
Solvability of Hyperbolic and Parabolic PDEs

Last time: Given a system of PDEs of the form

∂tu = P (Dx)u, P = Pq +Q

we have introduced the following concepts.

• Strong Well-Possedness:
‖u(t)‖L2 ≤ Ceαt‖u(0)‖L2 .

• Strong Hyperbolicity:

q = 1,
∣∣∣eP1(ξ)

∣∣∣ ≤ C, ∀ξ ∈ Rn.

• q-Parabolicity:
Re σ [Pq(ξ)] ⊂ (−∞, δ],∀ξ ∈ Sn−1, δ < 0.

We restate the theorem we concluded last lecture with:

Theorem 1. The Cauchy problem for ∂tu = P (Dx)u is Strongly Well-posed for arbitrary Q if and
only if either

• q = 1 and the system is strongly hyperbolic, or

• q is even and the system is q-parabolic.

We have proved last time the forward implication. For us to prove the converse, we will require
some additional tools and some technical results. The remainder of this lecture will be dedicated for
that purpose.

Remark: It is possible for Pq to be neither strongly hyperbolic nor parabolic and yet still possess
Strong Well-Possedness under some special perturbations Q. For example the Shrödinger equation
∂tu = ±i∆u, which is given by

P (ξ) = ∓iξ2,

is Strongly Well-posed. Clearly, this equation is neither Stongly Hyperbolic since q 6= 1 nor q-parabolic
since we require Re λ(ξ) ≤ −δ|ξ|q, and the eigenvalues of P (ξ) remain on the imaginary axis.

Definition 1. Let A and B be square Hermitian matrices. The notation

A ≤ B means that y∗Ay ≤ y∗y

for any vector y.

Lemma 1 (KL 2.1.4). Suppose there exists a square matrix H satisfying:

c−1I ≤ H = H∗ ≤ cI, (c > 0)

and HA+A∗H = 2αH, (α ∈ R),

then
|etA| ≤ ceαt, (t ≥ 0).
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Proof. The system of ODEs ẏ = Ay has the solution y(t) = etAy(0). It follows that

d

dt
y∗Hy = (ẏ)

∗
Hy + y∗Hẏ

= y∗A∗Hy + y∗HAy

≤ 2αy∗Hy

=⇒ (y∗Hy)︸ ︷︷ ︸
c−1y∗y≤

(t) ≤ e2αt (y∗Hy) (0)︸ ︷︷ ︸
≤c(y∗y)(0)

=⇒ c−1
∣∣etAy(0)

∣∣2 ≤ ce2αy|y(0)|2.

Theorem 2. The followings are equivalent:

(i) P1 is strongly hyperbolic.

(ii) ∀ξ ∈ Rn, the eigenvalues of P1(ξ) are purely imaginary, semi-simple and the spectral projectors
of P1(ξ) are uniformly bounded.

(iii) ∀ξ ∈ Rn, there exists a square matrix H such that

c−1I ≤ H = H∗ ≤ cI, c > 0 independent of ξ

and HP1(ξ) + P1(ξ)∗H ≤ 0.

Proof. (iii) =⇒ (i). Apply the previous lemma to obtain the necessary bounds. As for (i) =⇒ (ii)
we define the spectral projectors by the matrices Πi derived as such if P1 = S−1DS,

D =


λ1

λ1

λ2

. . .

 = λ1


1

1
O


︸ ︷︷ ︸

=SΠ1S−1

+λ2


0

0
1

O


︸ ︷︷ ︸

=SΠ2S−1

+ · · ·

=⇒ P1 = λ1Π1 + λ2Π2 + · · ·

Πk is the projection onto the Kernel(P1 − λkI) along the Range(P1 − λkI). We may write etP1 =∑
k e

tλkΠk. In order to find a bound, we make use of the diagonal decomposition of P1 so that

e−tλletP1 =
∑
k

et(λk−λl)Πk, λk − λl =

{
= 0 if k = l

∈ iR\{0} if k 6= l

which implies an oscillatory behaviour for k 6= l. We integrate

lim
T→∞

1

2T

T∫
−T

e−tλletP1 dt = Πl + lim
T→∞

1

2T
O(1)︸ ︷︷ ︸

→0

= Π1,

=⇒ |Π1y| ≤ |etP1y| ≤ C|y|.
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Conversely, (ii) =⇒ (i), |etP1 | ≤ C|Πk|.

For (ii) =⇒ (iii), Take H = S∗S. Then for any y

y∗Hy = ẏ∗S∗SSy = |Sy|2 ≤ |S|2y

HP1 + P ∗1H = S∗SS−1DS + S∗DS−∗S∗S = S∗ (D +D∗)︸ ︷︷ ︸
=0

S ≤ 0.

Corollary 1. If P1 is strongly hyperbolic then there exists α and C such that∣∣∣e(P1(ξ)+Q)t
∣∣∣ ≤ Ceαt.

Proof. Let A = P1(ξ) +Q and H from (iii) in the theorem above.

HA+A∗H = HP1 + P ∗1H︸ ︷︷ ︸
=0

+HQ+Q∗H ≤ ‖H‖ (‖Q‖ + ‖Q∗‖) I ≤ αH.

Examples:

• Strict hyperbolicity: ∀ ξ ∈ R\{0}, P1(ξ) has distinct and imaginary eigenvalues.

• Symmetric hyperbolicity: P1(ξ) = −P1(ξ)∗ for all ξ ∈ Rn. Examples like Maxwell’s equa-
tions and linear elasticity.

Suppose A1∂1 +A2∂2 + · · ·+An∂n,

then P1(ξ) = iξ1A1 + iξ2A2 + · · ·+ iξnAn.

• Symmetrizable: ∃ S such that SP1(ξ) = (SP1(ξ))∗.

• Further examples: smoothly diagnolizable, systems with constant multiplicities.

Consider the problem: {
∂tu = P (Dx)u+ f in [0, T ]× Rn

u(0) = g
(1)

Theorem 3. Assuming
∣∣etP (ξ)

∣∣ ≤ α(t), for all t ≥ 0, ξ ∈ Rn with α ∈ C
(
R+

)
. Let g ∈ Hs,

f ∈ L1 ([0, T ], Hs) . Then the problem above (1) has a unique solution u ∈ C0 ([0, T ], Hs) satisfying

‖u(t)‖Hs ≤ α(t)‖g‖Hs +

∫ t

0

α(t− τ)‖f(τ)‖Hs dτ.

Proof. Taking the Fourier transform of (1) yields the system of ODEs with solution

û(ξ, t) = etP (ξ)ĝ(ξ)︸ ︷︷ ︸
=:û0(ξ,t)

+

∫ t

0

e(t−τ)P (ξ)f̂(ξ, τ) dτ︸ ︷︷ ︸
=:û1(ξ,t)

.
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τ → t : û0(ξ, τ)→ û0(ξ, t), a.e ξ.∫
〈ξ〉2s |û0(ξ, t)|2 dξ ≤ α(t)2

∫
〈ξ〉2s |ĝ(ξ)|2 dξ

and so by Lebesgues Dominated Convergence Theorem u0 ∈ C0
(
R+, H

s
)
.
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