffeomorphism to get back the Ricci flow.
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To verify that the equation (3.31) is strictly parabolic, we compute the linearization of the extra
term on the right-hand side. Let us denote this term by

A(g)ij = ∇iWj +∇jWi = ∇i
(
gjkg

pq(Γkpq − Γ̃kpq)
)

+∇j
(
gikg

pq(Γkpq − Γ̃kpq)
)
. (3.32)

Using geodesic coordinates we again see that we can regard the covariant derivatives as partial
derivatives when linearizing, so using Lemmas 3.2 – 3.4 we obtain

DA(g)(h)ij =
1

2
gjkg

pq∇i[gkl(∇phlq +∇qhpl −∇lhpq)]

+
1

2
gikg

pq∇j [gkl(∇phlq +∇qhpl −∇lhpq)]

+ (lower-order derivatives of h)

= gpq(∇i∇phjq +∇j∇phiq −∇i∇jhpq) + l.o.d.

(3.33)

Comparing this to the linearized Ricci tensor, we see that

D[−2Ric +A](g)(h)ij = gpq∇p∇qhij + l.o.d. = ∆hij + l.o.d. (3.34)

Thus −2Ric + A is an elliptic operator. The parabolic existence results therefore apply and yield
a short-time solution to the Ricci-DeTurck ow with any initial metric.

Now given a solution g(t) of the Ricci-DeTurck flow, we construct a family of maps ϕt :M→M
by solving the ODE

∂

∂t
ϕt = −W,

ϕ0 = idM,
(3.35)

at each point of M. Pulling back g(t) by the diffeomorphisms ϕt, we obtain a solution

ḡ(t) := ϕ∗t g(t) (0 ≤ t < ε) (3.36)

of the Ricci flow with ḡ(0) = g0. Indeed, we have ḡ(0) = g(0) = g0, because ϕ0 = idM. We then
compute that

∂

∂t
ϕ∗t g(t) =

∂

∂s

∣∣∣∣
s=0

(
ϕ∗t+sg(t+ s)

)
= ϕ∗t

(
∂

∂t
g(t)

)
+

∂

∂s

∣∣∣∣
s=0

(
ϕ∗t+sg(t)

)
= ϕ∗t

(
−2Ric(g(t)) + LW (t)g(t)

)
+

∂

∂s

∣∣∣∣
s=0

[
(ϕ−1

t ◦ ϕt+s)∗ϕ∗t g(t)
]

= −2Ric (ϕ∗t g(t)) + ϕ∗t
(
LW (t)g(t)

)
− L[(ϕ−1

t )∗W (t)] (ϕ∗t g(t)) (3.37)

= −2Ric(ϕ∗t g(t)) (3.38)

The equality on the line (3.37) follows from the identity

∂

∂s

∣∣∣∣
s=0

(
ϕ−1
t ◦ ϕt+s

)
= (ϕ−1

t )∗

(
∂

∂s

∣∣∣∣
s=0

ϕt+s

)
= (ϕ−1

t )∗W (t). (3.39)
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Hence ḡ(t) is a solution of the Ricci flow for t ∈ [0, ε).

To complete the proof of Theorem 3.1, it remains to show that ḡ(t) is unique. While the Ricci-
DeTurck flow is strictly parabolic and hence satisfies the usual uniqueness properties, we cannot
use that fact alone to demonstrate that solutions to the Ricci flow are unique. The reason is the
following: if we start with two solutions to the Ricci flow with identical initial conditions, we can
modify them by diffeomorphisms to get two solutions of the Ricci-DeTurck flow with identical initial
conditions. From the theory for strictly parabolic equations we conclude that these two solutions
coincide. However, the diffeomorphisms used depend on the solutions themselves, therefore they
can be different. Hence we can’t decide whether the original solutions are the same.

The uniqueness of solutions of the Ricci flow can be shown using the harmonic map heat flow. This
procedure is described in section 4.4 of [7].

In the interest of completeness, we will establish the existence of a family of diffeomorphisms {ϕt}
solving the ODE (3.35).

Lemma 3.5. If {Xt : 0 ≤ t ≤ T ≤ ∞} is a continuous time-dependent family of vector fields on
a compact manifold M, then there exists a one-parameter family of diffeomorphisms {ϕt : M →
M : 0 ≤ t < T ≤ ∞} defined on the same interval such that

∂ϕt
∂t

(x) = Xt[ϕt(x)]

ϕ0(x) = x
(3.40)

for all x ∈M and t ∈ [0, T ).

Proof. We may assume that there is t0 ∈ [0, T ) such that ϕs(t) exists for all 0 ≤ s ≤ t0 and y ∈M.
Let t1 ∈ (t0, T ) be given. We will show that ϕt exists for all t ∈ [t0, t1]. Since t1 is arbitrary, this
will prove the lemma. Given any x0 ∈ M, choose local coordinate systems (U ,x) and (V,y) such
that x0 ∈ U and ϕt0(x0) ∈ V. As long as x ∈ U and ϕt(x) ∈ V, the equation

∂ϕt
∂t

(x) = Xt[ϕt(x)] (3.41)

is equivalent to

∂

∂t

[
y ◦ ϕt ◦ x−1(p)

]
= y∗

[
∂ϕt
∂t

[x−1(p)]

]
=
(
y∗Xt ◦ y−1

) (
y ◦ ϕt ◦ x−1(p)

)
(3.42)

for p ∈ x(U) such that ϕt ◦ x−1(p) ∈ V. Setting Ft = y∗Xt ◦ y−1 and zt = y ◦ ϕt ◦ x−1, we get

∂

∂t
zt = Ft(zt). (3.43)

Thus we see that (3.41) is locally equivalent to a nonlinear ODE in Rn. Hence for all x ∈ U such
that ϕt0(x) ∈ V, there exists a unique solution of (3.41) for a short time t ∈ [t0, t0 + ε). Since
the vector fields Xt are uniformly bounded on the compact set M× [t0, t1], there is an ε̄ > 0
independent of x ∈ M and t ∈ [t0, t1] such that a unique solution ϕt(x) exists for t ∈ [t0, t0 + ε̄].
Since the same claim holds for the flow starting at ϕt+ε̄(x), a simple iteration finishes the proof.
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4. Ricci Solitons

In this section we introduce self-similar solutions to the Ricci flow, often called Ricci solitons. The
self-similar solutions model the solutions near the singularities. We will give examples of long-
existing solutions: eternal solutions (that exist for −∞ < t < ∞) and ancient solutions (those
defined for −∞ < t < ω, where ω ∈ R ∪ {∞}).
A Ricci soliton is a solution of the Ricci flow where the metric g(t) changes only by a time dependent
scale factor and the pull-back by diffeomorphisms. That is, for any t1 and t2 in the time interval
of existence, there exists a positive constant σ = σ(t1, t2) and a diffeomorphism ϕ = ϕ(t1, t2) such
that

g(t2) = σϕ∗g(t1). (4.1)

Fixing a time t0 we have for any time t,

g(t) = σ(t)ϕ(t)∗g(t0). (4.2)

We say g(t) is expanding, shrinking, or steady at a time t0 if σ(t0) > 0, = 0, or < 0, respectively.

A gradient Ricci soliton is a Ricci soliton where the vector fields X(t) generated by the 1-parameter
family of diffeomorphisms ϕ(t) are the gradients of functions f(t). The single time version of this
definition is as follows:

Definition 4.1. A Riemannian manifold (M, g0) is called a gradient Ricci soliton if there exists
a smooth function f0 :M→ R and a constant ε ∈ R such that

Ricij(g0) +∇i∇jf0 + εg0 = 0. (4.3)

The function f0 is called the potential function of the Ricci soliton. We say that g0 is expanding if
ε > 0, shrinking if ε < 0, or steady if ε = 0.

4.1. Eternal Solutions

An eternal solution of the Ricci flow is the one that exists for all time. We have seen that the
curvatures of a solution to the Ricci flow evolve by reaction-diffusion equations. In this type of
equations there is a competition between the diffusion term (which seeks to disperse concentrations
of curvature uniformly over the manifold as time moves forward) and the reaction term (which tends
to create concentrations of curvature as time mores forward). This means that an eternal solution
must be stable, with no concentrations of curvature at any finite time in either past of future.

An important two-dimensional example of a steady soliton is Hamilton’s cigar soliton, which is
given on the Euclidean plane R2 by the metric

gΣ(t) =
dx2 + dy2

e4t + x2 + y2
. (4.4)

To see that gΣ(t) is a solution to the Ricci flow, we compute its Ricci tensor with respect to
coordinate system z1 = x, z2 = y. The Christoffel symbols are computed by the formula

Γkij =
1

2

∑
k

gkl(∂igjl + ∂jgil − ∂lgij). (4.5)
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Note that

g−1 =

e
4t + x2 + y2

dx2
0

0
e4t + x2 + y2

dx2

 (4.6)

Thus we compute

Γ1
11 = − x

e4t + x2 + y2
, Γ1

12 = − y

e4t + x2 + y2
, Γ1

22 =
x

e4t + x2 + y2
(4.7a)

Γ2
11 =

y

e4t + x2 + y2
, Γ2

12 = − x

e4t + x2 + y2
, Γ2

22 = − y

e4t + x2 + y2
(4.7b)

In terms of the Christoffel symbols, the Ricci tensor has components

Ricij = ∂kΓ
k
ij − ∂jΓkik + ΓkkpΓ

p
ij − ΓkjpΓ

p
ik. (4.8)

Using the Christoffel symbols for gΣ(t), we obtain

Ric(t) =
2e4t

(e4t + x2 + y2)2
(dx2 + dy2). (4.9)

On the other hand, we have

g′Σ(t) = − 4e4t

(e4t + x2 + y2)2
(dx2 + dy2). (4.10)

Thus gΣ(t) satisfies the Ricci flow equation.

By making the change of variables x 7→ e−2tx and y 7→ e−2ty we see that gΣ(t) is isometric to
gΣ = gΣ(0). Thus we can define a 1-parameter group of diffeomorphisms ϕt : R2 → R2 by
φt(x, y) = (e−2tx, e−2ty), so that

gΣ(t) = ϕ∗t gΣ(0). (4.11)

Hence gΣ(t) is a steady soliton.

Since gΣ is rotationally symmetric, it is naturally to write it in polar coordinates

gΣ =
dr2 + r2dθ2

1 + r2
. (4.12)

The scalar curvature of gΣ is

RΣ =
4

1 + r2
(4.13)

Since r2/(1 + r2)→ 1 as r →∞, equations (4.12) and (4.13) imply that the metric is asymptotic
at infinity to a cylinder of radius 1.

The cigar metric on the cylinder may be written as

gΣ2−0 =
dz2 + dθ2

e−2z + 1
, (4.14)

where z ∈ R and θ ∈ S1(1) = R/2πZ are the standard cylindrical coordinates.
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Remark (Uniqueness of the cigar). If (M2, g(t)) is a complete steady Ricci soliton with positive
curvature, then (M2, g(t)) is the cigar soliton.

In Hamilton’s program for the Ricci flow on 3-manifolds, via dimension reduction, the cigar soliton
is a potential singularity model. However, Perelman’s No Local Collapsing theorem rules out this
possibility.

Higher dimensional examples of rotational symmetric Kähler-Ricci solitons have been found in the
late nineties by Cao [10].

4.2. Ancient Solutions

The shrinking round sphere is the canonical ancient solution of the Ricci flow. Let gcan denote
the standard round metric on Sn of radius 1, and consider the 1-parameter family of conformally
equivalent metrics

g(t) = r(t)2gcan, (4.15)

where r(t) is to be determined. One can check that g(t) is a solution of the Ricci flow if and only
if

2r
∂r

∂t
gcan =

∂

∂t
g = −2Ric[g] = −2Ric[gcan] = −2(n− 1)gcan, (4.16)

i.e., if and only if r(t) is a solution of the ODE

∂r

∂t
= −n− 1

r
. (4.17)

Setting

r(t) =
√
r2

0 − 2(n− 1)t =
√

2(n− 1)
√
T − t (4.18)

yields an ancient solution (Sn, g(t)) of the Ricci flow that exists for the time −∞ < t < T , where
T <∞ is the singularity time defined by

T :=
r2

0

n− 1
. (4.19)

Another example is the Rosenau solution. Let (R × S1(2), h) denote the flat cylinder, where
h = dz2 + dθ2 and S1(2) = R/4πZ. The Rosenau solution is the solution g(t) = u(t) · h to the
Ricci flow defined for t < 0 by

u(x, t) =
sinh(−t)

cosh z + cosh t
(4.20)

Its scalar curvature is given by

R[g(t)] = −∆h log u

u
=

cosh t cosh z + 1

sinh(−t)(cosh z + cosh t)
(4.21)

for t < 0. In particular, the solution has positive curvature for as long as it exists. One can verify
that g(t) is a solution to the Ricci flow. Note that the Rosenau solution is ancient but not eternal,
since by equation (4.20)

lim
t→0

u(x, t) = 0. (4.22)
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The metrics g(t) defined on R × S1(2) extend to smooth metrics on the 2-sphere S2, which is
obtained by compactifying R× S1(2) by adding two points, the north and the south poles.

We now take a backward limit of the Rosenau solution to see that we can obtain either the cigar
soliton or the cylinder. Consider

u(z + t, t) =
1

− cosh z cosh t− sinh z − coth t
, (4.23)

so that

lim
t→∞

u(z + t, t)h(z) =
h(z)

− cosh z − sinh z + 1
=

h(z)

e−z + 1
. (4.24)

By making the change of variables z 7→ z/2 and θ 7→ θ/2, we have

lim
t→∞

u(z + t, t)h(z) =
h(z)

e−z + 1
= 4

dz2 + dθ2

e−2z + 1
, (4.25)

where z ∈ R and θ ∈ S1(1). This is the cigar soliton.

Note that u(z, t)→ 1 as t→∞. Therefore

lim
t→−∞

g(z, t) = h(z) (4.26)

for all z ∈ R.

To summarize, at the two tips of the Rosenau solution, as we go back in time toward −∞, the
metric looks closer and closer to the cigar soliton metric. If we consider points on the “equator”
z = 0, then as we go back in time toward −∞, the metric looks closer and closer to a cylinder.

The Rosenau solution is of interest here in part because it could potentially occur as a dimension-
reduction limit of a 3-manifold singularity. Recent work of Perelman [11] eliminates this possibility
for finite-time singularities.

5. Summary of results and open problems of Ricci solitons

In this section we state some known results and open problems about the properties and the
classification of gradient Ricci solitons.

5.1. Gradient Ricci solitons of surfaces

(i) A shrinking soliton has constant positive curvature. In particular, the underlying surface is
compact.

(ii) The only two-dimensional shrinking gradient Ricci soliton is the round 2-sphere.

(iii) A steady soliton is either flat (i.e., the Riemannian curvature tensor of the Levi-Civita con-
nection is the zero map) or the cigar.

(iv) A compact expanding soliton has constant negative curvature.

(v) An expanding soliton with positive curvature is rotationally symmetric and unique up to a
dilation.
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Open problem 1. Are there any other expanding solitons of a surface diffeomorphic to R2 besides
the positively curved rotationally symmetric expander and the Poincaré hyperbolic disk?

Open problem 2. Do all complete two-dimensional gradient Ricci solitons have bounded curva-
ture? Are all complete two-dimensional Ricci solitons gradient?

5.2. Gradient Ricci solitons on 3-manifolds

(i) Any non-flat shrinking soliton with bounded nonnegative sectional curvature is isometric to
either a quotient of the 3-sphere or a quotient of S2 × R. This result is due to Perelman.

(ii) There exists a rotationally symmetric steady soliton with positive sectional curvature, namely
the Bryant soliton.

(iii) There exists a rotationally symmetric expanding soliton with positive sectional curvature.

Open problem 3. Are there any three-dimensional steady gradient solitons besides a flat solution,
the Bryant soliton, and a quotient of the produce of the cigar and R?

References

[1] W. W. Mullins, “Two Dimensional Motion of Idealized Grain Boundaries,” Journal of Applied Physics, vol. 27,
pp. 900–904, 1956.

[2] J. Eells and J. H. Sampson, “Harmonic Mappings of Riemannian Manifolds,” American Journal of Mathematics,
vol. 86, no. 1, pp. 109–160, January 1964.

[3] R. S. Hamilton, Harmonic maps of manifolds with boundary. Springer-Verlag, 1975, vol. 471.
[4] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci Flow (Graduate Studies in Mathematics). American Mathematical

Society, 2006.
[5] R. S. Hamilton, “Three-manifolds with positive Ricci curvature,” Journal of Differential Geometry, vol. 17,

no. 2, pp. 255–306, 1982.
[6] J. W. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, ser. Clay Mathematics Monographs.
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