0.1 Friedrichs Extension

Let $\Omega \subset \mathbb{R}^n$ be a smooth domain, and let

$$A = \sum_{|\alpha| \le 2\alpha} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in C^{\infty}(\overline{\Omega})$$

be strongly elliptic. Then,

and

$$A:\mathscr{D}'(\Omega)\to \mathscr{D}'(\Omega)$$

 $A: \mathscr{D}(\Omega) \to \mathscr{D}(\Omega)$

are both continuous. For $u, v \in \mathscr{D}(\Omega)$,

$$\begin{split} a(u,v) &= (Au)(\overline{v}) & \text{sesquilinear} \\ &= \int Au \cdot \overline{v} & L^2\text{-inner product} \\ &= \int \sum_{|\alpha|, |\beta| \leq m} a_{\alpha\beta} D^{\alpha} u D^{\beta} \overline{v} & \text{via integration by parts.} \end{split}$$

This implies

$$|a(u,v)| \lesssim ||u||_{H^m} ||v||_{H^m}$$

which extends $a(\cdot, \cdot)$ to continuous sesquilinear functional : $H^m_o(\Omega) \times H^m_o(\Omega) \to \mathbb{C}$.

We have proved $a(\cdot, \cdot)$ is coercive, i.e for any $u \in \mathscr{D}$,

Re
$$a(u, u) \ge c \|u\|_{H^m}^2 - c_1 \|u\|_{L^2}^2$$
 (c > 0)

which may be extended to $u \in H_o^m$ by a density argument. Given $w \in H_o^m(\Omega)$ where for simplicity we denote $H_o^m(\Omega) = X$,

$$A': \ w \mapsto a(\cdot, w) \in X'$$
$$\widetilde{A}: \ w \mapsto [v \mapsto a(w, \overline{v})] \in X'$$

This defines $A': X \to X'$ and $\widetilde{A}: X \to X'$ bounded and linear.

Theorem 1 (Lax-Milgram). If a is strictly coersive in X, then A' and \widetilde{A} are invertible.

We have

$$(Au)(v) = a(u, \overline{v}) = (Au)(v)$$

therefore \widetilde{A} extends $A : \mathscr{D} \to \mathscr{D}$ and restricts $A : \mathscr{D}' \to \mathscr{D}'$ to $H^m_o(\Omega)$. \widetilde{A} is called the *energy extension* of A.

Under the assumption that a is strictly coercive,

Au = f

is uniquely solvable on $H_o^m(\Omega)$ for $f \in H_o^m(\Omega)'$. Friedrichs' Extension: $A: L^2(\Omega) \to L^2(\Omega)$ can be defined with domain

$$Dom(A) = \{ u \in L^2(\Omega) : \tilde{A}u \in L^2(\Omega) \}.$$

Under similar assumptions, there exists $A^{-1}: L^2(\Omega) \to L^2(\Omega)$ since $L^2(\Omega) \hookrightarrow H^m_o(\Omega)'$ continuously embedded: If $f' \in L^2$, define $f(v) = \int f'v$, then

$$|f(v)| = \left| \int f'v \right| \le \|f'\|_{L^2} \|v\|_{L^2}$$

If A is strongly elliptic, the Garding Inequality guarantees solvability of

(A+tI)u = f

for large t. We may consider $-\Delta u + tu = f$ as an example.

0.2 Friedrichs/Poincaré Inequality

Theorem 2. Let Ω bounded, and $s \ge 0$. Then for all $u \in \mathscr{D}(\Omega)$

$$\|u\|_{L^2}^2 \le c \int |\xi|^{2s} |\widehat{u}(\xi)|^2 \ d\xi =: c \|u\|_{\dot{H}^s}^2 =: c |u|_{H^s}^2 \quad semi-norm.$$
(1)

Proof. FIG FIG

$$\int_{|\xi| \ge R} |\widehat{u}(\xi)|^2 \le R^{-2s} \int_{|\xi| \ge R} |\xi|^{2s} |\widehat{u}(\xi)|^2 \qquad \left(\frac{|\xi|^{2s}}{R^{2s}} \ge 1\right)$$
$$E = \int_{|\xi| \le R} (1 - |\xi|^{2s}) |\widehat{u}(\xi)|^2 \le \int_{|\xi| \le R} |\widehat{u}(\xi)|^2$$

Without loss of generality, take R < 1,

$$\begin{aligned} |\widehat{u}(\xi)| &\leq \int |u| \leq \sqrt{Vol(\Omega)} ||u||_{L^2} \qquad \left(c := \sqrt{\cdot}\right) \\ \implies E \leq c ||u||_{L^2}^2 R^n. \end{aligned}$$

We have

$$||u||_{L^2}^2 \le R^{-2s} \int_{|\xi| \ge R} \dots + \int |\xi|^{2s} |\widehat{u}|^2 + E \le R^{-2s} |u|_{H^s}^2 + cR^n ||u||_{L^2}^2.$$

To obtain an estimate for R,

$$R^{n} < \frac{1}{c} \sim \frac{1}{Vol(\Omega)}$$
$$R \sim \frac{1}{diam(\Omega)}$$
$$R^{-2s} \sim diam(\Omega)^{2s}$$

Corollary 1. $A = a_{2m}(D)$ strongly elliptic, Ω bounded. Then

$$\forall f \in L^2(\Omega) \exists ! u \in H^m_o(\Omega) \ s.t \ Au = f.$$

Proof.

$$Re(Au)(u) \ge \int |\xi|^{2m} |\widehat{u}(\xi)|^2 = |u|^2_{H^m} \gtrsim \underbrace{|u|^2_{H^m} + ||u||^2_{L^2}}_{\sim ||u||^2_{H^m}}$$

Example: For m = 1:

$$\left(\int |\nabla u|^2 \ge \frac{1}{2} \int |\nabla u|^2 + c \int |u|^2\right).$$

0.3 Rellich-Kondrashov Theorem

 Ω bounded, s > t, then the embedding $H_o^s(\Omega) \hookrightarrow H_o^t(\Omega)$ is compact.

Proof. (t = 0) Take $\{u_k\} \subset H_o^s(\Omega)$ with $||u_k||_{H^s} \leq 1$. We want a subsequence that converges in $H_o^t(\Omega)$. Consider a cutoff function χ in Fourier space, that is equal to 1 for $|\xi| \leq R$ and equal to 0 for $|\xi| > R$, where R is a large constant to be adjusted. FIG

Define

$$\widehat{u}_{k}^{(1)} = \chi \widehat{u}_{k}
\widehat{u}_{k}^{(2)} = (1 - \chi) \widehat{u}_{k}
\|u_{k}^{(2)}\|_{L^{2}} \leq R^{-s} \|u_{k}^{(2)}\|_{H^{s}} \leq R^{-2s} \|u_{k}\|_{H^{s}} \quad (\|u_{k}\|_{H^{s}} \leq 1).$$
(2)

 ${\rm thus}$

$$\begin{aligned} |u_k^{(1)}(x)| &\lesssim \int\limits_{|\xi| \le R} |\widehat{u}_k^{(1)}| \le cR^{n/2} \|\widehat{u}_k^{(1)}\|_{L^2} \\ &\le cR^{n/2} \|\widehat{u}_k\|_{L^2} \le R^{n/2} \|\widehat{u}_k\|_{H^s} \le cR^{n/2}. \end{aligned}$$

Moreover,

$$\begin{split} |u_k^{(1)}(x) - u_k^{(1)}(y)| &\leq \int\limits_{|\xi| \leq R} |e^{i\xi x} - e^{i\xi y}| |\widehat{u}_k^{(1)}(\xi)| \ d\xi \\ &\leq \int\limits_{|\xi| \leq R} |1 - e^{i\xi(x-y)}| |\widehat{u}_k^{(1)}(\xi)| \ d\xi \\ &\leq \sup_{|\xi| \leq R} |1 - e^{i\xi(x-y)}| cR^{n/2} \end{split}$$

where constant c comes from the L^1 of $\widehat{u}_k^{(1)}.$ Passing to a subsequence:

$$u_k^{(1)} \to u$$
 uniformly in $\overline{\Omega}$.
 $\implies u_k^{(1)}$ is Cauchy in $L^2(\Omega)$.
 $u_k = u_k^{(1)} + u_k^{(2)}$

Define

and in (2) choose R such that $||u_k^{(2)}||_{L^2} \leq \epsilon$. Then

$$\begin{aligned} \epsilon_0 > \epsilon_2 > \cdots \to 0 \\ \text{for } \epsilon_0 : \quad u_{0k} = u_{0k}^{(1)} + u_{0k}^{(2)} \\ \text{for } \epsilon_1 : \quad u_{11}, \, u_{12}, \, u_{13}, \dots \\ \text{for } \epsilon_2 : \quad u_{21}, \, u_{22}, \, u_{23}, \dots \end{aligned}$$

pick diagonal entries,

$$\implies u_{kk} = u_{kk}^{(1)} + u_{kk}^{(2)}$$

Then for k < j,

$$||u_{kk} - u_{jj}||_{L^2} \le ||u_{kk}^{(1)} - u_{jj}^{(1)}||_{L^2} + \mathcal{O}(\epsilon_k) \to 0 \text{ as } k \to \infty$$

Let A be strongly elliptic. Then for all sufficiently large t,

$$\exists R_t : (A+tI)^{-1} : L^2(\Omega) \to H^m_o(\Omega),$$

is bounded.

$$Au = f \quad \Longleftrightarrow \quad R_t Au = R_t f \iff u - t R_t u = R_t f$$
 Introduce $(+tu - tu)$

and $R_t: L^2(\Omega) \to H^m_o(\Omega) \subset] \subset L^2(\Omega)$ is compact. Hence

$$\underbrace{(I - tR_t)}_{\text{Fredholm}} u = R_t f.$$

The Riesz-Schauder theory implies

$$\dim Ker(I - tR_t) = CoDim Range(I - tR_t)$$

It follows that if $Ker(A) = \{0\}$, then $A : Dom(A) \to L^2(\Omega)$ is surjective. Moreover, consider the eigenvalue problem

$$Au - \lambda u = f \iff (I - (t + \lambda)R_t)u = R_t f.$$

If $\{\mu_k\}$ are the eigenvalues of R_t , then $\{\lambda_k\}$ eigenvalues of A, related by

$$\lambda_k = \frac{1}{\mu_k} - t.$$