Lecture¹ 2

Topological Space X: Basic Notions

Lemma 1. A collections of subsets of X, $\sigma \subset 2^X$, is a base if and only if:

- i) σ is cover of X.
- ii) $\forall A, B \in \sigma$, $A \cap B$ is the union of elements from σ .

Proof. Define $\tau = \{union \ of \ elements \ from \ \sigma\}$. Then,

$$(\cup_{\alpha} A_{\alpha}) \cap (\cup_{\beta} B_{\beta}) = \cup_{\alpha} \cup_{\beta} (A_{\alpha} \cap B_{\beta}).$$

 $A \in \tau \Leftrightarrow \forall x \in A, \ \exists B \in \sigma \ s.t \ x \in B \subset A.$

Let $Y \subset X$. relative topology $\tau_Y = \{A \cap Y : A \in \tau\}$.

 X_1, X_2 product topology with base $\sigma_{X_1 \times X_2} = \{A_1 \times A_2 : A_1 \in \tau_1, A_2 \in \tau_2\}$

 $A \subset X$ is **nbhd of** $x \in X$ if $B \in \tau$ such that $x \in B \subset A$.

 $\mathcal{N}(x)$ the set of nbhd's of x.

X vector space. $A \subset X$ is **balanced** if $\lambda A \subseteq A$, $\forall \lambda, \ |\lambda| \le 1$. In other words, $x \in A \implies \lambda x \in A$.

Theorem 1 (cf. [RUDIN] §1.14, 1.15). Suppose X topological vector space, $0 < r_1, r_2 < ..., r_n \rightarrow \infty$. $V \in \mathcal{N}(0)$

- a) $\bigcup_n r_n V = X$ (V is absorbing).
- b) $\exists \mathcal{U} \in \mathcal{N}(0)$ open such that $\mathcal{U} + \mathcal{U} \subset V$.
- c) $\exists \mathcal{U} \in \mathcal{N}(0)$ open balanced such that $\mathcal{U} \subset V$.
- d) $\exists \mathcal{U} \in \mathcal{N}(0)$ closed such that $\mathcal{U} \subset V$.
- e) $K \in \mathcal{U}$ compact $\Longrightarrow K$ bounded.
- f) V bounded $\implies \{r_n^{-1}V\}$ is local base of X.

Proof. a) $x \in X$. Define $\lambda \mapsto \lambda x : \mathbb{R} \to X$ continuous. e

$$\implies A \subset \mathbb{R}, \ open, \ A \ni 0 \ s.t \ A \cdot x \subset V$$

$$\exists s > 0 \ s.t \ |\lambda| < s \ \lambda x \in V \implies x \in \lambda^{-1}V, \ r_n > \lambda^{-1}$$

- b) $+: X \times X \to X \exists A, B \subset X$ open such that $A + B \subset V$. $\mathcal{U} = A \cap B$.
- c) $\cdot : \mathbb{R} \times X \to X \exists \rho > 0, \ \exists A \in \mathcal{N}(0) \ s.t \ D_{\rho} \cdot A \subset V, \ D_{\rho} = \{|\lambda| \leq \rho\}.$

$$\implies \lambda A \subset V \implies \mathcal{U} = \bigcup_{|\lambda| \leq \rho} \lambda A \subset V.$$

d) $\mathcal{U} \in \mathcal{N}(0)$ balanced $\mathcal{U} + \mathcal{U} \subset V$. $\mathcal{U} - \mathcal{U} \subset V$. $x \in \overline{\mathcal{U}}$.

¹Notes by Ibrahim Al Balushi

 $(x + \mathcal{U}) \cap \mathcal{U} \neq \emptyset$.

$$\exists y, z \in \mathcal{U} \ s.t \ x + y = z \implies x = z - y \in V.$$

e) $\bigcup_n r_n V \supseteq K \implies \exists m \ s.t \ K \subset \bigcup_{n=1}^m r_n V = r_m V.$

Note: bounded means $\forall \mathcal{U} \in \mathcal{N}(0) \ \forall t > 0 \ s.t \ K \subset t\mathcal{U}$.

f) $\mathcal{U} \in \mathcal{N}(0)$. $\exists s > 0$ s.t $V \subset s\mathcal{U} \implies V \subset r_n\mathcal{U}$ if $r_n > s$.

$$\implies r_n^{-1}V \subset \mathcal{U}$$

Corollary 1. X topological vector space, $M \subset X$ open subspace. Then M = X.

Proof.
$$M \in \mathcal{N}(0) \implies x \in X, \ \exists \lambda > 0 \ s.t \ x \in \lambda M = M.$$

Definition 1. Hausdorff property

$$x, y \in X, x \neq y$$
: $\exists A, B \text{ open } s.t \ x \in A, \ y \in B, \ A \cap B = \emptyset.$

X is Hausdorff TVS: $\{x\}$ is closed $(x \in X)$.

Lemma 2. Suppose $\{0\}$ is closed in TVS X. Then X is Hausdorff.

Proof. $X \setminus \{y\}$ is open. $\exists V \in \mathcal{N}(0)$ s.t $V \subset X \setminus \{y\}$. $y \notin V$. $\exists \mathcal{U} \in \mathcal{N}(0)$ balanced, such that $\mathcal{U} + \mathcal{U} \subset V$. $y \notin \mathcal{U} + \mathcal{U} \subset X \setminus \{y\}$.

$$a, b \in \mathcal{U} \implies a + b \in X \setminus \{y\}.$$
 (1)

$$\implies a+b \neq y$$
 (2)

$$\implies a \in \mathcal{U} \neq y - b \in y - \mathcal{U} = y + \mathcal{U} \tag{3}$$

$$\implies \mathcal{U} \cap (y + \mathcal{U}) = \emptyset. \tag{4}$$

Lemma 3. X topological space, E Hausdorff TVS. $f: X \to E$ continuous. If f = 0 on dense subset Y of X, then $f \equiv 0$ on X.

Proof. $f^{-1}(\{0\})$ closed. $f^{-1}(\{0\}) \supset Y$.

$$\implies f^{-1}(\{0\}) \supset \overline{Y} = X$$

Example

Riemann integral: $I: C_o(\mathbb{R}) \to \mathbb{R}$ continuous.

$$||u||_{L^1} = \int |u|. \quad L^1(\mathbb{R}) = \overline{C_o(\mathbb{R})}.$$

the extension of I is Lebesgue integral.

Definition 2. seminorm $p: X \to \mathbb{R}$ (X vector space)

$$i) \ p(x+y) \le p(x) + p(y)$$

$$ii) p(\lambda x) = |\lambda| p(x)$$

norm:

$$iii) p(x) = 0 \implies x = 0.$$

References

[RUDIN] Walter Rudin, Functional Analysis, McGraw-Hill Inc. Second Edition (1991).