
0.1 Semilinear Evolution Equations

Last Time

In the last lecture we have proved:

∃!u ∈ C0([0, T ], Hs) satisfying

∂tu = p(Dx)u+ f, u
∣∣
t=0

= g

under the assumptions:

(i) |etP (ξ)| ≤ α(t) ∀t ≥ 0, ξ ∈ Rn where ∃ α ∈ C(R).

(ii) g ∈ Hs, f ∈ L1([0, T ], Hs).

The solution is given in Fourier space by

û(ξ, t) = etP (ξ)ĝ(ξ) +

∫ t

0

e(t−τ)P (ξ)f̂(ξ, τ) dτ. (1)

whereas in real space the solution is retrieved by means of the Fourier inversion

u(t) = etP (Dx)g(x) +

∫ t

0

e(t−τ)P (Dx)f(τ) dτ. (2)

Moreover, the solution satisfies the estimate

‖u(t)‖Hs ≤ α(t)‖g‖Hs +

∫ t

0

α(t− τ)‖f(τ)‖Hs dτ. (3)

Condition (i) is satisfied for the following types of equations:

• (Shilov) parabolic systems: etP (ξ)| ≤ Ce(c1−δ|ξ|
h)t. In particular, (Petrowsky) q-parabolic

systems.

• Strongly hyperbolic systems, which includes symmetric- and strictly hyperbolic systems.

• Dispersive equations such as the Shrödinger and Airy equations.

0.2 Semilinear Evolution Equations (SL)

Consider the following problem {
∂tu = P (Dx) + f(u)

u
∣∣
t=0

= g
(4)

where f : Hs → Hs is a continuous map. The followings make good examples of such systems:

• Semilinear heat equation with derivative nonlinearity:

ut = ∆u+ |∇u|2,

where nonlinearity f(u)(x) = |∇u(x)|2 is local. We say f is local if

f(u)(x) := F (u(x), ∂u(x), ...)

F : RN → Rm; with u : Rn → Rm
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• Nonlinear Schrödinger equation:
ut = i∆u+ up

• Korteweg-de Vries equation:
ut + uxxx = uux

In the next section will present an important equation of this type.

0.3 The Navier-Stokes Equations

The Navier-Stokes equations for incompressible fluid are{
∂tu = ∆u− u · ∇u−∇p
∇ · u = 0 (divergence-free condition)

(5)

Here u : Rn×R+ → Rn is the velocity field and p : Rn×R+ → R is the pressure field. We can clearly
see that this equations does not have the standard time dependant form expressed above. This is due
to the last equation ∇·u = 0. However it is possible to modify the equations by projecting them onto
the space {div u = 0} by means of an L2-orthogonal projection.

In order to define such a projector, observe that in Fourier space

∇ · u = 0 ⇐⇒ ξ · û(ξ) = 0

which is equivalent to the no-radial component condition on û. We define P : S → S by

P̂ u(ξ) = û(ξ)−
(
û(ξ) · ξ

|ξ|

)
ξ

|ξ|

(P̂ u)k(ξ) = ûk(ξ)− ξk
|ξ|2

ûj(ξ)ξj

=

(
δkj −

ξkξj
|ξ|2

)
ûj(ξ)

P : Hs → Hs is bounded for all s ∈ Rn. Applying P to the Navier-Stokes equations we obtain:

∂tu = ∆u− P (u · ∇u)− P (∇p)︸ ︷︷ ︸
=0
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where the pressure term ∇p vanishes under the projection since it is completely radial in Fourier
space. Now if div u|t=0 = 0 then div u = 0 for all time t > 0 and hence

∂tu = ∆u− P (u · ∇u) ⇐⇒ u solves Navier-Stokes Eqn’s.

Note that in this formulation we have f(u) = P (u · ∇u), which is nonlocal.

0.4 Existence and Uniqueness of SL Equations

If s is large enough, it is easy to establish local well-posedness. It is however more difficult to establish:

• Global well-posedness, or

• Local well-posedness for low values of s (what low means depends on the equation).

In order to solve SL, define u0(t) = etp(Dx)g(x) and

uk+1(t) = u0(t) +

∫ t

0

e(t−τ)p(Dx)f(uk(τ)) dτ (∗)

i.e

∂tu0 = p(Dx)u0, u0
∣∣
t=0

= g

∂tuk+1 = p(Dx)uk+1 + f(uk), uk+1

∣∣
t=0

= g.

We know u0 ∈ C0([0, T ], Hs), then f(u0) ∈ C0([0, T ], Hs). It follows from the theorem we have
established previously that u1 ∈ C0([0, T ], Hs) and the rest follows inductively. It is left to show
that the sequence defined by (∗) converges in C0([0, T ], Hs). This will be done by using the Banach
Fixed-Point Theorem. Define X = C0([0, T ], Hs) and write (∗) as

uk+1 = u0 +N(uk), αT = ‖α‖C0[0,T ].

We have
‖u0 +N(u)‖X ≤ αT ‖g‖Hs + TαT ‖f(u)‖X

where constant T is the measure of the set we integrate over to be chosen. In order to obtain a
contraction, by examining the following estimate

‖N(u)−N(v)‖X ≤ TαT max
t∈[0,T ]

‖f(u(t))− f(v(t))‖Hs

we conclude that f need be locally Lipschitz in time. Suppose for all R > 0, f satisfies the Lipschitz
property on BR(0) ⊂ Hs, and suppose u, v ∈ BR(0) ⊂ X. We have

‖u0 +N(u)‖X ≤ αT ‖g‖Hs + TαT (βR‖u‖X + ‖f(u)‖X)

where βR is the Lipchitz constant. It follows that

‖N(u)−N(v)‖X ≤ TαTβR‖u− v‖X .

We have

∀r > 0, ∃ R > r and ∃ T > 0 s.t ∀q ∈ Br(0) ⊂ Hs and u ∈ BR(0) ⊂ X
=⇒ u0 +N(u) ⊂ BR(0) ⊂ X and N is a contraction on BR(0) ⊂ X.
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Theorem 1. Assume (i) and f : Hs → Hs locally Lipchitz, then

(i) ∀r > 0, ∃ T > 0 s.t ∀g ∈ Br(0) ⊂ Hs, ∃!u ∈ C0([0, T ], Hs). Moreover the map g 7→ u : Br(0)→
C0([0, T ], Hs) is Lipschitz.

(ii) For any g ∈ Hs, there is a maximal time of existence T ∈ (0, T ], and a unique solution u ∈
C0([0, T ], Hs). Moreover if T <∞ then ‖u(t)‖Hs →∞ as t ↑ T .

Proof. Existence and uniqueness in BR(0) has been established. For uniqueness in X, suppose u∗ ∈ X
is another solution. We have ρ = ‖u‖X < R. We claim that ‖u∗‖X ≤ ρ so u∗ = u by established
uniqueness. Let

I = {τ ≥ 0 : ‖u∗‖C0([0,τ),Hs) ≤ ρ}
0 ∈ I, I is closed. Suppose τ ∈ I, then there exists τ∗ > τ such that

‖u∗‖C0([0,τ∗],Hs) ≤ R
=⇒ u∗ = u on [0, τ∗]

=⇒ ‖u∗‖C0([0,τ∗),Hs) ≤ ρ
=⇒ I open.

For the Lipschitz continuity of the solution map, let

u = u0 +N(u), v = v0 +N(u)

then
‖u− v‖X ≤ ‖u0 − v0‖X + ‖N(u)−N(v)‖X ≤ ‖u0 − v0‖X + k‖u− v‖X ,

with k < 1.
For the proof of (ii), take

T = sup{τ > 0 : ∃ sol u ∈ C0([0, τ), Hs)}.

In other words, [0, T ) =
⋃
∃[0, τ). Consider solutions u1 and u2 such that

∂tu1 = p(Dx)u1 + f(u) on [0, τ1)

∂tu2 = p(Dx)u2 + f(u2) on [0, τ2)

The question whether u1 = u2 on [0, τ1) ∩ [0, τ2) will be discussed in the next lecture. Now suppose
T < ∞ and ∃{tk} such that tk ↗ T and ‖u(tk)‖Hs ≤ M < ∞ with M independent of k. We can
extend u to time tk + τ with τ > 0 independently of k. So one can choose k so large that tk + τ > T
which contradicts the maximality of T . This implies ‖u(t)‖Hs →∞ as t↗ T .
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