0.1 Semilinear Evolution Equations

Last Time

In the last lecture we have proved:
Ju € CO([0,T), H®) satisfying
du=pDe)u+f, ul,_ =g
under the assumptions:
(i) [etP@] < aft) YVt >0, € € R® where 3 a € C(R).
(ii) g € H®, f e L'([0,T], H®).

The solution is given in Fourier space by

6.0 = TOge) + [ O fe,r) dr O

whereas in real space the solution is retrieved by means of the Fourier inversion
t
u(t) = P g(z) + / TP f(r) dr. (2)
0

Moreover, the solution satisfies the estimate

t
)| ze < a(t)lgllm +/O a(t = 1) f(T)llas dr. (3)
Condition (7) is satisfied for the following types of equations:

e (Shilov) parabolic systems: e!’()| < Celer=dlEMt 1 particular, (Petrowsky) q-parabolic
systems.

e Strongly hyperbolic systems, which includes symmetric- and strictly hyperbolic systems.

e Dispersive equations such as the Shridinger and Airy equations.

0.2 Semilinear Evolution Equations (SL)

Consider the following problem
{atu — P(D,) + f(u)
g =9

where f: H° — H? is a continuous map. The followings make good examples of such systems:

e Semilinear heat equation with derivative nonlinearity:
uy = Au+ |Vul?,
where nonlinearity f(u)(z) = |[Vu(x)|? is local. We say f is local if

f(u)(x) := F(u(x), du(z), ...)
F:RY 5 R™; with u:R"* — R™



e Nonlinear Schrodinger equation:
up = tAu +uP

e Korteweg-de Vries equation:
Ut + Upzpr = Ulyg

In the next section will present an important equation of this type.

0.3 The Navier-Stokes Equations

The Navier-Stokes equations for incompressible fluid are

{&uzAu—u-VU—Vp (5)

V-u=0 (divergence-free condition)
Here v : R® x Ry — R” is the velocity field and p : R™ x Ry — R is the pressure field. We can clearly
see that this equations does not have the standard time dependant form expressed above. This is due

to the last equation V-u = 0. However it is possible to modify the equations by projecting them onto
the space {div u = 0} by means of an L2-orthogonal projection.

In order to define such a projector, observe that in Fourier space
Viu=0 < €¢-ul§) =0

which is equivalent to the no-radial component condition on u. We define P : S — S by

)

)

Pu(e) =€) — (@ L8 &

(Pu)i(€) = T (€) — é%%(f)@

= (5kj - %g) u;(§)

P: H® — H? is bounded for all s € R™. Applying P to the Navier-Stokes equations we obtain:

0w = Au — P(u - Vu) — P(Vp)
——
=0



where the pressure term Vp vanishes under the projection since it is completely radial in Fourier
space. Now if divuli—g = 0 then divu = 0 for all time ¢ > 0 and hence

0w = Au— P(u - Vu) <= u solves Navier-Stokes Eqn’s.

Note that in this formulation we have f(u) = P(u - Vu), which is nonlocal.

0.4 Existence and Uniqueness of SL Equations
If s is large enough, it is easy to establish local well-posedness. It is however more difficult to establish:
e Global well-posedness, or

e Local well-posedness for low values of s (what low means depends on the equation).

In order to solve SL, define ug(t) = e?(P+)g(z) and

t
wia(t) = uo(®) + [ eI flug(r)) dr (4
0
ie
dyuo = p(Dx)uo,  uol,_y =9
Opupy1 = p(Da)upsr + f(ur), uks1|,_, = 9-

We know uy € CO([0,T], H®), then f(ug) € C°([0,T], H*). Tt follows from the theorem we have
established previously that u; € C°([0,T], H®) and the rest follows inductively. It is left to show
that the sequence defined by (*) converges in C°([0,T], H*). This will be done by using the Banach
Fixed-Point Theorem. Define X = C°([0, 7], H®) and write (x) as

U1 =uo + N(ug), ar = |alcop,1)-

We have
[uo + N(u)llx < arllglla: + Tar| f(u)lx

where constant 7' is the measure of the set we integrate over to be chosen. In order to obtain a
contraction, by examining the following estimate

[IN(u) = N(v)|[x < Tar max, 1f () = f (o)l

we conclude that f need be locally Lipschitz in time. Suppose for all R > 0, f satisfies the Lipschitz
property on Bg(0) C H?, and suppose u,v € Bg(0) C X. We have

luo + N(u)llx < arllglla: + Tar(Brlullx +[1f(w)llx)
where (g is the Lipchitz constant. It follows that
IN(u) = N(v)l[x < Tarfrllu—vlx.
We have

Vr>0,3R>rand 37T >0s.t Vg€ B,.(0) C H® and u € Bg(0) C X
= up + N(u) C Br(0) C X and N is a contraction on Br(0) C X.



Theorem 1. Assume (i) and f: H® — H® locally Lipchitz, then

(i) Vr >0, 3T >0 s.tVg € B.(0) C H*, 3u € C°([0,T), H*). Moreover the map g — u : B,.(0) —

C°([0,T], H®) is Lipschitz.

(i) For any g € H*, there is a maximal time of existence T € (0,T], and a unique solution u €

C°([0,T], H®). Moreover if T < oo then ||u(t)||gs — o0 ast +T.

Proof. Existence and uniqueness in Br(0) has been established. For uniqueness in X, suppose u* € X
is another solution. We have p = ||ul|x < R. We claim that ||u*||x < p so u* = u by established

uniqueness. Let

I={1>0:||u"|lcogo,r),ms) < p}
0 € I, I is closed. Suppose 7 € I, then there exists 7% > 7 such that
[ l[coo,ry,e) < R
= v =won 0,7
= l[wlleoorey,me) < p
—> [ open.
For the Lipschitz continuity of the solution map, let
u=ug+ N(u), v=uvy+ N(u)
then
lu = v]lx < fluo —vollx + [[N(u) = N(v)|x < [luo — vollx + kllu — v]x,

with k£ < 1.
For the proof of (ii), take

T =sup{r > 0: 3 sol u € C°([0,7), H*)}.
In other words, [0,7) = 5[0, 7). Consider solutions u; and uy such that

Our = p(Dw)ul + f(u) on [077_1)
Opuz = p(Dz)uz + f(uz) on [0,72)

The question whether u; = ug on [0,71) N [0, 72) will be discussed in the next lecture. Now suppose
T < oo and I{tr} such that ¢, /T and |u(tg)|lgs < M < oo with M independent of k. We can
extend u to time t; + 7 with 7 > 0 independently of k. So one can choose k so large that t, +7 > T

which contradicts the maximality of 7. This implies ||u(t)||gs = cc ast N T.






