
0.1 Gronwall’s Inequalities

This section will complete the proof of the theorem from last lecture where we had left omitted
asserting solutions agreement on intersections. For us to do this, we first need to establish a technical
lemma.

Lemma 1.

a Let y ∈ AC([0, T ],R+), B ∈ C([0, T ],R) with y′(t) ≤ B(t)A(t) for almost every t ∈ [0, T ]. Then

y(t) ≤ y(0) · exp

(∫ t

0

B(s) ds

)
, ∀t ∈ [0, T ]. (1)

b y,B ∈ C([0, T ],R+) with A ≥ 0 and y(t) ≤ A+
∫ t
0
B(s)y(s) ds for t ∈ [0, T ]. Then,

y(t) ≤ A exp

(∫ t

0

B(s) ds

)
, ∀t ∈ [0, T ]. (2)

Proof. a Define

z(t) = y(t) exp

(
−
∫ t

0

B(s) ds

)
=⇒ z ∈ AC

z′(t) = y′(t) exp

(
−
∫ t

0

B(s) ds

)
− y(t)B(t) exp

(
−
∫ t

0

B(s) ds

)
≤ 0 a.e.

=⇒ z(t) ≤ z(0).

b

d

dt

(
A+

∫ t

0

B(s)y(s) ds

)
= B(t)y(t) ≤ B(t)

(
A+

∫ t

0

B(s)y(s) ds

)
y(t) ≤ A+

∫ t

0

B(s)y(s) ds ≤ A exp

(∫ t

0

B(s)y(s) ds

)
.

We now proceed to completing the proof from last time.

Lemma 2. Suppose under the conditions of the last theorem,

∂tu1 = p(Dx)u1 + f(u1) on [0, τ1]

∂yu2 = p(Dx)u2 + f(u2) on [0, τ2]

Then,
u1 = u2 on [0, τ1] ∩ [0, τ2].

Proof. Consider the subtraction of both equations,

∂tv = ∂t(u1 − u2) = p(Dx)(u1 − u2) + f(u1)− f(u2)

1



and consider the iteration

uk(t) = etp(Dx)g +

∫ t

0

et−τp(Dx)f(uk(τ)) dτ.

We have

‖v‖Hs ≤
∫ t

0

α(t− τ)‖f(u1)− f(u2)‖Hs dτ

where f is assumed to be locally Lipchitz, so it follows that

≤ C
∫ t

0

α(t− τ)‖v(τ)‖Hs dτ.

By Gronwall’s lemma, ‖v(t)‖Hs = 0 for all t ∈ [0,min{τk}].

0.2 Classical Solutions

Theorem 1. Let k ≥ 0 be an integer. Suppose s > n
2 + k, then Hs ↪→ Ck continuously embedded and

‖u‖Ck . ‖u‖Hs , ∀u ∈ Hs. (3)

Proof.
(
k = 0

)
. Suppose u ∈ S, then

|u(x)| ≤ C
∫
|û(ξ)| dξ = C

∫
|û(ξ)| 〈ξ〉s 〈ξ〉−s dξ

≤ C‖u‖Hs
(∫

(1 + |ξ|2)−s dξ

)1/2

≤ CCs‖u‖Hs

where integrand (1 + |ξ|2)−s is integrable for 2s > n. Now more generally, for u ∈ Hs, take {vk} ⊂ S
such that v̂k → û in L1. We use a density argument.

‖vk − v)j‖C0 . ‖v̂k − v̂j‖L1 ,

thus {vk} defines a Cauchy sequence in Cb(Rn); that is, there exists v ∈ Cb such that vk → v in Cb.
For all ϕ ∈ S,

〈vk − v, ϕ̂〉 = 〈v̂k − û, ϕ〉 → 0

and therefore u = v as a distribution and thus u = v almost everywhere; equivalently Hs ↪→ Ck.

Concequences:

• u ∈ C0([0, T ], Hs) with s > n
2 =⇒ u ∈ C0([0, T ]× Rn).

• u ∈ C0([0, T ], Hs) with s > n
2 + q, where q is order of p(Dx) =⇒ u ∈ C0([0, T ], Cq), u ∈ C0Cq.

• If ∂tu = p(Dx)u in the distributional sense =⇒ ∂tu ∈ C0([0, T ]× Rn), u ∈ C1Cq.
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0.3 Multiplication in Sobolev Space

Theorem 2. Suppose s > n
2 , then the following estimate holds for all u, v ∈ Hs

‖uv‖Hs . ‖u‖Hs‖v‖Hs (4)

Proof. Consider the identity

〈ξ〉s (ûv)(ξ) = 〈ξ〉s
∫
û(ξ − η)v̂(η) dη. (5)

Using the fact that (a+b)p ≤ 2q(ap+bp), where q = max{0, p−1}, we have 〈ξ〉s ≤ 2s 〈ξ − η〉s+2s 〈η〉s
and thus equality (5)

〈ξ〉s (ûv)(ξ) ≤ 2s
∫
〈ξ − η〉s |û(ξ − η)v̂(η)| dη + 2s

∫
|û(ξ − η)| 〈η〉s |v̂(η) dη

≤ 2s| 〈 · 〉s û| ∗ |v̂|+ 2s|û| ∗ | 〈 · 〉s v̂|

and thus
‖uv‖Hs ≤ ‖u‖Hs‖v̂‖L1 + ‖û‖L1‖v‖Hs

where ‖ ·̂ ‖L1 . ‖ · ‖Hs if s > n
2 .

An example were the theorem applied is f(u) = up. For p ≥ 0 integers, the function f is locally
Lipschitz. Results may also extend to smooth enough functions.

0.4 Derivative Nonlinearities

Consider the Navier-Stokes term f(u) = u · ∇u. We have

f : Hs+1 → Hs︸ ︷︷ ︸
loss of regularity

(
s >

n

2
+ 1
)

continuous.

We revisit the iteration:

uk+1(t) = etp(Dx)g +

∫ t

0

e(t−τ)p(Dx)f(uk(τ)) dτ.︸ ︷︷ ︸
N(uk)

What we really need is N : Hs → Hs contractive on BR.

N(u) =

∫ t

0

e(t−τ)p(Dx)f(u(τ)) dτ.

Assume that f : Hs → Hs−σ is locally Lipschitz, and that the operator p(Dx) is Shilov h-parabolic:

|etp(Dx)| ≤ Ce(c1−δ|ξ|
h)t, (δ > 0, h > 0).

Petrowsky q-parabolic implies Shilov q-parabolic.

N̂(u)(t)(ξ) =

∫ t

0

e(t−τ)p(ξ)f(u(τ)) dτ .
∫ t

0

∫
e(c1−δ|ξ|

h)(t−τ) ̂f(u(τ))(ξ)dξdτ (6)
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for large |ξ|. The propagator etp(Dx) has strong smoothing effect for t > 0, but this effect degenerates
as t→ 0. Multiply both sides of (6) by 〈ξ〉s to obtain

〈ξ〉s · · ·︸ ︷︷ ︸
I

=

∫
· · · 〈ξ〉σ 〈ξ〉s−σ dξdτ.

The maximum of e−(t−τ)δ|ξ|
h |ξ|σ is located around:

∂

∂|ξ|

(
e−(t−τ)δ|ξ|

h

|ξ|σ
)

= σ|ξ|σ−1e−(t−τ)δ|ξ|
h

− (t− τ)δh|ξ|h−1|ξ|σe−(t−τ)δ|ξ|
h

= 0

|ξ|h =
σ

δh(t− τ)
=⇒ M ∼ eδ/h

(
σ

δh(t− τ)

)σ/h
∼ (t− τ)−σ/h.

It follows that

I ∼
∫ t

0

(t− τ)−σ/h 〈ξ〉s−σ f̂︸ ︷︷ ︸
L2−integrable

integrability provided σ < h. We have

I ∼ t1−σ/h‖f‖Hs−σ .

In the particular case of Navier-Stokes equations we have h = 2 and σ = 1.
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