
0.1 Garding Inequality

We have proved that if A = aq(D) with q = 2m is strongly elliptic then

Re 〈Au, u〉 ≥ c‖u‖2Hm − c1‖u‖2L2

for some c > 0, for all u ∈ D(Ω).

Definition 1. Let X be a Hilbert space. a : X ×X → C is sesquilinear form if a(u, v) = a(v, u),
a(·, v) : X → C is linear for any fixed v ∈ X, and

‖a(u, v)‖X∗ . ‖u‖X‖v‖X .

a(·, ·) is called strictly coercive (in X) if

Re a(u, u) ≥ c‖u‖2X (c > 0).

Suppose X ↪→ Z. Then a(·, ·) is called coercive in X with respect to Z if

Re a(u, u) ≥ c‖u‖2X − c1‖u‖2Z (c > 0).

This inequality is called G̊arding’s inequality.
Remark: If a is coercive in X with respect to Z, then for all sufficiently large λ,

a+ λ 〈·, ·〉Z

is strictly coercive. Take (λ = c1).

Definition 2. Hm
0 (Ω) denotes the closure of D(Ω) in Hm(Rn)−norm.

Remark: We will make it more accurate, but for now, think of Hm
0 (Ω) as consisting of functions

u ∈Wm,2(Ω) with
u
∣∣
∂Ω

= 0, ∂nu
∣∣
∂Ω

= 0, ... ∂nu
m−1u

∣∣
∂Ω

= 0.

Theorem 1. Let A =
∑
|α|≤2m aα(x)Dα uniformly strongly elliptic in Ω, aα ∈ Ck(Ω) with k =

max{|α| −m, 0}. Then,
a(u, v) = 〈Au, v〉

is coercive in Hm
o (Ω) with respect to L2(Ω).

Remark: It is enough to prove for u ∈ D ,

Re a(u, v) ≥ c‖u‖2Hm − c1‖u‖2L2 − c2‖u‖Hm‖u‖Hm−1 .

This is because for any ε > 0 there exists Cε such that ab ≤ εa2 + Cεb
2 and the following lemma:

Lemma 1. Suppose s > t ≥ 0, for any ε > 0, there exists Cε such that

‖u‖Ht ≤ ε‖u‖Hs + Cε‖u‖L2 .

Proof.

‖u‖2Ht =

∫
(1 + |ξ|2)t|û(ξ)|2 dξ.

∃Cε : (1 + |ξ|2)t − ε(1 + |ξ|2)s ≤ Cε (s > t).
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Hence we have

‖u‖Hm‖u‖Hm−1 ≤ δ‖u‖2Hm + Cδ‖u‖2Hm−1 ≤ (δ + ε)‖u‖2Hm + Cδ,ε‖u‖2L2 .

We now have the essential tools to prove Theorem 1.

Proof.

〈Au, v〉 =

∫ ∑
|α|≤2m

aα(x)Dαu(x)v(x) dx =

∫ ∑
|α|,|β|≤m

aαβ(x)Dαu(x)Dβv(x) dx,
(
aαβ ∈ C(Ω)

)
,

upon integrating by parts. Now individually,∣∣ ∫ aαβD
αuDβu

∣∣ . ‖Dαu‖L2‖Dβu‖L2 ≤ ‖u‖H|α|‖v‖H|β| .

We prove for bounded Ω. It is possible to generalize by taking countable collection of bounded sets
that its union is the whole space. By boundedness, we take a finite subcover and consider, {χ2

k},
partition of unity (PoU). For any f ,

∫
f =

∑
k

∫
χ2
kf . Then,∫

χ2
kaαβD

αuDβv =

∫
χ2
k(aαβ − a(k)

αβ )DαuDβv +

∫
χ2
ka

(k)
αβD

αuDβv, (1)

where we define the “frozen” coefficients a
(k)
αβ = aαβ(xk), with xk ∈ supp χk. In other words, we

approximate the variable coefficient operator by constant coefficient operators. Now, choose PoU so

that |aαβ − a(k)
αβ | ≤ ε on each supp χk. We have∣∣ ∫ χ2

k(aαβ − a(k)
αβ )DαuDβv

∣∣ ≤ ε∫ χ2
k|DαuDβv

∣∣,
which bounds the first term in (1). Now consider the second term. The commutator [χk, D

α]u, the
error in

χkD
αu = Dα(χku) + [χk, D

α]u

is bounded by ‖u‖Hm−1 when integrated. Thus∑
α,β

∫
a

(k)
αβD

α(χku)Dβ(χkv) =
∑
α,β

∫
a(k)
α Dα(χku)χkv.

If u = v, we may invoke the statement we have established last time, which is also indicated above at
the beginning of the lecture. We have

Re
∑
α,β

∫
· · · ≥ c‖χku‖2Hm − c1‖χku‖2L2 .

If we sum over k,∑
k

Re
∑
α,β

∫
· · · ≥

∑
k

c‖χku‖2Hm − c1‖u‖L2 ≈
∑
k

∫
|Dα(χku)|2 + · · ·

=
∑
k

∫
χ2
k|Dαu|2 +Remainder.
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0.2 Lax-Milgram

Theorem 2. a : X ×X → C, strictly coercive. f ∈ X∗. Then,

∃! u,w ∈ X s.t a(v, u) = a(w, v) = f(v), ∀v ∈ X.

Proof. By Riesz Representation Theorem,

∃! x ∈ X s.t (v, x) = f(v) ∀v ∈ X.

Pick u ∈ X, then

a(·, u) ∈ X∗ =⇒ ∃! x ∈ X s.t (v, x) = a(v, u), ∀u ∈ X.

Define B : u 7→ x, which is linear and bounded. We claim that B is invertible.

c‖u‖2X ≤ |a(u, u)| = |(u, x)| ≤ ‖u‖X‖x‖X

=⇒ ‖u‖X . ‖Bu‖X ,

thus B is injective and its range is closed. Invertibility now follows from surjectivity. To show
surjectivity, let z ∈ X be orthogonal to the range of B. In other words, for all u ∈ X, 0 = (z,Bu) =
a(z, u). Take u = z,

0 = a(z, z) ≥ c‖z‖2X =⇒ z = 0.

Corollary 1. Suppose ‖u‖2Hm . Re 〈Au, u〉 for all u ∈ D(Ω). f ′ ∈ L2(Ω). Then

∃! u ∈ Hm
o (Ω) s.t Au = f ′.

Proof. Define f ∈ Hm
0 (Ω)′ by

f(v) =

∫
f ′ · v = (v, f ′)L2 .

Indeed

|f(v)| =
∣∣ ∫ f ′ · v

∣∣ ≤ ‖f ′‖L2‖v‖L2 , Note : ‖v‖L2 ≤ ‖v‖Hm .

By Lax-Milgram, there is a unique u ∈ Hm
0 (Ω) such that

a(u, v) = f(v) ⇐⇒ a(u, v) = f(v), ∀v ∈ Hm
o (Ω),

We have

f(v) = (v, f ′)L2 =

∫
f · v,

and

a(u, v) =

∫ ∑
|α|,|β|≤m

aαβ(x)Dαu(x)Dβv(x) dx.

Note that it is straightforward to extend the proof to the more general case f ′ ∈ Hm
o (Ω)′.

If A is strongly elliptic, then there exists γ such that ∀λ ∈ C with Re λ ≥ γ, (A+ λI)u = f has a
unique solution u ∈ Hm

o for each f ∈ L2(Ω).
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