0.1 Garding Inequality

We have proved that if A = a4(D) with ¢ = 2m is strongly elliptic then
Re (Au,u) > cl|ul[Fm — c1|ulZ:

for some ¢ > 0, for all u € Z(Q).

Definition 1. Let X be a Hilbert space. a : X x X — C is sesquilinear form if a(u,v) = a(v,u),
a(-,v) : X — C is linear for any fized v € X, and

lla(u, v)[x- S fullxlvllx-
a(+,-) is called strictly coercive (in X ) if
Re a(u,u) > cllul|% (¢ >0).
Suppose X < Z. Then a(-,-) is called coercive in X with respect to Z if
Re a(u,u) > cllulk —cllulZ (¢ >0).

This inequality is called Garding’s inequality.
Remark: If a is coercive in X with respect to Z, then for all sufficiently large A,

a—+ A <'a '>Z
is strictly coercive. Take (A = ¢1).
Definition 2. H{'(Q) denotes the closure of 2(2) in H™(R™)—norm.

Remark: We will make it more accurate, but for now, think of HJ*(Q2) as consisting of functions
u € W™2(Q) with

m—1
=0, 9, 0,... du u|aQ =0.
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Theorem 1. Let A = Z|a|§2m ao () D uniformly strongly elliptic in Q, ao, € C¥(Q) with k =
max{|a] —m,0}. Then,
a(u,v) = (Au,v)

is coercive in H™(Q) with respect to L*(£).
Remark: It is enough to prove for u € 2,
Re a(u,v) > cllul|fm — erllullz2 — eallullmm |l rm-1.
This is because for any ¢ > 0 there exists C, such that ab < ea® + C.b? and the following lemma:
Lemma 1. Suppose s >t > 0, for any € > 0, there exists C, such that
ull e < ellullms + Cellul| L2
Proof.
Julfy = [ @+ Py R de.

30 L+ [EP) -1+ [P <O (s> ).



Hence we have
[l g ull =1 < Sllul|Fpm + CsllulFrm-1 < (8 + €)lJullFrm + Co,ellullz2
We now have the essential tools to prove Theorem 1.

Proof.

(Au, v) / Z aq(z)D% dx—/ Z aas(z)Du(z)D0(z) dz,  (aas € C(Q)),

lal<2m lad,1Bl<m

upon integrating by parts. Now individually,
!/aaﬂDO‘UDBM S ID%u) 2| Dl 2 < lfull gie 0] 161

We prove for bounded €2. It is possible to generalize by taking countable collection of bounded sets
that its union is the whole space. By boundedness, we take a finite subcover and consider, {x3},
partition of unity (PoU). For any f, [ f=>", [ x#f. Then,

/xiaagDo‘uDﬁﬂz /Xﬁ(aaﬂ —agcﬂ))Do‘uDﬁf—t—/xiagﬂﬁ)Do‘uDﬁi, (1)

where we define the “frozen” coefficients a((fﬁ) = aap(xy), with z € supp xx. In other words, we

approximate the variable coefficient operator by constant coefficient operators. Now, choose PoU so
_ (k)
that |aqp aa5| < € on each supp xr. We have

‘/X%(aaﬁ — a((fﬁ))Do‘uDBE} < e/xi|D°‘uDﬁﬁ,

which bounds the first term in (1). Now consider the second term. The commutator [xx, D*|u, the
error in

XeD%u = D (xru) + [x, D*]u
is bounded by ||u||gm-1 when integrated. Thus

Z/ alt) D* (xu) D (x1,0) = Z/ ¥ D (xau)xa .

If uw = v, we may invoke the statement we have established last time, which is also indicated above at
the beginning of the lecture. We have

ReY [ > ol el
a,B

If we sum over k,

ZRQZ/“' >3 elxwull}m — cillullze = Z/ID"‘(XW)I2 +
k a,B k k

= Z / Xi|D%u|? + Remainder.
%



0.2 Lax-Milgram
Theorem 2. a: X x X — C, strictly coercive. f € X*. Then,

AN u,w e X st a(v,u) =alw,v) = f(v), VveX.
Proof. By Riesz Representation Theorem,
NzeXst(va)=f(v) WweX.
Pick v € X, then
a(,u) € X* = Nz e X st (v,z)=av,u), VYuelX.
Define B : u — z, which is linear and bounded. We claim that B is invertible.
cllullk < la(u, w)l = |(u, )] < |lullx|lollx

= [lullx < |1Bullx,

thus B is injective and its range is closed. Invertibility now follows from surjectivity. To show
surjectivity, let z € X be orthogonal to the range of B. In other words, for all uw € X, 0 = (2, Bu) =
a(z,u). Take u = z,

0=ua(z2)>clz|% = 2=0.

O
Corollary 1. Suppose ||ul|%m < Re (Au,u) for allu € 2(Q). f' € L*(Q). Then
Nuwe  HMNQ) st Au= f'.
Proof. Define f € Hi*(Q)' by
f0) = [Feo=(0. e
Indeed
£ =] [Fool <18 Iuallolla, Note: foilze < ol
By Lax-Milgram, there is a unique u € HJ*(2) such that
a(uav) = f(?)) — a(uav) - f(v)a Vv € H(Zn(Q)v
We have
o) =T = [ £+
and
a(u,v) :/ Z aap(z)Du(z)DPB(z) dx.
laf, 8| <m
Note that it is straightforward to extend the proof to the more general case f' € HJ*(Q2)'. O

If A is strongly elliptic, then there exists v such that VA € C with Re A > v, (A+ A)u = f has a
unique solution v € HI" for each f € L%(Q).



