Lecture! 10

Some preliminaries
e Define translate operator 7 and the reflection of a function v respectively:
() (y) = vy —x)  0(y) = v(-y).
e We previously defined for v € L. and ¢ € 2:
VXU, P >S=< U,V * D>,
e By direct computation we have the relation:
o(z —y) = v(y — ) = 2(y) = 7 0(2).
Theorem 1. Let u € Z. The operator Cy, : Y — & defined by
Chov=v—=v*u
18 continuous. Moreover,
a) (vxu)(z) =< u,T,0 >.
b) supp (u*v) C supp v+ supp u.
¢) 0%(v*u) =90% *xu = v * 0.
Proof. By definition
<U*xv,p>=< U,V * p >=< u,/Tyﬁ-gb(y) dy >
We will show the last term on the right hand side
< u,/Tyﬁ ~P(y) dy >= /< u, 70 > P(y) dy

To show this, we use Riemann’s theory of integration; that is, we will inspect their Riemann sums.
This is possible since [ 7,0 - ¢(y) € Z in the argument of the LHS, and < u,7,0 > in the RHS
is continuous; Ty — Ty¥ in Z. The Riemann sums of the expressions, with respect to volume
segments Av are

< u, ZTZ/@’D : ¢(yZ)AVZ >= Z < UTyiv’D > ¢(yz)AVz
i i
which is true by linearity. Expressions converge to the limit indicated above. Thus,
<u*v,¢>=/<u,7yﬂ>¢)(y)dy, Vo € 9

hence (vxu)(y) = w(y) =< w, 730 > which proves a). To show vxu € &, it suffices to show vxu € C*.
Consider the definition of the derivative:

w(y +h) —w(y) =< u, Ty4n?d — 70 >=< u, [70](y + h) — [1](y) >
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= 0%w =< u,0, 10>
and therefore w € C*°. To prove c),

agfya = va(y —xz) = [0"v](y — x) = 7,0%

= 0%(v*u) =< u,TyéazJ >= (%) * u.

On the other hand,
[0%u)(1,0) = (=)l <, 0%, > . (1)

The function in the RHS is explicitly,
Ouly — =) = (~1)*N™](y — 2) = (~1)/*Ir, 0% (x)
and so carrying on from RHS of (1)
(—D)ll < w, 0975 >=< u, 7,0% >
= v*x 0% = [0%V] *xu
hence ¢). To show b) we have
w(y) =u(ry®) =0 if supp uﬂsupp 0 = 0.
—~
=v(y—x)

Finally to show continuity of C, : 2 — &, it suffices to shoe Cy : Zx — & is continuous for any K
compact. Let || - [|ct(x) be a seminorm on & and v € Z(K). For y € K’ compact,

0 =v(y—z) € 2K - K)
using the fact that u : (K’ — K) — R is continuous,

| <u,y0 > | < C| 70|
— ——

cm(x—k) =C sup [0%(y — ),
|a|]<m
=(v*u)(y) t€K' —K
for some m. Noting that by a) and using the previous estimate,

[v % ulloraery = sup {| < w, 87,0 > | : 8] <1}
yeK’

<C sup {\858;"v(y—x)| el <m, |8 <1}
yeK’
reK' —K

whileye K'\o e K' - K = y—xz €K,
< Cllollem+i(xy-



The following computation reveals another definition:

< Cuu, 0 >=<u,0x¢ >

=< u,v*q?)>
=< ﬂ,v*qz~5>
=< Ca(b,v >,

thus we may define: R
<Ay >=<u,d>.

Definition 1. Letu e 2’ andv € &'.
<vkU, P >=<v,¢*xU>=<v,Cyz¢d >,
Moreover, vxu € 9’

Example

< dxu, ¢ >=<3,Ca¢ >=< 6, (r,d) >= i(

= J*xu=u.

Define : u*v = v % u.

Fact:

peg.

¢

<uxv,p >=<u,Czd>, veE&

< O%(vku), >

(
(
(~1

=< v, ¢ * 0% >

)
)

1)‘0‘| <v*xu, 0% >
Dl < v, 0% x4 >

ol <y, ¢ % 0% >

u(9).



Constant Coefficient Operators

Consider the finite sum

P(g) = Z aa§a~
We define the linear differential operator:

P(0) =) and”.

Definition 2. E € 2'(2) is called a fundamental solution of P(6) if

Examples

o Take P(§) = &1 +--- + &2

P = e

is a fundamental solution since

< AE,¢p >=< E,A¢ >= ¢(0).

o fe& u=fxE
PO)u=PO)f*E)=f+«POE)=fxd=f.

Definition 3. P(0) is hypoelliptic if the following property holds:
U C open and P(O)u € C°U) = u e CU).
P(9) is hypoelliptic, P(9)E = ¢ then E € C*°(R™\{0}).

Theorem 2 (Schwartz). If there exists E € 2' N C°(R"\{0}) such that P(8)E = 6, then P(0) is
hypoelliptic.



