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1. Introduction

In this chapter, we will be concerned with the eigenvalue problem

−∆u = λu, (1)

in a bounded open set Ω ⊂ Rn, with either the Dirichlet u = 0 or the Neumann ∂νu = 0
condition on the boundary ∂Ω. The unknown in the problem is the pair (u, λ) where u is a
function and λ is a number. If (u, λ) is a solution then u is called an eigenfunction, and λ is
called the eigenvalue associated to u. Let us note the following.

• Since the right hand side involves λu, the problem is not linear.
• If (u, λ) is a solution then so is (αu, λ) for any number α.
• We exclude the trivial solution u = 0 from all considerations.

We have studied the problem −∆u+tu = f with the Dirichlet or Neumann boundary conditions,
where t ∈ R and f ∈ L2(Ω) are given. Since (1) is equivalent to −∆u+ tu = 0 with t = −λ, we
can give the following weak formulation for (1). Let V be either H1

0 (Ω) or H1(Ω), depending
on the boundary condition we wish to impose. Then the problem is to find u ∈ V and λ ∈ R
satisfying ∫

Ω
∇u · ∇v = λ

∫
Ω
uv for all v ∈ V. (2)

We know that a unique weak solution u ∈ V to −∆u+ tu = f exists if t > t0, where t0 = 0 for
the Neumann case, and t0 < 0 for the Dirichlet case. This shows that if (2) has a nontrivial
solution, then we must have −λ ≤ t0. In particular, if they exist, the eigenvalues must satisfy
λ ≥ 0 for the Neumann case, and λ > 0 for the Dirichlet case. If u ∈ V satisfies (2) then
the regularity results imply that u ∈ Cω(Ω), and so in particular u is a classical solution of
(1) in Ω, and moreover that u satisfies the desired boundary condition in the classical sense
provided the boundary is regular enough. Finally, if u ∈ H1(Ω) satisfies (2) with λ = 0, then
putting v = u necessitates that u must be locally constant. The dimension of the space of
locally constant functions is equal to the number of connected components of Ω, meaning that
the multiplicity of the Neumann eigenvalue λ = 0 is equal to the same number.
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Now we want to write (2) as an abstract operator eigenvalue problem. We introduce the
linear operator A : V → V ′ and the bilinear form a : V × V → R by

〈Au, v〉 = a(u, v) =

∫
Ω
∇u · ∇v, u, v ∈ V, (3)

where 〈·, ·〉 is the duality pairing between V ′ and V . Recall that a is continuous

|a(u, v)| ≤ ‖u‖H1‖v‖H1 , u, v ∈ V, (4)

symmetric
a(u, v) = a(v, u), u, v ∈ V, (5)

and satisfies
a(u, u) + t〈u, u〉L2 ≥ α‖u‖2H1 , u ∈ V, (6)

for all t > t0, with α > 0 possibly depending on t. The operator A is called the energy extension
of −∆ with the given boundary condition, in the sense that it is an extension of the classical
Laplacian acting on a dense subset of V . We can check that it is bounded:

‖Au‖V ′ = sup
v∈V

〈Au, v〉
‖v‖H1

= sup
v∈V

a(u, v)

‖v‖H1

≤ ‖u‖H1 . (7)

In terms of the operator A, the problem (2) can be written as

Au = λJu, (8)

where the inclusion map J : L2(Ω)→ V ′ is defined by

〈Jf, v〉 =

∫
Ω
fv, v ∈ V. (9)

Obviously, J is injective because Jf = 0 implies f = 0 for f ∈ L2(Ω) by the du Bois-Reymond
lemma. It is also continuous:

‖Jf‖V ′ = sup
v∈V

〈Jf, v〉
‖v‖H1

≤ sup
v∈V

‖f‖L2‖v‖L2

‖v‖H1

≤ ‖f‖L2(Ω), (10)

and hence J defines a continuous embedding of L2(Ω) into V ′. In what follows we will identify
L2(Ω) with a subspace of V ′ through J . So for instance, we write (8) simply as

Au = λu. (11)

For u ∈ H2(Ω) ∩ V and v ∈ D(Ω), integration by parts yields

〈Au, v〉 = −
∫

Ω
v∆u, (12)

meaning that Au = −J∆u, or simply, Au = −∆u. It is in this sense that A is an extension
of the Laplacian. On the other hand, if Au ∈ L2(Ω) and if ∂Ω is smooth enough, we know
from regularity theory of the Poisson equation that u ∈ H2(Ω). Thus, if ∂Ω is smooth enough,
u ∈ V satisfies Au ∈ L2(Ω) if and only if u ∈ H2(Ω).

By the Riesz representation theorem, A+ tI is invertible for t > t0, and (A+ tI)−1 : V ′ → V
is bounded. In what follows, we fix some t > t0. Then adding tu to both sides of (11), and
applying (A+ tI)−1, we get

u = (t+ λ)(A+ tI)−1u. (13)
At this point, we introduce the resolvent1

Rt = (A+ tI)−1|L2(Ω) : L2(Ω)→ L2(Ω), (14)

which is the restriction of (A+ tI)−1 to L2(Ω). Hence if u ∈ V and λ ∈ R satisfy (11), then

(t+ λ)Rtu = u. (15)

1The usual definition is (A− tI)−1, but we are using the plus sign for convenience.
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Conversely, if u ∈ L2(Ω) and λ ∈ R satisfy (15), then by applying A + tI on both sides, we
derive (11), proving the equivalence of the two formulations.

Let us derive some straightforward properties of the resolvent.
• The resolvent is bounded as an operator Rt : L2(Ω)→ V , because

‖Rtf‖V ≤ c‖f‖V ′ ≤ c‖f‖L2(Ω), (16)

where the constant c may have different values at its different occurrences.
• The resolvent is positive, in the sense that 〈Rtf, f〉 > 0 for f 6= 0, where 〈·, ·〉 is the L2

inner product on Ω. To see this, let f ∈ L2(Ω) and let u = Rtf , so that f = (A+ tI)u.
Then the strict coercivity property (6) gives

〈Rtf, f〉 = 〈u, (A+ tI)u〉 = a(u, u) + t〈u, u〉 ≥ α‖u‖2H1 . (17)

• The resolvent is injective: If Rtf = 0 then f = 0.
• The resolvent is symmetric, in the sense that 〈Rtf, g〉 = 〈f,Rtg〉 for f, g ∈ L2(Ω). With
u = Rtf and v = Rtg, we have

〈Rtf, g〉 = 〈u, (A+ tI)v〉 = a(u, v) + t〈u, v〉, (18)

which clearly shows the claim.
• A function u ∈ L2(Ω) is in the range of Rt if and only if Au ∈ L2(Ω). To show this, first
let u be such that Au ∈ L2(Ω). Then (A+ tI)u ∈ L2(Ω), hence u = Rt(A+ tI)u, which
means that u ∈ ranRt. Second, let u ∈ ranRt, i.e., let u = Rtf for some f ∈ L2(Ω). It
is obvious that f = (A+ tI)u. From this, we have Au = f − tu ∈ L2(Ω).

Remark 1. The natural setting for eigenvalue problems is to consider complex eigenvalues
and complex valued eigenfunctions. To this end, we complexify the function spaces under
consideration, as follows. Given a real function space X, such as L2(Ω) or H1(Ω), we define its
complexification XC by

XC = {u+ iv : u, v ∈ X}. (19)
For example, we have

L2(Ω,C) ≡ L2(Ω)C = {u+ iv : u, v ∈ L2(Ω)}. (20)

The inner products must be extended accordingly to Hermitian inner products. For example,
we define

〈f, g〉 =

∫
Ω
fḡ, f, g ∈ L2(Ω,C). (21)

and
〈u, v〉H1 =

∫
Ω

(uv̄ +∇u · ∇v̄), u, v ∈ H1(Ω,C). (22)

Note that with the identification that L2(Ω) (or H1(Ω)) is the subspace of L2(Ω,C) (or
H1(Ω,C)) consisting of real valued functions, the Hermitian inner products reduce to the usual
(real) inner products for real functions. Moreover, linear operators can be extended to act on
these spaces by linearity:

A(u+ iv) = Au+ iAv, and Rt(u+ iv) = Rtu+ iRtv, (23)

et cetera. The resolvent is self-adjoint, in the sense that 〈Rtf, g〉 = 〈f,Rtg〉 for f, g ∈ L2(Ω,C).

Apart from these simple properties, a crucial property we would like to have for the resolvent
is compactness. Since Rt : L2(Ω)→ V is bounded, the resolvent sends bounded sets in L2(Ω)
into bounded sets in V . Therefore, if the embedding V ↪→ L2(Ω) is compact, that is, if bounded
sets in V are relatively compact in L2(Ω), then the resolvent as a map Rt : L2(Ω) → L2(Ω)
would be a compact operator. Recall that a subset S of a metric space X is said to be relatively
compact if any sequence {xn} ⊂ S has a subsequence that converges in X, and a linear operator
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is called compact if it sends bounded sets into relatively compact sets. As for the compactness
of V ↪→ L2(Ω), we will prove in the next section that the embedding H1

0 (Ω) ↪→ L2(Ω) is
compact, provided Ω is bounded. Hence in the Dirichlet case, boundedness of Ω is sufficient
for the resolvent to be compact.

For the Neumann case, however, the situation is a bit more involved, and one needs additional
assumptions regarding the regularity of Ω.

Our strategy to solve the Laplace eigenvalue problem (11) will be through the equivalent
formulation (15) in terms of the resolvent. The main feature that makes this formulation
attractive is the fact that the resolvent is compact under some very mild assumptions on Ω.

2. Rellich’s compactness lemma

In this section, we will establish compactness of the embeddings H1
0 (Ω) ↪→ L2(Ω) and

H1(Ω) ↪→ L2(Ω) under some assumptions on Ω. Either of these results is traditionally
known as Rellich’s lemma. More generally, compactness results on embeddings of the type
W k,p(Ω) ↪→ Lq(Ω) are called Rellich-Kondrashov theorems.
Example 2. a) Let φ ∈ D(B) be a nontrivial function, where B = Br(0) with r > 0, and let
φk, k = 1, 2, . . ., be translates of φ, with their supports not overlapping. Suppose that Ω ⊂ Rn
is a domain that contains suppφk for all k. In particular, Ω is necessarily unbounded. Now,
the sequence {φk} ⊂ H1

0 (Ω) is bounded in H1
0 (Ω). However, since ‖φj − φk‖L2 = 2‖φ‖L2 > 0

whenever j 6= k, no subsequence of {φk} converges in L2(Ω), meaning that the embedding
H1

0 (Ω) ↪→ L2(Ω) is not compact. Furthermore, the sequence fk = (A+tI)φk, k ∈ N, is bounded
in L2(Ω), as ‖fk‖L2 = ‖(−∆ + tI)φ‖L2 , but φk = Rtfk, k ∈ N, has no convergent subsequence
in L2(Ω). Thus the resolvent Rt : L2(Ω)→ L2(Ω) is not compact.

b) Let Ω ⊂ Rn be an open set with infinitely many connected components. Let us denote
those components by Ωk, k ∈ N, and let φk = |Ωk|−1/2, k ∈ N. It is clear that the sequence
{φk} is bounded in H1(Ω), but there is no subsequence that converges in L2(Ω). Moreover,
the resolvent Rt : L2(Ω)→ L2(Ω) is not compact.

c) Let 0 < a < 1, and let Uj = (2−j , 2−j + a2−j) × [0, 1) for j ∈ N. We form a bounded
domain as Ω = (0, 1) × (−1, 0) ∪ U1 ∪ U2 ∪ . . .. Pick a nontrivial function ψ ∈ D(I), where
I = (0, 1), and define φj ∈ C∞(Uj) by φj(x, y) = 2j/2ψ(y), for j ∈ N. We set φj = 0 in Ω \ Uj ,
which yields φj ∈ C∞(Ω). Moreover, we have

‖φj‖2L2(Ω) =

∫
Uj

|φj |2 = a

∫
I
|ψ|2. (24)

The norms ‖∂yφj‖L2 and ‖∂2
yφj‖L2 are also constant, since ∂yφj = 2j/2ψ′ and ∂2

yφj = 2j/2ψ′′.
This means that the sequence {φj} is bounded in H1(Ω), and the sequence {(−∆ + tI)φj}
is bounded in L2(Ω), but no subsequence of {φj} is Cauchy in L2(Ω). Thus, neither the
embedding H1(Ω) ↪→ L2(Ω) nor the resolvent Rt : L2(Ω)→ L2(Ω) is compact.

We shall approach the compactness problem from the metric space standpoint. The most
basic compactness criterion for metric spaces is the following: A metric space is compact if
and only if it is complete and totally bounded. By definition, a metric space is totally bounded
if it admits a finite ε-cover for each ε > 0, and an ε-cover is an open cover consisting of sets
of diameter not exceeding ε. The aforementioned criterion will be sufficient for our purposes,
but we will spend a little additional effort and prove below in Lemma 4 a slightly more general
criterion. If the reader is convinced of the total boundedness criterion, by skipping Lemma4
they would not lose the main thread of the section.
Definition 3. A metric space X is said to be precompact if any sequence {xn} ⊂ X has a
Cauchy subsequence. A subset S of a metric space X is said to be relatively compact if any
sequence {xn} ⊂ S has a subsequence that converges in X.
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Note that for a subset of a complete metric space, the two notions coincide. The total
boundedness criterion basically says that compactness can be established by approximating
the given set by finite sets. The following criterion extends this result to approximation by
compact sets.

Lemma 4. Let (X, ρ) be a metric space, and let S ⊂ X. Suppose that {Xn} is a sequence of
relatively compact subsets of X, satisfying

sup
x∈S

inf
y∈Xn

ρ(x, y)→ 0 as n→∞. (25)

Then S is relatively compact in X.

Proof. We will show that any sequence {xk} ⊂ S has a Cauchy subsequence. For each n, let

εn = sup
x∈S

inf
y∈Xn

ρ(x, y). (26)

Without loss of generality, assume that εn ≥ εn+1 for all n. Pick a sequence {xk} ⊂ S,
and let δ1, δ2, . . . be a sequence of positive reals converging to 0. Then for each k there is
yk ∈ X1 such that ρ(xk, yk) < ε1 + δ1. Since X1 is precompact, we have a Cauchy subsequence
{yki} ⊂ {yk}. In particular, there exists N1 such that for all indices i ≥ N1 and j ≥ N1, we
have ρ(yki , ykj ) < ε1 + δ1. This means that

ρ(xki , xkj ) ≤ ρ(xki , yki) + ρ(yki , ykj ) + ρ(ykj , xkj ) ≤ 3(ε1 + δ1), (27)

for all i ≥ N1 and j ≥ N1. Let us denote the subsequence {xki} by {x1,i}. Then by applying
the above procedure to {x1,i}, with X1 replaced by X2 and ε1 + δ1 by ε2 + δ2, we extract a
subsequence {x2,j} ⊂ {x1,i}, with the property that

ρ(x2,i, x2,j) ≤ 3(ε2 + δ2), (28)

for all i ≥ N2 and j ≥ N2, where N2 is some integer. We continue this recursively, and get
nested sequences {xk} ⊃ {x1,k} ⊃ {x2,k} ⊃ . . ., such that

ρ(xn,i, xn,j) ≤ 3(εn + δn), (29)

for all i ≥ Nn and j ≥ Nn. Without loss of generality, we can take N1 ≤ N2 ≤ . . ..
Now we consider the “diagonal” sequence {xi,i}. This is obviously a subsequence of the

original sequence {xk}. Moreover, given any n and i ≥ n, we have xi,i = xn,k for some k ≥ i.
Hence we infer

ρ(xi,i, xj,j) ≤ 3(εn + δn), (30)
for all i ≥ Nn and j ≥ Nn, meaning that {xi,i} is a Cauchy sequence. �

The following general criterion is known as the Kolmogorov-Riesz criterion.

Theorem 5. Let Ω ⊂ Rn be a domain. A subset S ⊂ L2(Ω) is totally bounded if and only if S
satisfies the following conditions.

• Boundedness: There is M <∞ such that ‖f‖L2(Ω) ≤M for all f ∈ S,
• L2-equicontinuity: ‖∆hf‖L2(Ωh) → 0 uniformly in f ∈ S as h→ 0,
• Uniform decay: ‖f‖L2(Ω\Kj) → 0 uniformly in f ∈ S as j → ∞, for some sequence
K1 ⊂ K2 ⊂ . . . ⊂ Ω of compact sets satisfying

⋃
jKj = Ω.

Proof. We first prove the “if” part. Let ε > 0, and let j be so large that

‖f‖L2(Ω\Kj) < ε for all f ∈ S, (31)

and pick δ > 0 so small that

‖∆hf‖L2(Ωh) < ε for all h ∈ Bδ, f ∈ S, (32)
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where we recall Ωh = {x ∈ Ω : [x, x+ h] ⊂ Ω}. Consider the partition

Gλ = {λa+ [0, λ]n : a ∈ Zn}, (33)

of Rn, consisting of cubes of sidelength λ > 0, and collect the cubes Q ∈ Gλ satisfying
Q ∩Kj 6= ∅ into the collection {Q1, . . . , Qm}. We link λ to δ by 2λn = δ, and lower the value
of δ > 0 if necessary, to ensure the following two conditions.

• All Qi ⊂ Ω, i.e., that Σ =
⋃
iQi satisfies Σ ⊂ Ω.

• δ < dist(Σ, ∂Ω).
The first condition is satisfied if λ > 0 is sufficiently small. Then the second condition is
granted by reducing δ > 0 further, because Σ would only shrink as λ gets smaller. Note that
2λn = δ implies [0, λ]n ⊂ Bδ.

Next, let X = span{χQi} be the space of piecewise constant functions subordinate to the
lattice {Qi} and hence supported in Σ, and define the projector P : L2(Ω)→ X by

Pf =
∑
i

(
1

|Qi|

∫
Qi

f

)
χQi . (34)

Then for f ∈ S, we have

‖Pf‖2L2 =
∑
i

(
1

|Qi|

∫
Qi

f

)2

|Qi| ≤
∑
i

∫
Qi

|f |2 = ‖f‖2L2(Σ) ≤ ‖f‖
2
L2(Ω), (35)

where we have used the Cauchy-Schwarz inequality in the second step. This shows that the
image P (S) of S under the projection P is contained in the ball XM = {φ ∈ X : ‖φ‖L2 ≤M}.
Proceeding further, for f ∈ S, we have

‖f − Pf‖L2(Ω) ≤ ‖f − Pf‖L2(Ω\Σ) + ‖f − Pf‖L2(Σ)

= ‖f‖L2(Ω\Σ) + ‖f − Pf‖L2(Σ)

≤ ε+ ‖f − Pf‖L2(Σ),

(36)

because Pf = 0 outside Σ, and Ω \ Σ ⊂ Ω \Kj . The last term can be estimated as

‖f − Pf‖2L2(Σ) =
∑
i

∫
Qi

(
f(x)− 1

|Qi|

∫
Qi

f

)2

dx

=
∑
i

∫
Qi

(
1

|Qi|

∫
Qi

(f(x)− f(y))dy

)2

dx

≤
∑
i

∫
Qi

1

|Qi|

∫
Qi

|f(x)− f(y)|2dy dx,

(37)

where we have invoked
∫
Qi
f(x)dy = |Qi|f(x) and applied the Cauchy-Schwarz inequality. At

this point, we replace the domain Qi of the inner integration by Bδ(x), and take into account
the fact that 2λn = δ, to get

‖f − Pf‖2L2(Σ) ≤
∑
i

∫
Qi

1

|Qi|

∫
Bδ(x)

|f(x)− f(y)|2dy dx

=
1

λn

∑
i

∫
Qi

∫
Bδ

|f(x)− f(x+ h)|2dhdx

=
1

λn

∫
Bδ

‖∆hf‖2L2(Σ)dh ≤
|Bδ|ε2

λn
= |B1|(2n)nε2

(38)
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To conclude, given any ε > 0, and any f ∈ S, there is a finite dimensional subspace X ⊂ L2(Ω),
and g ∈ X with ‖g‖L2(Ω) ≤ M such that ‖f − g‖L2(Ω) <

ε
2 . Then any ( ε2)-cover of the ball

{g ∈ X : ‖g‖L2(Ω) ≤M} induces an ε-cover of S.
Now we prove the “only of” part. Total boundedness of S trivially implies boundedness. To

prove L2-equicontinuity and uniform boundedness, note that

‖∆hg‖L2(Ωh) → 0 as h→ 0, and ‖g‖L2(Ω\Kj) → 0 as j →∞, (39)

for any g ∈ L2(Ω), where K1 ⊂ K2 ⊂ . . . ⊂ Ω is any sequence of compact sets satisfying⋃
jKj = Ω. These properties can be “planted uniformly” on S with the help of total boundedness

as follows. Let {Kj} be a sequence of compact sets with the aforementioned properties, and
let ε > 0. Suppose that S1, . . . , Sm ⊂ L2(Ω) is an ε-cover of S, and pick gk ∈ Sk for each k.
We can choose j so large, and δ > 0 so small that

‖gk‖L2(Ω\Kj) < ε, and ‖∆hgk‖L2(Ωh) < ε for all h ∈ Bδ, (40)

for all k = 1, . . . ,m. Now, for any given f ∈ S, there exists j such that ‖f − gj‖L2(Ω) ≤ ε.
Thus we have

‖f‖L2(Ω\Kj) ≤ ‖f − gj‖L2(Ω\Kj) + ‖gk‖L2(Ω\Kj) < 2ε, (41)
and

‖∆hf‖L2(Ωh) ≤ ‖∆h(f − gj)‖L2(Ωh) + ‖∆hgk‖L2(Ωh) < 3ε, (42)
for all h ∈ Bδ, concluding the proof. �

Corollary 6. Let Ω ⊂ Rn be an open set. A bounded subset S ⊂ H1(Ω) is relatively compact
in L2(Ω) if and only if it satisfies the uniform decay condition.

Proof. Boundedness of S in H1(Ω) trivially implies boundedness in L2(Ω). Recall that

‖∆hf‖L2(Ωh) ≤ |h|‖∇f‖L2(Ω), h ∈ Rn, f ∈ H1(Ω), (43)

where Ωh = {x ∈ Ω : [x, x+ h] ⊂ Ω}. Since S is bounded in the H1(Ω), we infer

‖∆hf‖L2(Ωh) ≤M |h|, f ∈ S, (44)

for some constant M > 0, yielding L2-equicontinuity of S. Given that we have boundedness
and L2-equicontinuity, the uniform decay condition is equivalent to total boundedness. �

Corollary 7. The embedding H1
0 (Ω) ↪→ L2(Ω) is compact, if Ω ⊂ Rn is a bounded domain.

Proof. Let E : D(Ω)→ D(Rn) be the extension operator defined by

Eϕ =

{
ϕ, in Ω,

0, in Rn \ Ω.
(45)

Since ‖Eϕ‖H1(Rn) = ‖ϕ‖H1(Ω) for D(Ω), this operator can be uniquely extended to an isometry
E : H1

0 (Ω)→ H1(Rn). Now let S ⊂ H1
0 (Ω) be a set bounded in H1(Ω). Then E(S) is bounded

in H1(Rn). Moreover, if r > 0 is sufficiently large, then supp f ⊂ Br for all f ∈ E(S), and
hence E(S) trivially satisfies the uniform decay condition with respect to Rn. Thus E(S) is
relatively compact in L2(Rn). Finally, since the restriction L2(Rn)→ L2(Ω) is continuous, S
is relatively compact in L2(Ω). �

To adapt the extension approach to H1(Ω), suppose that Ω ⊂ Rn is a bounded domain,
and that there exists a bounded extension operator E : H1(Ω)→ H1(Rn). Let φ ∈ D(Rn) be
such that φ ≡ 1 in Ω. Then we can define a bounded extension operator Ẽ : H1(Ω)→ H1

0 (U)

by Ẽu = φEu, where U is a bounded domain containing suppφ. Since the embedding
H1

0 (U) ↪→ L2(U) is compact, it would show the compactness of H1(Ω) ↪→ L2(Ω).
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It is a fundamental result in analysis that any bounded Lipschitz domain Ω admits an
extension operator that is bounded as a map E : W k,p(Ω) → W k,p(Rn) for all k ∈ N and
1 ≤ p ≤ ∞. These operators give rise to a streamlined approach to the theory of Sobolev
spaces on domains, but in many cases one can obtain better results by working intrinsically.
Here is an example where the extension approach would not work.

Example 8. Let Ω = {(x, y) : 0 < x < 1, 0 < y < x4} and u(x, y) = 1
x . We have

‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) =

∫ 1

0

( 1

x2
+

1

x4

)
x4dx <∞, (46)

meaning that u ∈ H1(Ω). Suppose that there is an extension of u satisfying ũ ∈ H1(R2). Then
we must have γũ ∈ L2(R), where γ : H1(R2) → L2(R) denotes the trace map onto the line
{y = 0}. However, this contradicts with

‖γũ‖2L2(R) ≥ ‖γũ‖
2
L2(ε,1) = ‖γu‖2L2(ε,1) ≥

∫ 1

ε

dx

x2
→∞ as ε→ 0, (47)

and so we conclude that there is no bounded extension operator E : H1(Ω)→ H1(R2).

The domain in the preceding example has a continuous boundary, in the following sense.

Definition 9. An open set Ω ⊂ Rn is said to have a continuous boundary, or to be of class
C , if for each y ∈ ∂Ω there is an open neighbourhood U of y, Br ⊂ Rn−1 with r > 0, and
a continuous function φ ∈ C (Br), such that under a rigid transformation of the coordinate
system, we have Ω ∩ U = {(x′, xn) : y′ ∈ Br, xn > φ(x′)} ∩ U .

Note that by choosing r > 0 smaller, and shrinking U if necessary, we can always assume
that φ ∈ C (B̄r), and that

Uh := {(x′, xn) : y′ ∈ B̄r, φ(x′) < xn < φ(x′) + h} = Ω ∩ U, (48)

for some h > 0.

Theorem 10. Let Ω ⊂ Rn be a bounded domain, with a continuous boundary. Then the
embedding H1(Ω) ↪→ L2(Ω) is compact.

Proof. In view of Corollary 6, we only need to prove the uniform decay condition. Without loss
of generality, let u ∈ D(Rn). We will work locally, i.e., we assume (48). For x = (x′, xn) ∈ Uh
and 0 ≤ s ≤ h, we have

u(x) = u(x′, s) +

∫ xn

s
∂nu(x′, t)dt, (49)

which, upon squaring and invoking the Cauchy-Schwarz inequality, yields

|u(x)|2 ≤ 2|u(x′, s)|2 + 2h

∫ φ(x′)+h

φ(x′)
|∂nu(x′, t)|2dt. (50)

Now we integrate over s ∈ [φ(x′), φ(x′) + h], to get

h|u(x)|2 ≤ 2

∫ φ(x′)+h

φ(x′)
|u(x′, s)|2ds+ 2h2

∫ φ(x′)+h

φ(x′)
|∂nu(x′, t)|2dt. (51)

Finally, an integration over xn ∈ [φ(x′), φ(x′) + δ], followed by integration over x′ ∈ Br, give∫
Uδ

|u|2 ≤ 2δ

h

∫
Uh

|u|2 + 2hδ

∫
Uh

|∇u|2, (52)

where δ > 0 is small, meaning that ‖u‖L2(Uδ) ≤ cδ‖u‖H1(Ω) for some constant c. This readily
implies the uniform decay property by a covering argument. �
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The estimate ‖u‖2L2(Uδ)
≤Mδ from the preceding proof suggests that the theorem should

hold under much weaker conditions. The following is one possible improvement.

Corollary 11. Let Ω ⊂ Rn be a bounded domain, with a quasi-continuous boundary, which
means by definition that Ω is a finite union of domains with continuous boundaries. Then the
embedding H1(Ω) ↪→ L2(Ω) is compact.

Proof. The underlying phenomenon here is the fact that compactness of embeddings is stable
under finite union of domains. Suppose that Ω = Ω1 ∪ Ω2, where both H1(Ω1) ↪→ L2(Ω1) and
H1(Ω2) ↪→ L2(Ω2) are compact. Let {uk} ⊂ H1(Ω) be a bounded sequence. Then {uk|Ω1}
is bounded in H1(Ω1), and hence there is a subsequence {ukj} converging in L2(Ω1). Now,
{ukj |Ω2} is bounded in H1(Ω2), which means that we can extract a subsequence that converges
in L2(Ω2). This new subsequence is clearly Cauchy in L2(Ω). �

Example 12. By the preceding corollary, H1(Ω) ↪→ L2(Ω) is compact for simple slit domains,
such as the unit disk with the line segment [0, 1)× {0} removed.

3. Spectral theory of compact self-adjoint operators

In this section, we will prove the spectral theorem for compact, symmetric operators in a
real Hilbert space H. This theorem will then be applied to the resolvent of the Laplacian in
the next section. In the following, H will denote a real Hilbert space.

Lemma 13. With D ⊂ H, let A : D → H be a symmetric operator, in the sense that
〈Au, v〉 = 〈u,Av〉 for all u, v ∈ D. Then we have the following.
a) If u, v ∈ D \ {0} and λ, µ ∈ R satisfy Au = λu, Av = µv, and λ 6= µ, then 〈u, v〉 = 0.
b) Let {un} ⊂ D be a complete orthogonal basis of H, such that Aun = λnun for each n.

Suppose that u ∈ D satisfies Au = λu with λ 6∈ {λn}. Then u = 0.

Proof. a) By symmetry, we have λ〈u, v〉 = 〈Au, v〉 = 〈u,Av〉 = µ〈u, v〉, hence (λ−µ)〈u, v〉 = 0.
b) By completeness, we can write

u =
∑
n

〈u, un〉un, with the convergence in H, (53)

but since λ 6∈ {λn}, the preceding paragraph shows that 〈u, un〉 = 0 for all n. �

Exercise 14. Let H be a complex Hilbert space, and with D ⊂ H, let A : D → H be a
self-adjoint operator, in the sense that 〈Au, v〉 = 〈u,Av〉 for all u, v ∈ D. Prove the following.
(a) If u ∈ D \ {0} and λ ∈ C satisfy Au = λu, then λ ∈ R.
(b) If u, v ∈ D \ {0} and λ, µ ∈ C satisfy Au = λu, Av = µv, and λ 6= µ, then 〈u, v〉 = 0.
(c) Let {un} ⊂ D be a complete orthonormal basis of H, such that Aun = λnun for each n.

Suppose that u ∈ H satisfies Au = λu with λ 6∈ {λn}. Then u = 0.

Lemma 15. Let B : H → H be a bounded operator.
a) Any eigenvalue λ ∈ R of B satisfies |λ| ≤ ‖B‖.
b) If B is a positive operator, in the sense that 〈Bu, u〉 > 0 for all u ∈ H \ {0}, then all real

eigenvalues of B are positive.
c) If B is symmetric, then the norm of B satisfies

‖B‖ = sup
u∈H

|〈Bu, u〉|
‖u‖2

. (54)

Proof. We will only prove c). For any u ∈ H we have

|〈Bu, u〉| ≤ ‖Bu‖‖u‖ ≤ ‖B‖‖u‖2, (55)
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which shows that

µ = sup
u∈H

|〈Bu, u〉|
‖u‖2

≤ ‖B‖. (56)

On the other hand, from the parallelogram identity

4〈Bu, v〉 = 〈B(u+ v), u+ v〉 − 〈B(u− v), u− v〉, (57)

we infer
4〈Bu, v〉 ≤ µ‖u+ v‖2 + µ‖u− v‖2 = 2µ

(
‖u‖2 + ‖v‖2

)
, (58)

for u, v ∈ H, and putting v = αBu with α > 0 yields

2α‖Bu‖2 ≤ µ
(
‖u‖2 + α2‖Bu‖2

)
, u ∈ H. (59)

We choose α = ‖u‖/‖Bu‖ when Bu 6= 0, and, say, α = 1 when Bu = 0. In either case, we get

‖Bu‖ ≤ µ‖u‖, (60)

which implies that ‖B‖ ≤ µ. �

Lemma 16. Let K : H → H be a compact operator. Then we have the following.
a) Each nonzero eigenvalue has a finite multiplicity.
b) The only possible accumulation point of the set of eigenvalues is 0.

Proof. a) Suppose that there is an eigenvalue µ 6= 0 with infinite multiplicity, i.e., let {vk} be
a countable orthonormal set of vectors satisfying

Kvk = µvk, k = 1, 2, . . . . (61)

We can interpret the latter as {vk} being the image of the set {µ−1vk} under K. Since {µ−1vk}
is a bounded set, the set {vk} is relatively compact, meaning that after passing to a subsequence,
vk converges to some element of H. However, we have ‖vj − vk‖2 = 2 for j 6= k, which leads to
a contradiction.

b) Note that this part contains a) as a special case. If α 6= 0 is an accumulation point of
eigenvalues, then there exists a countable orthonormal set {vk} of eigenvectors with corre-
sponding eigenvalues µk satisfying infk |µk| > 0. The latter condition ensures that {µ−1

k vk} is
a bounded set, and the argument we have used in a) leads to a contradiction. �

We are ready to prove the main result of this section.

Theorem 17. Let H be a real Hilbert space, and let K : H → H be a compact, symmetric
operator. Then K admits a countable set of eigenvectors {un} that form an orthonormal basis
of (kerK)⊥. Moreover, assuming, without loss of generality, that the corresponding eigenvalues
are arranged as |µ1| ≥ |µ2| ≥ . . . > 0, we have the variational characterization

|µn| = sup
u∈Hn−1

‖Ku‖
‖u‖

= sup
u∈Hn−1

|〈Ku, u〉|
‖u‖2

, for n = 1, 2, . . . , (62)

where Hn−1 is the orthogonal complement of span{u1, . . . , un−1} in H.

Proof. If K = 0, then kerK = H, so the theorem is trivial. Suppose that K 6= 0, and let {vi}
be a sequence in H such that ‖vi‖ = 1 and

|〈Kvi, vi〉| → ‖K‖ > 0. (63)

Possibly passing to a subsequence, we may assume that

〈Kvi, vi〉 → µ1, (64)
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where µ1 is a number satisfying |µ1| = ‖K‖. Since the set {Kvi} is relatively compact, passing
to a subsequence if necessary, we have Kvi → w in H. On the other hand, we have

0 ≤ ‖Kvi − µ1vi‖2 = ‖Kvi‖2 + µ2
1 − 2µ1〈Kvi, vi〉

≤ 2µ1 (µ1 − 〈Kvi, vi〉)→ 0, as i→∞,
(65)

which shows that µ1vi → w, that is, vi → u1 := µ−1
1 w in H, hence ‖u1‖ = 1. It is easy to

check that Ku1 = w = µ1u1, because

‖Ku1 − w‖ ≤ ‖Ku1 −Kvi‖+ ‖Kvi − w‖ ≤ ‖K‖‖u1 − vi‖+ ‖Kvi − w‖ → 0. (66)

Now let H1 = {v ∈ H : 〈v, u1〉 = 0}, which is a closed linear subspace of H. Moreover, H1

is invariant under K, because

〈Kv, u1〉 = 〈v,Ku1〉 = µ1〈v, u1〉 = 0, for v ∈ H1. (67)

So if K acts on H1 is nontrivially, we can construct as above an element u2 ∈ H1 with ‖u2‖ = 1
and a number µ2 satisfying |µ2| = ‖K|H1‖ > 0, such that Ku2 = µ2u2. By induction, we
have a (finite or infinite) sequence {(µn, un)} ⊂ R × H with {un} orthonormal, satisfying
Kun = µnun and the formula (62). This sequence is finite only if either Hm is trivial, or
K|Hm = 0, for some m. In the former case, we have H = span{u1, . . . , um}. In the latter case,
we infer kerK = Hm, and so span{u1, . . . , um} = (kerK)⊥.

It remains to show that {un} is a basis of (kerK)⊥, in the case the sequence {un} is infinite.
Note that we have µn → 0 as n → 0. Let u ∈ H be in span{un}⊥, i.e., let 〈u, un〉 = 0 for
all n. Then u ∈ Hn for each n, and hence ‖Ku‖ ≤ |µn|‖u‖ → 0 as n → 0. This shows that
u ∈ kerK, or span{un}⊥ ⊂ kerK. On the other hand, if u ∈ kerK, then

µn〈u, un〉 = 〈u,Kun〉 = 〈Ku, un〉 = 0, (68)

for all n, meaning that kerK ⊂ span{un}⊥. We conclude that kerK = span{un}⊥. �

Corollary 18 (Positive operators). If K is positive, then µn > 0 for all n, µn → 0 as n→∞,
and the eigenvectors {un} form an orthonormal basis of H.

Corollary 19 (Spectral decomposition). For any u ∈ H, we have

Ku =
∑
n

µn〈u, un〉un, (69)

with the convergence in H.

Proof. It is obvious that the map Pj : H → span{u1, . . . , uj} defined by

Pju =
∑j

n=1〈u, un〉un, (70)

is the orthogonal projector onto span{u1, . . . , uj}. In particular, we have wj = u− Pju ∈ Hj .
In view of

Kwj = Ku−
∑j µn〈u, un〉un, (71)

we need to show that Kwj → 0 as j →∞. But this follows from

‖Kwj‖ ≤ |µj+1|‖wj‖ ≤ |µj+1|‖u‖ → 0, (72)

since Hj is invariant under K and |µj+1| = ‖K|Hj‖. �

Corollary 20 (Fredholm alternative). Let µ ∈ R \ {0} and let B = µI −K. Then we have
dim kerB <∞, and ranB = (kerB)⊥. In particular, one and only one of the following is true.

• B : H → H is surjective.
• B : H → H is noninjective.
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Proof. For u ∈ H, Corollary 19 gives

Bu = (µI −K)
∑
n

〈u, un〉un =
∑
n

(µ− µn)〈u, un〉un. (73)

This makes it clear that

kerB = span{un : µn = µ}, ranB = span{un : µn 6= µ}, (74)

establishing the claim. �

4. Application to the Laplace eigenproblems

It is time to apply the general spectral theory to the Laplace eigenvalue problems. To this
end, it will be convenient to introduce an intermediate level of abstraction, as follows. Let V
and H be Hilbert spaces, with the embedding V ↪→ H compact, and V dense in H. Keep in
mind that our main examples are H = L2(Ω), and V = H1(Ω) or V = H1

0 (Ω). It is easy to see
that H is continuously embedded into V ′ through the injection J : H → V ′ given by

〈Jf, v〉 = 〈f, v〉H , f ∈ H, v ∈ V, (75)

where 〈·, ·〉 is the duality pairing between V ′ and V , and 〈·, ·〉H is the inner product in H. We
will identify H with a subspace of V ′, and write 〈·, ·〉 = 〈·, ·〉H if there is no risk of confusion.
Let a : V × V → R be a symmetric, continuous bilinear form, and define A : V → V ′ by

〈Au, v〉 = a(u, v), u, v ∈ V. (76)

Then we assume that the operator A+ tJ : V → V ′ is invertible, whenever t > t0, where t0 is
some constant. In what follows, we fix a value t > t0, and introduce the resolvent

Rt = (A+ tJ)−1|H : H → H, (77)

which is the restriction of (A+ tJ)−1 to H. Since (A+ tJ)−1|H : H → V is continuous and
V ↪→ H is compact, the resolvent is a compact operator.

Remark 21. In all applications that will follow, we have H = L2(Ω) with Ω ⊂ Rn an open
set. Moreover, as we know, the main examples of V are

• V = H1
0 (Ω) for the Dirichlet boundary condition, and

• V = H1(Ω) for the Neumann boundary condition.
Rellich’s lemma guarantees the compactness of the embedding V ↪→ H if Ω is bounded in the
Dirichlet case (Corollary 7), and if Ω is bounded and has a quasi-continuous boundary in the
Neumann case (Corollary 11). In both cases, a : V × V → R is given by

a(u, v) =

∫
Ω
∇u · ∇v, u, v ∈ V. (78)

We can take t0 = 0 for the Neumann case, and t0 < 0 for the Dirichlet case.

Getting back to the abstract setting, one can show as in §1 that Rt is symmetric and positive.
Therefore, the results from the preceding section imply the existence of an orthonormal basis
of H consisting of eigenvectors of Rt. Moreover, each eigenvalue has a finite multiplicity, they
are all positive and accumulate at 0. Now if Rtu = µu or (A+ tJ)−1u = µu with u ∈ H, then
u = µ(Au+ tu), yielding Au = ( 1

µ − t)u. This leads us to the following result, which can be
regarded as an abstract version of the Hodge theorem.

Theorem 22. There exists an orthonormal basis {uk} of H consisting of eigenvectors of A.
Each eigenvalue has a finite multiplicity, and with {λk} denoting the eigenvalues, we have
λk > −t for all k, and λk →∞ as k →∞.
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Furthermore, the eigenvectors {uk} form an orthogonal basis of V with respect to the inner
product 〈·, ·〉V = a(·, ·) + t〈·, ·〉H . In particular, for u ∈ V , the expansion

u =
∑
k

〈u, uk〉uk, (79)

converges in V .

Proof. Let {uk} be an orthonormal basis of H consisting of eigenvectors of Rt, and denote by
{µk} the corresponding eigenvalues. Then by the above discussion, the vectors {uk} are also
eigenvectors of A, with the eigenvalues {λk} given by

λk =
1

µk
− t. (80)

Positivity of µk implies λk > −t, and µk → 0 implies λk →∞.
For the second part of the theorem, orthogonality of the eigenfunctions with respect to the

inner product 〈·, ·〉V follows from

a(uj , uk) = 〈Auj , uk〉 = λjδjk. (81)

For u ∈ V , we have

a(uj , u) = 〈Auj , u〉 = λj〈uj , u〉, so that 〈u, uj〉V = (λj + t)〈u, uj〉. (82)

This means that the H-orthogonal projector

Pmu =
∑m

k=1〈u, uk〉uk, (83)

is also a V -orthogonal projector sending V onto span{u1, . . . , um}, as
〈u− Pmu, uj〉V = 〈u, uj〉V −

∑m
k=1〈u, uk〉〈uk, uj〉V = 0. (84)

Hence we get the Pythogarian identity

‖u− Pmu‖2V + ‖Pmu‖2V = ‖u‖2V , u ∈ V, (85)

which implies Bessel’s inequality

‖Pmu‖2V =
∑m

k=1 |〈u, uk〉|2‖uk‖V ≤ ‖u‖2V , u ∈ V. (86)

Bessel’s inequality in turn guarantees that Pmu→ v in V as m→∞ for some v ∈ V . However,
since Pmu→ u in H, we conclude that v = u. �

Remark 23. In the Dirichlet case, since we can take t = 0, all eigenvalues are strictly positive.
In the Neumann case, we can take any t > 0, hence all eigenvalues are nonnegative. The
latter estimate is sharp, since λ = 0 is a Neumann eigenvalue with the eigenfunction u ≡ 1.
In both cases, by the regularity theory of Poisson’s equation (with a lower order term), the
eigenfunctions are real analytic in Ω, and smooth up to the boundary if ∂Ω is smooth.

As discussed in the introduction, the Neumann eigenfunctions corresponding to the eigenvalue
λ = 0 are locally constant, and hence the multiplicity of λ = 0 is equal to the number of
connected components of Ω. Since the eigenfunctions are pairwise orthogonal, all the other
Neumann eigenfunctions (i.e., the ones corresponding to nonzero eigenvalues) must change
sign in at least one of the connected components of Ω. We will prove later that on a bounded
domain, the first Dirichlet eigenfunction does not change sign, which means by orthogonality
that all the other eigenfunctions must change sign.

Example 24 (Periodic boundary condition). Classically, a periodic boundary condition on an
interval [0, 2π] is the collection of requirements

u(0) = u(2π), u′(0) = u′(2π), . . . , u(k)(0) = u(k)(2π), (87)

for some k. In a variational setting, there are two equivalent ways to realize this:
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• Make sense of the space H1(S1), where S1 ⊂ R2 is the unit circle.
• Consider the subspace V ⊂ H1(R), satisfying the property u(x+ 2π) = u(x).

It can be argued that the first approach is a natural way (in the technical sense), while the
second one is an essential way to impose the boundary condition. We will choose the second
approach. Let L2

per(R) = {f ∈ L2
loc(R) : τ∗2πf = f}, where τh is the translation operator

τh(x) = x + h, and let Hk
per(R) = Hk

loc(R) ∩ L2
per(R). A function f ∈ L2

per(R) is completely
determined by its restriction on a given interval (a, b), as long as b− a ≥ 2π, since f can be
recovered by the formula f(x+ 2πm) = f(x) for m ∈ Z. It can be shown that Hk

per(R) is a
Hilbert space for each k ≥ 0, with H0

per(R) = L2
per(R), and that

〈u, v〉L2 =

∫ b

a
uv, and 〈u, v〉Hk =

∫ b

a

(
uv + u(k)v(k)

)
, (88)

are inner products in L2
per(R) and in Hk

per(R), respectively, whenever b− a ≥ 2π. Finally, we
let V = H1

per(R), and define A : V → V ′ by

〈Au, v〉 =

∫ 2π

0
u′v′, u, v ∈ V. (89)

It is obvious that A + tI : V → V ′ is invertible for any t > 0. Moreover, the embedding
V ↪→ L2

per(R) is compact, and hence the resolvent Rt = (A + tI)|L2 : L2
per(R) → L2

per(R) is
compact. This guarantees an orthogonal basis of L2

per(R), consisting of eigenfunctions of A.
To find these functions, we consider the problem

− u′′ = λu, u(0) = u(2π), u′(0) = u′(2π), (90)

on (0, 2π), whose solutions are

φn(x) = cosnx, ψn(x) = sinnx, λn = n2, n = 0, 1, . . . . (91)

Here the eigenvalue λ0 = 0 is a simple eigenvalue with the eigenfunction φ0(x) = 1, while
λn = n2 for each n ∈ N is a double eigenvalue with the eigenfunctions φn and ψn. The
system {φn, ψn} forms an orthogonal basis, because by the Weierstrass approximation theorem,
trigonometric polynomials are dense in Cper(R) = {f ∈ C (R) : f(x + 2π) = f(x)∀x ∈ R},
which implies that span{φn, ψn} is dense in L2

per(R).

Example 25 (Intervals). It is easy to see that on the interval I = (0, π), the sequences

ψn(x) = sinnx, µn = n2, n = 1, 2, . . . . (92)

and
φn(x) = cosnx, νn = n2, n = 0, 1, . . . , (93)

respectively solve the Dirichlet and Neumann eigenproblems. Their completeness can be seen
as follows. Take the Dirichlet case, and for f ∈ L2(I), extend it so that it is odd and periodic,
that is, let f̃ ∈ L2

per(R) be defined by

f̃(x) =

{
f(x) for x ∈ (0, π),

−f(−x) for x ∈ (−π, 0).
(94)

By the preceding example, f̃ can be approximated by trigonometric polynomials in L2
per(R).

Since f̃ is an odd function, the resulting series will involve only the sine terms, which shows
that span{ψn} is dense in L2(I). The completeness of {φn} can be established similarly.
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Example 26 (Rectangles). Consider the Dirichlet eigenvalue problem on Q = (0, a)× (0, b).
Looking for eigenfunctions of the form u(x, y) = φ(x)ψ(y) yields

um,n(x, y) = φm(x)ψn(y) := sin
(πmx

a

)
sin
(πny

b

)
, (95)

with the corresponding eigenvalues

µm,n =
(πm
a

)2
+
(πn
b

)2
, m, n ∈ N. (96)

To show completeness, working as in the proof of Theorem22, for u ∈ H1
0 (Q), we get the

expansion of u in terms of um,n converging to some v ∈ H1
0 (Q) in the H1-norm. It then remains

to be seen that v = u. Because v is constructed so that its component along um,n matches
with the corresponding component of u, we have the orthogonality∫

Q
wum,n = 0 for all m,n, (97)

where w = u− v. Now Fubini’s theorem gives∫ a

0

(∫ b

0
w(x, y)ψn(y)dy

)
φm(x)dx = 0, (98)

and on account of the completeness of {φm} in L2(0, a), for each n, it implies that

Gn(x) :=

∫ b

0
w(x, y)ψn(y)dy = 0, for a.e. x ∈ (0, a). (99)

Hence
⋃
n{x : Gn(x) 6= 0} is a null set, meaning that for almost every x ∈ (a, b) and for all n,

we have Gn(x) = 0. By completeness, this in turn implies that for almost every x ∈ (a, b), the
set {y : w(x, y) = 0} is of full measure. In other words,∫ b

0
χ(x, y)dy = 0, for a.e. x ∈ (0, a), (100)

where χ is the characteristic function of Z = {(x, y) : w(x, y) = 0}. An application of Fubini’s
theorem finally guarantees that Z is of full measure.

Thus the full set of eigenvalues of Q = (0, a)× (0, b) is given by (96). We do not have an
exact formula for the k-th eigenvalue, but we can derive a good estimate. Let

N(r2) = #{µm,n : µm,n ≤ r2}, (101)

denote the number of eigenvalues not exceeding r2. Then it is easy to see that

π(r − δ)2

4
≤ π

a
· π
b
·N(r2) ≤ πr2

4
, (102)

where δ =
√

(πa )2 + (πb )2. This leads to the asymptotic formula

N(r2) =
ab

π
r2 +O

(
(a+ b)r

)
=
|Q|
π
r2 +O

(
|∂Q|r

)
as r →∞, (103)

which gives, upon “inverting”

µk =
4πk

|Q|
+O

(√
k
)

as k →∞. (104)

The exact same asymptotic is true for the Neumann eigenvalues. Moreover, for the n-dimensional
rectangle Q = (0, a1)× . . .× (0, an), we have

N(r2) = cn|Q|rn +O
(
|∂Q|rn−1

)
as r →∞, (105)

with cn = |Sn−1|
n(2π)n = 1

(2
√
π)nΓ(n

2
+1)

.
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Remark 27 (Rectangles are extension domains). The Neumann eigenproblem on the rectangle
Q = (0, a)× (0, b) is solved by

um,n(x, y) = cos
(πmx

a

)
cos
(πny

b

)
, (106)

and
νm,n =

(πm
a

)2
+
(πn
b

)2
, m, n ∈ N0. (107)

By the general theory, given any v ∈ H1(Q), we have vj → v in H1(Q), where

vj =
∑

m+n≤j
〈v, um,n〉um,n. (108)

Now, the fact that um,n ∈ C∞(R2) and hence vj ∈ C∞(R2) suggests us a simple way to extend
v to some ṽ ∈ H1(R2). Namely, let χ ∈ D(R2) be a nonnegative function satisfying χ ≡ 1 in a
neighbourhood of Q, and define ṽj = χvj . Then we have

‖ṽj − ṽk‖H1(R2) = ‖χ(vj − vk)‖H1(R2) ≤ C‖vj − vk‖H1(Q), (109)

because vj in R2 is made out of translations and reflections of vj |Q. This implies that ṽj → ṽ
in H1(R2) for some ṽ ∈ H1(R2), with ‖ṽ‖H1(R2) ≤ C‖v‖H1(Q) and ṽ|Q = v.

Remark 28 (Disjoint unions). Let U1, . . . , Um be bounded, disjoint open sets in Rn, and let
(µ̃i,k)k be the Dirichlet eigenvalues of Ui. Then the whole collection (µ̃i,k)i,k coincides with the
collection (µk)k of the Dirichlet eigenvalues of the union U =

⋃
i Ui. Indeed, each µ̃i,k is an

eigenvalue of U . Moreover, let {ui,k}k be an orthonormal basis of eigenfunctions on Ui. We
can extend ui,k ∈ H1

0 (Ui) to ui,k ∈ H1
0 (U) by assigning ui,k = 0 on all Uj with j 6= i. Then it

is clear that {ui,k}i,k is complete in H1
0 (U) =

⊕
iH

1
0 (Ui), and thus (µ̃i,k)i,k are precisely the

Dirichlet eigenvalues of U . The same result is true for the Neumann case, provided that the
corresponding resolvents are compact.

5. Courant’s minimax principle

Keeping the abstract setting from the preceding section intact, we want to derive variational
characterizations of the eigenvalues in terms of the Rayleigh quotient

ρ(u) =
a(u, u)

‖u‖2
, u ∈ V, (110)

where ‖ · ‖ = ‖ · ‖H is the norm in H. In what follows, these characterizations will provide a
basic device with which we extract precise spectral information.

Lemma 29. Suppose that the eigenvalues are ordered so that λ1 ≤ λ2 ≤ . . ., counting
multiplicities. For each k, we have

λk = min
Hk−1

ρ, (111)

where Hk−1 = {u ∈ V : 〈u, uj〉 = 0, j = 1, . . . , k− 1}, and if u ∈ Hk−1 satisfies ρ(u) = λk then
Au = λku. We also have

λk = max
span{u1,...,uk}

ρ, (112)

with the maximum attained only by the eigenfunctions corresponding to λk.

Proof. For u ∈ H, the series
∑

k〈u, uk〉uk converges in H to u. This in combination with
continuity of the inner product implies Plancherel’s identity

‖u‖2 = 〈u, u〉 =
〈∑

k〈u, uk〉uk, u
〉

=
∑

k |〈u, uk〉|2. (113)

Similarly, for u ∈ V , by continuity of a : V × V → R we get

a(u, u) = a
(∑

k〈u, uk〉uk, u
)

=
∑

k〈u, uk〉a(uk, u) =
∑

k λk|〈u, uk〉|2, (114)
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where we have used a(uk, u) = λk〈uk, u〉.
If in addition, u ∈ Hj−1, i.e., if u ⊥ span{u1, . . . , uj−1}, then we have

a(u, u) =
∑
k≥j

λk|〈u, uk〉|2 ≥ λj
∑
k≥j
|〈u, uk〉|2 = λj‖u‖2, (115)

with the equality occurring if and only if u is in the eigenspace of λj . We have established
(111), and the fact that u ∈ Hj−1 satisfies ρ(u) = λj if and only if Au = λju.

The characterization (112) follows from the fact that for u ∈ span{u1, . . . , uj}, we have

a(u, u) =
∑
k≤j

λk|〈u, uk〉|2 ≤ λj
∑
k≤j
|〈u, uk〉|2 = λj‖u‖2, (116)

with the equality occurring if and only if u is in the eigenspace of λj . �

Remark 30 (Jackson and Bernstein inequalities). Let Pk : H → Ek be the orthogonal
projection onto Ek = span{u1, . . . , uk}. Since a(u, u− Pku) = 0, the inequality (111) implies

‖u− Pku‖2 ≤
a(u, u)

λk+1
, u ∈ V. (117)

In the context of Fourier series (Example 24), this gives the Jackson inequality

inf
v∈Σn

‖u− v‖L2 ≤ n−1‖u′‖L2 , u ∈ H1
per(R), (118)

where Σn = span{1, . . . , cosnx, sinnx}. On the other hand, (112) can be written as

a(v, v) ≤ λk‖v‖2, v ∈ Ek, (119)

yielding the Bernstein inequality

‖v′‖L2 ≤ n‖v‖L2 , v ∈ Σn, (120)

for trigonometric polynomials.

Remark 31 (Friedrichs inequality). Let Ω ⊂ Rn be a bounded domain, and consider the
Dirichlet eigenvalue problem on Ω. Then the best constant c in the inequality

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω) for u ∈ Hk, (121)

is c = 1/
√
λk+1. As H1 = V = H1

0 (Ω), the case k = 0 is simply the Friedrichs inequality.

Remark 32 (Poincaré inequality). Suppose that Ω ⊂ Rn is a bounded domain, and that its
Neumann Laplacian has a compact resolvent. We then have the same characterization of the
sharp constants for the inequalities (121) as in the previous remark, except of course now
V = H1(Ω) and λk are the Neumann eigenvalues. Since λ1 = 0, the first nontrivial inequality
occurs when k = 1, with the sharp constant c = 1/

√
λ2. Keeping in mind that u1 ≡ 1, let

P : H → E1 be the orthogonal projection onto the constants E1 = span{u1}. Note that Pu is
simply the average of u over Ω. By construction, we have u− Pu ∈ H1 for u ∈ H1(Ω), and so

‖u− Pu‖L2(Ω) ≤ c‖∇u‖L2(Ω) for u ∈ H1(Ω). (122)

This is called the Poincaré inequality.

Note that the variational characterizations

λk = max
u∈span{u1,...,uk}

ρ(u) = min
u∈Hk−1

ρ(u), (123)

given by Lemma29 involve the eigenfunctions {uj}, so it is not very convenient if, e.g., one
is only interested in the eigenvalues. In any case, it is possible to remove the dependence
on eigenfunctions altogether by adding one more layer of extremalization, because the space
span{u1, . . . , uk} is positioned in an optimal way inside the manifold of k dimensional subspaces
of V (this manifold is called the k-th Grassmannian of V ).
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Theorem 33 (Courant’s minimax principle). We have

λk = min
X∈Φk

max
X

ρ, (124)

where Φk = Φk(V ) = {X ⊂ V linear subspace : dimX = k}.

Proof. The first equality in (123) shows that

λk ≥ min
X∈Φk

max
u∈X

ρ(u). (125)

On the other hand, if X ∈ Φk, then X ∩Hk−1 is nontrivial by dimensional considerations. This
means that there is a nonzero v ∈ X ∩Hk−1, hence ρ(v) ≥ λk by the second characterization
in (123), that is, max

X
ρ ≥ λk. As X ∈ Φk was arbitrary, we conclude

λk ≤ min
X∈Φk

max
u∈X

ρ(u), (126)

establishing the theorem. �

In what follows, the Dirichlet and Neumann eigenvalues of Ω are denote by

µ1(Ω) ≤ µ2(Ω) ≤ . . . , and ν1(Ω) ≤ ν2(Ω) ≤ . . . , (127)

respectively, whenever they make sense.
Since H1

0 (Ω) is a subspace of H1(Ω), it is clear that Φk(H
1
0 (Ω)) ⊂ Φk(H

1(Ω)). This
observation leads to the following simple inequality between Dirichlet and Neumann eigenvalues.

Corollary 34 (Basic Dirichlet-Neumann comparison). If Ω is a bounded domain with a
quasi-continuous boundary, then we have νk(Ω) ≤ µk(Ω) for all k.

The next corollary is based on the observation that if Ω1 ⊂ Ω2 then H1
0 (Ω1) ⊂ H1

0 (Ω2).

Corollary 35 (Domain monotonicity for Dirichlet eigenvalues). If Ω1 ⊂ Ω2 are bounded
domains, then we have µk(Ω2) ≤ µk(Ω1) for all k.

Proof. For u ∈ H1
0 (Ω1), let us denote by ũ ∈ L2(Ω2) the extension of u by 0 outside Ω1. We

claim that ũ ∈ H1
0 (Ω2) with ‖ũ‖H1(Ω2) = ‖u‖H1(Ω1). If the claim is true, H1

0 (Ω1) can be
considered as a subspace of H1

0 (Ω2), and

ρ(u,Ω2) =
‖∇u‖2L2(Ω2)

‖u‖2
L2(Ω2)

=
‖∇u‖2L2(Ω1)

‖u‖2
L2(Ω1)

= ρ(u,Ω1), (128)

for u ∈ H1
0 (Ω1), where extension of u by 0 outside Ω1 is understood in necessary places.

To see that the claim is true, let {φk} ⊂ D(Ω1) be a sequence converging to u in H1(Ω1).
Passing to a subsequence if necessary, we can arrange that φk converges almost everywhere in Ω1

to u. Then we extend each φk by 0 outside Ω1, and note that φk converges almost everywhere
in Ω2 to ũ. Now the equality ‖φj − φk‖H1(Ω1) = ‖φj − φk‖H1(Ω2) and the completeness of
H1

0 (Ω2) imply that φk converges in the H1(Ω2) norm to some v ∈ H1
0 (Ω2). Again passing to

a subsequence if necessary, the convergence is almost everywhere in Ω2. Hence v = ũ almost
everywhere in Ω2, which means that ũ ∈ H1

0 (Ω2). �

As it turns out, domain monotonicity does not hold for Neumann eigenvalues.

Example 36. The Neumann eigenvalues of the rectangle with sides a and b are

νk,` =
(πk)2

a2
+

(π`)2

b2
, k, ` ∈ N0. (129)

So assuming that a > b, the first 3 eigenvalues are

ν1 = 0, ν2 =
π2

a2
, and ν3 = min

{2π2

a2
,
π2

b2

}
. (130)
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We pick 1 < a <
√

2, and choose b > 0 small, so that the rectangle can be placed inside the
unit square. For the unit square, the first 3 Neumann eigenvalues are

ν ′1 = 0, ν ′2 = π2, and ν ′3 = π2. (131)

Since a > 1, we have ν2 < ν ′2, which could not happen if domain monotonicity were true.

Even though domain monotonicity is not true in the strict sense, a very weak form of domain
monotonicity holds for the Neumann eigenvalues.

Corollary 37 (Weak domain monotonicity for Neumann eigenvalues). Suppose that Ω1 is a
bounded domain having the H1 extension property, that is, there exists a bounded extension
operator E : H1(Ω1)→ H1(Rn). Let Ω2 be another bounded domain such that Ω1 ⊂ Ω2. Then
there exists a constant c such that νk(Ω2) ≤ cνk(Ω1) for all k.

With an extension operator Ẽ : H1(Ω1)→ H1(Ω2) playing the role of an injection, the proof
of the preceding corollary is similar to that of Corollary 35.

6. Weyl’s asymptotic law

Recall from Example 26 that for an n-dimensional rectangle Ω, we have

N(r2) = cn|Ω|rn +O
(
|∂Ω|rn−1

)
as r →∞, (132)

where N(r2) denotes the number of eigenvalues (either Dirichlet or Neumann) not exceeding r2,
and cn is a constant depending only on n. Inspired by this and other examples, the asymptotic
law of the form N(r2) = cn|Ω|rn + o

(
rn
)
for general domains was conjectured by Arnold

Sommerfeld and Hendrik Antoon Lorentz in 1910, and proved by Hermann Weyl in 1911. This
law is now called Weyl’s law, which we will prove here.

Remark 38. Before proving the precise asymptotic, let us establish the behavior N(r2) ∼ rn.
Note that this gives the expectation µk ∼ νk ∼ k2/n for the eigenvalues. Let Ω ⊂ Rn be a
bounded open set, and consider a rectangle Q1 contained in Ω, and a rectangle Q2 containing Ω.
Then by the domain monotonicity of Dirichlet eigenvalues, we immediately infer the existence
of two constants α > 0 and β <∞, such that

αk2/n ≤ µk ≤ βk2/n for all k. (133)

In addition, suppose that the resolvent of the Neumann Laplacian is compact. As Remark 27
indicates, there is a bounded extension operator E : H1(Q1)→ H1(Ω), and hence by the weak
domain monotonicity, there exists β′ <∞ such that

νk ≤ β′k2/n for all k. (134)

Moreover, if there is a bounded extension operator E : H1(Ω)→ H1(Rn), we can compare the
eigenvalues of Ω with those of Q2, meaning that there exists α′ > 0 such that

νk ≥ α′k2/n for all large k. (135)

Example 39. An intuitive reason behind Weyl’s law is that high frequency oscillations in
different “pieces” of Ω are “decoupled,” and N(r2) is proportional to the volume |Ω| simply
because more volume contains more “pieces.” Let Ω be a finite disjoint union of rectangles, i.e.,
Ω is given by the interior of Q̄1 ∪ . . . ∪ Q̄m, where Q1, . . . , Qm are pairwise disjoint rectangles
in Rn. Let (µ̃i,k)k and (ν̃i,k)k be the Dirichlet and Neumann eigenvalues of Qi. We denote the
nondecreasing arrangement of (µ̃i,k)i,k and (ν̃i,k)i,k, respectively, by

µ̃1 ≤ µ̃2 ≤ . . . , and ν̃1 ≤ ν̃2 ≤ . . . . (136)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Sommerfeld.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Sommerfeld.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lorentz.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Weyl.html


20 TSOGTGEREL GANTUMUR

In light of Remark 28, these are exactly the Dirichlet and Neumann eigenvalues of the union
U = Q1 ∪ . . . ∪Qm. Since H1

0 (U) ⊂ H1
0 (Ω) ⊂ H1(Ω) ⊂ H1(U), we have

ν̃k ≤ νk ≤ µk ≤ µ̃k for all k, (137)

where as usual (µk) and (νk) denote respectively the Dirichlet and Neumann eigenvalues of Ω.
This means that the corresponding eigenvalue counting functions satisfy

Nµ̃ ≤ Nµ ≤ Nν ≤ Nν̃ . (138)

It is straightforward to estimate Nµ̃ and Nµ̃ as

Nµ̃(r2) = #{µ̃k ≤ r2} =
∑
i

#{µ̃i,k ≤ r2}

=
∑
i

(
cn|Qi|rn +O

(
|∂Qi|rn−1

))
= cn|Ω|rn +O

(∑
i |∂Qi|rn−1

)
,

(139)

and similarly for Nν̃ , implying the same asymptote for both Nµ and Nν .

The second part of the following result is due to Richard Courant.

Theorem 40 (Weyl 1911, Courant 1920). For Ω ⊂ Rn a bounded open set, the Dirichlet
eigenvalue counting function satisfy

Nµ(r2) = cn|Ω|rn + o(rn) as r →∞. (140)

In addition, if Ω has a quasi-Lipschitz boundary, in the sense that it is a finite union of Lipschitz
domains, then we have

Nµ(r2) = cn|Ω|rn +O(rn−1 log r) as r →∞. (141)

Proof. Given any δ > 0, we can construct domains Ω− and Ω+ of the form considered in the
preceding example (that is, finite disjoint unions of rectangles) satisfying Ω− ⊂ Ω ⊂ Ω+ and
|Ω+ \ Ω−| < δ. In particular, for each δ > 0, there exists Cδ such that

cn(|Ω| − δ)rn − Cδrn−1 ≤ Nµ(r2) ≤ cn(|Ω|+ δ)rn + Cδr
n−1, (142)

for all r > 0. Let ε > 0 be arbitrary. Then we pick δ > 0 so small that 2cnδ < ε, and choose
r∗ > 0 so large that 2Cδ < r∗ε. This guarantees that

cn|Ω|rn − εrn ≤ Nµ(r2) ≤ cn|Ω|rn + εrn, r > r∗, (143)

establishing the first part of the theorem.
To prove the second part of the theorem, we need some control on Cδ. In order for this, we

consider the cubical mesh
G(λ) = {λa+ [0, λ]n : a ∈ Zn}, (144)

of Rn, consisting of cubes of sidelength λ > 0 small enough. Our zeroth step is to construct
Ω−0 as the union of the cubes contained in Ω, and Ω+

0 as the union of the cubes that intersect
Ω nontrivially. In the next step, we consider G(λ/2), and construct Ω−1 and Ω+

1 accordingly, by
using the cubes that are twice smaller than before. As the error term in (139) grows with the
total surface area of the rectangles, we want to keep the number of cubes in the decomposition
of Ω−1 and Ω+

1 into cubes minimal. To this end, we will keep the original decomposition of Ω−0
into cubes from G(λ), and only decompose the differences Ω−1 \ Ω−0 and Ω+

1 \ Ω−0 into cubes
from G(λ/2). It is obvious that at the k-th step, the number of cubes in G(λ/2k) that are
contained in Ω+

k \ Ω−k−1 is proportional to the number of cubes in G(λ/2k−1) that intersect
∂Ω. By the quasi-Lipschitz property of ∂Ω, this number is bounded by a constant multiple of
2−(n−1)k. Thus we get

|Ω+
k \ Ω−k | = O(2−k), (145)
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and that the total surface area of the cubes in G(λ/2k) that are contained in Ω+
k \ Ω−k−1 is

bounded by a constant (independent of k). The latter means that the total surface area of the
cubes in Ω+

k (and hence in Ω−k ) is bounded by a constant multiple of k. Therefore, in view of
(139), we infer

cn(|Ω| −A2−k)rn − Ckrn−1 ≤ Nµ(r2) ≤ cn(|Ω|+A2−k)rn + Ckrn−1, (146)

for all r > 0, with some constants A and C independent of k. We pick k ∈ N depending on
r > 0, such that 2k ≤ r < 2k+1, that is, k = [log2 r]. This guarantees that 2−kr = O(1) and
k = O(log r), completing the proof. �

7. Problems and exercises

1. Produce a bounded domain Ω ⊂ Rn such that the embedding Hk(Ω) ↪→ L2(Ω) is not
compact for all k ∈ N.

2. Show that the embedding H1(B) ↪→ Lq(B) is not compact, where B ⊂ Rn is an open ball,
and q = 2n

n−2 .

3 (Kolmogorov-Riesz criterion). Let Ω ⊂ Rn be a domain, and let 1 ≤ p <∞. Prove that a
subset S ⊂ Lp(Ω) is relatively compact if and only if S satisfies the following conditions.

• Boundedness: There is M <∞ such that ‖f‖Lp(Ω) < M for all f ∈ S,
• Lp-equicontinuity: ‖∆hf‖Lp(Ωh) → 0 uniformly in f ∈ S as h→ 0,
• Uniform decay: ‖f‖Lp(Ω\Kj) → 0 uniformly in f ∈ S as j → ∞, for some sequence
K1 ⊂ K2 ⊂ . . . ⊂ Ω of compact sets satisfying

⋃
jKj = Ω.

4. Let Ω ⊂ Rn be a (possibly unbounded) domain, and let 1 ≤ p <∞. Show that a bounded
set S ⊂W 1,p(Ω) satisfying the uniform decay condition is relatively compact in Lp(Ω). Is there
an unbounded domain Ω ⊂ Rn for which the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact? What
about the embedding W 1,p

0 (Ω) ↪→ Lp(Ω)? Here W 1,p
0 (Ω) is the closure of D(Ω) in W 1,p(Ω).

5. Let L2
per(R) = {f ∈ L2

loc(R) : τ∗2πf = f}, where τh is the translation operator τh(x) = x+ h,
and let Hk

per(R) = Hk
loc(R) ∩ L2

per(R).

(a) Show that Hk
per(R) is a Hilbert space for each k ≥ 0, with H0

per(R) = L2
per(R), and that

〈u, v〉L2 =

∫ b

a
uv, and 〈u, v〉Hk =

∫ b

a

(
uv + u(k)v(k)

)
, (147)

are inner products in L2
per(R) and in Hk

per(R), respectively, whenever b− a ≥ 2π.
(b) Show that C∞per(R) = {f ∈ C∞(R) : f(x) = f(x+ 2π)} is dense in Hk

per(R) for each k ≥ 0.
(c) Show that the embedding H1

per(R) ↪→ L2
per(R) is compact.

6. Let Ω ⊂ Rn be a bounded domain, and consider the Poincaré inequality∫
Ω
|u|2 ≤ C

∫
Ω
|∇u|2, (148)

that is hypothesized to hold for all u ∈ H1(Ω) with
∫

Ωu = 0, where C = C(Ω) is a constant.
(a) Is there a bounded domain Ω for which C is infinite?
(b) Characterize the best constant C > 0 appearing in the Poincaré inequality via an eigenvalue

problem.
(c) Find the best constant when Ω is the rectangle Ω = (0, a)× (0, b). Exhibit a function u

that achieves the equality in (148).
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7. Let Ω ⊂ Rn be a bounded domain with a smooth boundary, and let

a(u, v) =

∫
Ω

(aij∂iu∂jv + buv),

where the repeated indices are summer over, and the coefficients aij and b are smooth functions
in Ω̄, with a symmetric matrix [aij ] satisfying the uniform ellipticity condition

aij(x)ξiξj ≥ α|ξ|2, ξ ∈ Rn, x ∈ Ω̄,

for some constant α > 0. We define the map Ã : H1
0 (Ω)→ [H1

0 (Ω)]′ by 〈Ãu, v〉 = a(u, v) for
u, v ∈ H1

0 (Ω), and then we let A be the unbounded operator in L2(Ω) that is given by the
restriction of Ã onto L2(Ω), i.e., Au = Ãu for u ∈ Dom(A) where

Dom(A) = {u ∈ H1
0 (Ω) : Ãu ∈ L2(Ω)}.

Consider the generalized eigenvalue problem

Au = λρu,

where ρ is a (fixed) positive smooth function in Ω̄. Prove the following, by using the spectral
theorem for compact self-adjoint positive operators where possible.

(1) The eigenvalues {λk} are countable and real, and that λk → ∞ as k → ∞. Each
eigenvalue has a finite multiplicity.

(2) The eigenfunctions {uk} form a complete orthonormal system in L2(Ω), with respect
to a suitable inner product.

(3) The system {uk} is complete and orthogonal in H1
0 (Ω), with respect to the inner

product a(u, v) + t
∫

Ω ρuv, where t is a suitably chosen constant.
(4) The eigenfunctions are smooth in Ω, and are smooth up to the boundary if ∂Ω is

smooth.

8. Give a complete proof of Corollary 37.

9 (Maximin principle). Show that

λk = max
X∈Φk−1

inf
u∈X⊥

ρ(u), (149)

where X⊥ is understood as {u ∈ V : u ⊥L2 X}.
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