0.1 Garding Inequality

We have proved that if $A = a_q(D)$ with q = 2m is strongly elliptic then

$$Re \langle Au, u \rangle \ge c \|u\|_{H^m}^2 - c_1 \|u\|_{L^2}^2$$

for some c > 0, for all $u \in \mathscr{D}(\Omega)$.

Definition 1. Let X be a Hilbert space. $a : X \times X \to \mathbb{C}$ is sesquilinear form if $a(u, v) = \overline{a(v, u)}$, $a(\cdot, v) : X \to \mathbb{C}$ is linear for any fixed $v \in X$, and

$$||a(u,v)||_{X^*} \lesssim ||u||_X ||v||_X.$$

 $a(\cdot, \cdot)$ is called strictly coercive (in X) if

$$Re \ a(u, u) \ge c \|u\|_X^2 \quad (c > 0).$$

Suppose $X \hookrightarrow Z$. Then $a(\cdot, \cdot)$ is called coercive in X with respect to Z if

Re
$$a(u, u) \ge c \|u\|_X^2 - c_1 \|u\|_Z^2$$
 $(c > 0).$

This inequality is called Gårding's inequality.

Remark: If a is coercive in X with respect to Z, then for all sufficiently large λ ,

 $a + \lambda \langle \cdot, \cdot \rangle_Z$

is strictly coercive. Take $(\lambda = c_1)$.

Definition 2. $H_0^m(\Omega)$ denotes the closure of $\mathscr{D}(\Omega)$ in $H^m(\mathbb{R}^n)$ -norm.

Remark: We will make it more accurate, but for now, think of $H_0^m(\Omega)$ as consisting of functions $u \in W^{m,2}(\Omega)$ with

$$u\big|_{\partial\Omega} = 0, \ \partial_n u\big|_{\partial\Omega} = 0, \dots \partial_n u^{m-1} u\big|_{\partial\Omega} = 0$$

Theorem 1. Let $A = \sum_{|\alpha| \leq 2m} a_{\alpha}(x) D^{\alpha}$ uniformly strongly elliptic in $\overline{\Omega}$, $a_{\alpha} \in C^{k}(\overline{\Omega})$ with $k = \max\{|\alpha| - m, 0\}$. Then,

$$a(u,v) = \langle Au, v \rangle$$

is coercive in $H^m_o(\Omega)$ with respect to $L^2(\Omega)$.

Remark: It is enough to prove for $u \in \mathscr{D}$,

$$Re \ a(u,v) \ge c \|u\|_{H^m}^2 - c_1 \|u\|_{L^2}^2 - c_2 \|u\|_{H^m} \|u\|_{H^{m-1}}$$

This is because for any $\epsilon > 0$ there exists C_{ϵ} such that $ab \leq \epsilon a^2 + C_{\epsilon}b^2$ and the following lemma:

Lemma 1. Suppose $s > t \ge 0$, for any $\epsilon > 0$, there exists C_{ϵ} such that

$$||u||_{H^t} \le \epsilon ||u||_{H^s} + C_\epsilon ||u||_{L^2}$$

Proof.

$$\|u\|_{H^t}^2 = \int (1+|\xi|^2)^t |\widehat{u}(\xi)|^2 d\xi.$$

$$\exists C_{\epsilon} : \qquad (1+|\xi|^2)^t - \epsilon (1+|\xi|^2)^s \le C_{\epsilon} \qquad (s>t).$$

Hence we have

$$||u||_{H^m} ||u||_{H^{m-1}} \le \delta ||u||_{H^m}^2 + C_{\delta} ||u||_{H^{m-1}}^2 \le (\delta + \epsilon) ||u||_{H^m}^2 + C_{\delta,\epsilon} ||u||_{L^2}^2.$$

We now have the essential tools to prove Theorem 1.

Proof.

$$\langle Au, v \rangle = \int \sum_{|\alpha| \le 2m} a_{\alpha}(x) D^{\alpha} u(x) \overline{v}(x) \ dx = \int \sum_{|\alpha|, |\beta| \le m} a_{\alpha\beta}(x) D^{\alpha} u(x) D^{\beta} \overline{v}(x) \ dx, \qquad \left(a_{\alpha\beta} \in C(\overline{\Omega})\right),$$

upon integrating by parts. Now individually,

$$\left|\int a_{\alpha\beta}D^{\alpha}uD^{\beta}u\right| \lesssim \|D^{\alpha}u\|_{L^{2}}\|D^{\beta}u\|_{L^{2}} \le \|u\|_{H^{|\alpha|}}\|v\|_{H^{|\beta|}}.$$

We prove for bounded Ω . It is possible to generalize by taking countable collection of bounded sets that its union is the whole space. By boundedness, we take a finite subcover and consider, $\{\chi_k^2\}$, partition of unity (*PoU*). For any $f, \int f = \sum_k \int \chi_k^2 f$. Then,

$$\int \chi_k^2 a_{\alpha\beta} D^{\alpha} u D^{\beta} \overline{v} = \int \chi_k^2 (a_{\alpha\beta} - a_{\alpha\beta}^{(k)}) D^{\alpha} u D^{\beta} \overline{v} + \int \chi_k^2 a_{\alpha\beta}^{(k)} D^{\alpha} u D^{\beta} \overline{v}, \tag{1}$$

where we define the "frozen" coefficients $a_{\alpha\beta}^{(k)} = a_{\alpha\beta}(x_k)$, with $x_k \in supp \chi_k$. In other words, we approximate the variable coefficient operator by constant coefficient operators. Now, choose PoU so that $|a_{\alpha\beta} - a_{\alpha\beta}^{(k)}| \leq \epsilon$ on each supp χ_k . We have

$$\left|\int \chi_k^2(a_{\alpha\beta} - a_{\alpha\beta}^{(k)})D^{\alpha}uD^{\beta}\overline{v}\right| \le \epsilon \int \chi_k^2|D^{\alpha}uD^{\beta}\overline{v}|,$$

which bounds the first term in (1). Now consider the second term. The commutator $[\chi_k, D^{\alpha}]u$, the error in

$$\chi_k D^{\alpha} u = D^{\alpha}(\chi_k u) + [\chi_k, D^{\alpha}] u$$

is bounded by $||u||_{H^{m-1}}$ when integrated. Thus

$$\sum_{\alpha,\beta} \int a_{\alpha\beta}^{(k)} D^{\alpha}(\chi_k u) D^{\beta}(\chi_k \overline{v}) = \sum_{\alpha,\beta} \int a_{\alpha}^{(k)} D^{\alpha}(\chi_k u) \chi_k \overline{v}.$$

If u = v, we may invoke the statement we have established last time, which is also indicated above at the beginning of the lecture. We have

$$Re\sum_{\alpha,\beta}\int\cdots \ge c\|\chi_k u\|_{H^m}^2 - c_1\|\chi_k u\|_{L^2}^2.$$

If we sum over k,

$$\sum_{k} \operatorname{Re} \sum_{\alpha,\beta} \int \dots \geq \sum_{k} c \|\chi_{k}u\|_{H^{m}}^{2} - c_{1}\|u\|_{L^{2}} \approx \sum_{k} \int |D^{\alpha}(\chi_{k}u)|^{2} + \dots$$
$$= \sum_{k} \int \chi_{k}^{2} |D^{\alpha}u|^{2} + Remainder.$$

0.2 Lax-Milgram

Theorem 2. $a: X \times X \to \mathbb{C}$, strictly coercive. $f \in X^*$. Then,

$$\exists ! \ u, w \in X \ s.t \ a(v, u) = \overline{a(w, v)} = f(v), \quad \forall v \in X.$$

Proof. By Riesz Representation Theorem,

$$\exists ! \ x \in X \ s.t \ (v, x) = f(v) \qquad \forall v \in X.$$

Pick $u \in X$, then

$$a(\cdot, u) \in X^* \implies \exists ! \ x \in X \ s.t \ (v, x) = a(v, u), \qquad \forall u \in X$$

Define $B: u \mapsto x$, which is linear and bounded. We claim that B is invertible.

$$c\|u\|_X^2 \le |a(u,u)| = |(u,x)| \le \|u\|_X \|x\|_X$$
$$\implies \|u\|_X \lesssim \|Bu\|_X,$$

thus B is injective and its range is closed. Invertibility now follows from surjectivity. To show surjectivity, let $z \in X$ be orthogonal to the range of B. In other words, for all $u \in X$, 0 = (z, Bu) = a(z, u). Take u = z,

$$0 = a(z, z) \ge c \|z\|_X^2 \implies z = 0.$$

Corollary 1. Suppose $||u||_{H^m}^2 \lesssim \operatorname{Re} \langle Au, u \rangle$ for all $u \in \mathscr{D}(\Omega)$. $f' \in L^2(\Omega)$. Then

$$\exists ! \ u \in H^m_o(\Omega) \ s.t \ Au = f'.$$

Proof. Define $f \in H_0^m(\Omega)'$ by

$$f(v) = \int \overline{f'} \cdot v = (v, f')_{L^2}$$

Indeed

$$|f(v)| = \left| \int \overline{f'} \cdot v \right| \le ||f'||_{L^2} ||v||_{L^2}, \quad \text{Note}: ||v||_{L^2} \le ||v||_{H^m}.$$

By Lax-Milgram, there is a unique $u \in H_0^m(\Omega)$ such that

$$\overline{a(u,v)} = f(v) \iff a(u,v) = \overline{f(v)}, \quad \forall v \in H_o^m(\Omega),$$

We have

$$\overline{f(v)} = \overline{(v, f')}_{L^2} = \int f \cdot \overline{v},$$

and

$$a(u,v) = \int \sum_{|\alpha|,|\beta| \le m} a_{\alpha\beta}(x) D^{\alpha} u(x) D^{\beta} \overline{v}(x) \ dx.$$

Note that it is straightforward to extend the proof to the more general case $f' \in H_o^m(\Omega)'$.

If A is strongly elliptic, then there exists γ such that $\forall \lambda \in \mathbb{C}$ with Re $\lambda \geq \gamma$, $(A + \lambda I)u = f$ has a unique solution $u \in H_o^m$ for each $f \in L^2(\Omega)$.