
0.1 Friedrichs Extension

Let Ω ⊂ Rn be a smooth domain, and let

A =
∑
|α|≤2α

aαD
α, aα ∈ C∞(Ω)

be strongly elliptic. Then,
A : D(Ω)→ D(Ω)

and
A : D ′(Ω)→ D ′(Ω)

are both continuous. For u, v ∈ D(Ω),

a(u, v) = (Au)(v) sesquilinear

=

∫
Au · v L2-inner product

=

∫ ∑
|α|,|β|≤m

aαβD
αuDβv via integration by parts.

This implies
|a(u, v)| . ‖u‖Hm‖v‖Hm ,

which extends a(·, ·) to continuous sesquilinear functional : Hm
o (Ω)×Hm

o (Ω)→ C.

We have proved a(·, ·) is coercive, i.e for any u ∈ D ,

Re a(u, u) ≥ c‖u‖2Hm − c1‖u‖2L2 (c > 0)

which may be extended to u ∈ Hm
o by a density argument. Given w ∈ Hm

o (Ω) where for simplicity
we denote Hm

o (Ω) = X,

A′ : w 7→ a(·, w) ∈ X ′

Ã : w 7→ [v 7→ a(w, v)] ∈ X ′

This defines A′ : X → X ′ and Ã : X → X ′ bounded and linear.

Theorem 1 (Lax-Milgram). If a is strictly coersive in X, then A′ and Ã are invertible.

We have
(Ãu)(v) = a(u, v) = (Au)(v),

therefore Ã extends A : D → D and restricts A : D ′ → D ′ to Hm
o (Ω). Ã is called the energy extension

of A.
Under the assumption that a is strictly coercive,

Au = f

is uniquely solvable on Hm
o (Ω) for f ∈ Hm

o (Ω)′.
Friedrichs’ Extension: A : L2(Ω)→ L2(Ω) can be defined with domain

Dom(A) = {u ∈ L2(Ω) : Ãu ∈ L2(Ω)}.
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Under similar assumptions, there exists A−1 : L2(Ω) → L2(Ω) since L2(Ω) ↪→ Hm
o (Ω)′ continuously

embedded: If f ′ ∈ L2, define f(v) =
∫
f ′v, then

|f(v)| =
∣∣∣∣ ∫ f ′v

∣∣∣∣ ≤ ‖f ′‖L2‖v‖L2 .

—
If A is strongly elliptic, the Garding Inequality guarantees solvability of

(A+ tI)u = f

for large t. We may consider −∆u+ tu = f as an example.

0.2 Friedrichs/Poincaré Inequality

Theorem 2. Let Ω bounded, and s ≥ 0. Then for all u ∈ D(Ω)

‖u‖2L2 ≤ c
∫
|ξ|2s|û(ξ)|2 dξ =: c‖u‖2

Ḣs =: c|u|2Hs semi-norm. (1)

Proof. FIG
FIG ∫

|ξ|≥R

|û(ξ)|2 ≤ R−2s
∫
|ξ|≥R

|ξ|2s|û(ξ)|2
(
|ξ|2s

R2s
≥ 1

)

E =

∫
|ξ|≤R

(1− |ξ|2s)|û(ξ)|2 ≤
∫
|ξ|≤R

|û(ξ)|2

Without loss of generality, take R < 1,

|û(ξ)| ≤
∫
|u| ≤

√
V ol(Ω)‖u‖L2

(
c :=

√
·
)

=⇒ E ≤ c‖u‖2L2Rn.

We have

‖u‖2L2 ≤ R−2s
∫
|ξ|≥R

· · ·+
∫
|ξ|2s|û|2 + E ≤ R−2s|u|2Hs + cRn‖u‖2L2 .

To obtain an estimate for R,

Rn <
1

c
∼ 1

V ol(Ω)

R ∼ 1

diam(Ω)

R−2s ∼ diam(Ω)2s

Corollary 1. A = a2m(D) strongly elliptic, Ω bounded. Then

∀f ∈ L2(Ω) ∃! u ∈ Hm
o (Ω) s.t Au = f.
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Proof.

Re(Au)(u) ≥
∫
|ξ|2m|û(ξ)|2 = |u|2Hm & |u|2Hm + ‖u‖2L2︸ ︷︷ ︸

∼‖u‖2
Hm

Example: For m = 1: (∫
|∇u|2 ≥ 1

2

∫
|∇u|2 + c

∫
|u|2
)
.

0.3 Rellich-Kondrashov Theorem

Ω bounded, s > t, then the embedding Hs
o(Ω) ↪→ Ht

o(Ω) is compact.

Proof. (t = 0) Take {uk} ⊂ Hs
o(Ω) with ‖uk‖Hs ≤ 1. We want a subsequence that converges in

Ht
o(Ω). Consider a cutoff function χ in Fourier space, that is equal to 1 for |ξ| ≤ R and equal to 0 for
|ξ| > R, where R is a large constant to be adjusted.
FIG
Define

û
(1)
k = χûk

û
(2)
k = (1− χ)ûk

‖u(2)k ‖L2 ≤ R−s‖u(2)k ‖Hs ≤ R−2s‖uk‖Hs

(
‖uk‖Hs ≤ 1

)
. (2)

thus

|u(1)k (x)| .
∫
|ξ|≤R

|û(1)k | ≤ cR
n/2‖û(1)k ‖L2

≤ cRn/2‖ûk‖L2 ≤ Rn/2‖ûk‖Hs ≤ cRn/2.

Moreover,

|u(1)k (x)− u(1)k (y)| ≤
∫
|ξ|≤R

|eiξx − eiξy||û(1)k (ξ)| dξ

≤
∫
|ξ|≤R

|1− eiξ(x−y)||û(1)k (ξ)| dξ

≤ sup
|ξ|≤R

|1− eiξ(x−y)|cRn/2

where constant c comes from the L1 of û
(1)
k . Passing to a subsequence:

u
(1)
k → u uniformly in Ω.

=⇒ u
(1)
k is Cauchy in L2(Ω).

Define
uk = u

(1)
k + u

(2)
k
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and in (2) choose R such that ‖u(2)k ‖L2 ≤ ε. Then

ε0 > ε2 > · · · → 0

for ε0 : u0k = u
(1)
0k + u

(2)
0k

for ε1 : u11, u12, u13, . . .

for ε2 : u21, u22, u23, . . .

pick diagonal entries,

=⇒ ukk = u
(1)
kk + u

(2)
kk .

Then for k < j,

‖ukk − ujj‖L2 ≤ ‖u(1)kk − u
(1)
jj ‖L2 +O(εk)→ 0 as k →∞.

Let A be strongly elliptic. Then for all sufficiently large t,

∃ Rt : (A+ tI)−1 : L2(Ω)→ Hm
o (Ω),

is bounded.

Au = f ⇐⇒ RtAu = Rtf ⇐⇒ u− tRtu = Rtf

Introduce (+tu− tu)

and Rt : L2(Ω)→ Hm
o (Ω) ⊂] ⊂ L2(Ω) is compact. Hence

(I − tRt)︸ ︷︷ ︸
Fredholm

u = Rtf.

The Riesz-Schauder theory implies

dim Ker(I − tRt) = CoDim Range(I − tRt).

It follows that if Ker(A) = {0}, then A : Dom(A)→ L2(Ω) is surjective.
Moreover, consider the eigenvalue problem

Au− λu = f ⇐⇒ (I − (t+ λ)Rt)u = Rtf.

If {µk} are the eigenvalues of Rt, then {λk} eigenvalues of A, related by

λk =
1

µk
− t.
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