
Lecture1 5

X Lf-space: X1 ⊂ X2 ⊂ · · · ⊂ X with each Xi Frechet.

Define the local base σ by A ⊂ X is convex → A ∈ σ if and only if ∀n, A ∩Xn ∈ N (0) in Xn.

Fact: X is complete Hausgorff LCTVS such that ∀n, the topology of Xn coincides with the one
induced by Xn ⊂ X. Proof is in [RUDIN] for the case X = D(Ω).
—

Test Functions and Distributions: The space D(Ω)

The space C∞c (Ω) is said to be the space of test functions on Ω, a space consisting of all C∞ functions
whose support is compact in Ω. C∞c also has a vector space structure. A topology may be defined on
C∞c (Ω) by equipping it with the sequence of norms

‖ · ‖Ck = sup
x∈Ω,|α|≤k

|∂αφ(x)|. (1)

Restricting this norm to subspaces D(K) = {φ ∈ C∞o (Ω) : suppφ ⊂ K}, DK ⊂ C∞c (Ω) induces the
same Frechet topology on DK generated by the family of semi-norm

pk(φ) = sup
x∈K,|α|≤k

|∂αφ(x)|,

By virtue of Theorem2 1 in lecture 3, the family of norms in (1) generates a locally convex metrizable
topology on C∞c (Ω), however, it ceases to be complete with respect to its metric. In other words
the subspaces DK do not pass their completeness on to the whole space C∞c (Ω). Fortunately, the
LF-topology we define below will turn out to be complete. However, as we will see it is not metrizable.

We consider the LF-topology on C∞c (Ω) induced by D(K1) ⊂ D(K2) ⊂ . . ., with each D(Kn)
having the Fréchet topology generated by the semi-norms {‖ · ‖Cm(Kn) : m = 1, 2, ...}. We formulate
this more precisely in the following definition.

Definition 1. [RUDIN]Def.6.3. Let Ω ⊂ Rn nonempty, open set.

a) Any compact K ⊂ Ω, τK denotes the Frechet space topology of D(K) described above; Kn ⊂ Kn+1,
such that

⋃
nKn = Ω.

b) σ be collection of convex sets A ⊂ D(Ω) such that, for all Kn, A ∩DKn
∈ N (0) in D(Kn).

σ defines a local base for the LF-topology τ on C∞c (Ω). Define the topological space

D(Ω)
def
= (C∞c (Ω), τ).

Definition 2. X TVS. {xn} is Cauchy if ∀U ∈ N (0) in X ∃N such that xn − xk ∈ U , ∀n, k ≥ N.

Lemma 1. Cauchy sequences are bounded.
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Proof. Let U ,V ∈ N (0) balanced in X satisfying U + U ⊂ V. There exists N > 0 such that xn−xN ∈
U . xn ∈ xn + U . Let s > 1 such that xn ∈ sU ,

=⇒ xn ∈ sU + U ⊂ sU + sU ⊂ sV.

Theorem 1. [RUDIN] Sec 6.5.

a) E ⊂ D(Ω) is bounded if and only if E ⊂ D(K) for some compact K ⊂ Ω, and E is bounded in
D(K).

b) {φj} ⊂ D(Ω) Cauchy in D(Ω) if and only if {φj} ⊂ D(K), ∃K ⊂ Ω compact and φj is Cauchy in
D(K).

c) φj → 0 in D(Ω) if and only if {φj} ⊂ D(K), ∃K ⊂ Ω compact and φj → 0 in D(K).

Proof. a) K1 ⊂ K2 ⊂ · · · ⊂ Ω,
⋃
nKn = Ω, E ⊂ D(Ω) but E 6⊂ D(Kn) for all n. ∃xn ∈

Kn\Kn−1 ∃φn ⊂ E such that φn(xn) 6= 0.

W = {φ ∈ D(K) : |φ(xn)| < 1

n
|φn(xn)|, ∀n}

mW 6⊃ E, for all m ∈ N. φ ∈ mW =⇒ |φ(xm)| < |φm(xm)|. W ∪D(Kn) such that {φ ∈ D(Kn) :

supKn
|φ| < δ} ⊂W ∩D(Kn). E not bounded. E bounded =⇒ E ⊂ D(Kn) ∃n.

Theorem 2. Y LCTVS, f : D(Ω)→ Y linear. Then the following are equivalent:

a) f continuous

b) For any K ⊂ Ω compact, f : D(K)→ Y is continuous.

c) φj → 0 in D(Ω) =⇒ f(φj)→ 0 in Y .

Proof. a) ⇐⇒ b) proved. a) =⇒ c) straight forward. For c) =⇒ a): Choose U ∈ N (0) convex and
balanced in Y . V = f−1(U) is convex and balanced. 0 ∈ V. V open ⇐⇒ D(K) ∩ V open, for any
compact set Kn ⊂ Ω.
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Definition 3. An element of D ′(Ω) is called a distribution. The dual

RM(Ω) = [C0
c (Ω)]′

of C0
c (Ω) =

⋃
n C

0
c (Kn) is called the set of Radon measures.

Corollary 1. The following are equivalent:

a) f is a distribution.

b) ∀K ⊂ Ω compact, f ∈ D ′(K) ⇐⇒ ∀K, ∃m such that |f(φ)| ≤ ‖φ‖Cm(K) ∀φ ∈ D(K).

c) φj → 0 in D(K) =⇒ f(φj)→ 0.

Definition 4. Suppose τ1, τ2 define two topologies on set X with the property that τ1 ⊂ τ2, where we
do not consider equality. Then τ1 is said to be a weaker topology on X.

Definition 5. Let X be TVS, X ′ its dual. The topology on X induced by the semi-norms

{x 7→ |f(x)| : f ∈ X ′},

is called the weak topology on X. Similarly, the topology on X ′ induced by the seminorms

{f 7→ |f(x)| : x ∈ X},

is called the weak∗ topology on X ′.

Lemma 2. X ′ w/ its weak∗ topology is a Hausdorff LCTVS.

Proof. Suppose f ∈ X ′, f 6= 0. Explicitly, ∃x∗ ∈ X such that f(x∗) 6= 0. f 7→ f(x∗).

Definition 6. We equipt D ′(Ω) with its weak∗ topology. This topology is generated by the local
subbase:

V (φ, n) =

{
f ∈ D ′(Ω) : |f(φ) <

1

n
, φ ∈ D(Ω), n ∈ N

}
fj → 0 in D ′(Ω) ⇐⇒ fj(φ)→ 0 ∀φ ∈ D(Ω).

Notation: < f, φ >=< φ, f >=: f(φ)

u ∈ Ck. Define

Tu(φ) =

∫
Ω

fφ =⇒ Tu ∈ D ′(Ω), Tu ∈ RM(Ω).
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C(Ω) ⊂ D ′(Ω) ∫
uφ =

∫
vφ =⇒ u = v

T : u 7→ Tu : C(Ω)→ D ′(Ω).

T̃u(φ) =

∫
Ω

uφ dµ, µ ∈ RM(Ω)

T = T̃ with dµ =Lebesque measure.
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