1. Let Ω be an open subset of \(\mathbb{R}^n \).
 (a) Show that if \(u \in C^2(\Omega) \) is harmonic in \(\Omega \) then
 \[
 \int_{\partial B} \partial_\nu u = 0,
 \]
 for any ball \(B \) whose closure is contained in \(\Omega \). Here \(\partial_\nu \) is the normal derivative.
 (b) Suppose that \(u \in C^1(\Omega) \) and that for each \(y \in \Omega \) there exists \(r^* > 0 \) such that
 \[
 \int_{\partial B_r} \partial_\nu u = 0,
 \]
 for all \(0 < r < r^* \). Show that \(u \) is harmonic in \(\Omega \) (Böcher 1905).

2. We say \(u \in C(\Omega) \) is subharmonic in \(\Omega \) if for each \(y \in \Omega \) there exists \(r^* > 0 \) such that
 \[
 u(y) \leq \frac{1}{|B_r|} \int_{B_r(y)} u, \quad \forall r \in (0, r^*).\]
 Prove the following statements.
 (a) A function \(u \in C^2(\Omega) \) is subharmonic in \(\Omega \) iff \(\Delta u \geq 0 \) in \(\Omega \).
 (b) A function \(u \in C(\Omega) \) is subharmonic in \(\Omega \) iff for any closed ball \(B \subset \Omega \) and any
 harmonic function \(v \) in a neighbourhood of \(B \), \(u \leq v \) on \(\partial B \) implies \(u \leq v \) in \(B \).
 (c) A function subharmonic in \(\mathbb{R}^2 \) and bounded from above must be constant. Is this
 statement true in \(\mathbb{R}^n \) for \(n \geq 3 \)?

3. Prove that the function \(u \) given by the Poisson formula for the Dirichlet problem on
 a ball, say, \(B_r \), is harmonic in \(B_r \) for boundary data \(g \in L^1(\partial B_r) \), and takes correct
 boundary values wherever \(g \) is continuous.

4. (a) Find the region of \(\mathbb{R}^2 \) in which the power series \(\sum_n x_1^n x_2^n \) is absolutely convergent.
 (b) The domain of convergence of a power series is the interior of the region in which the
 series converges absolutely. Exhibit a two-variable real power series whose domain
 of convergence is the unit disk \(\mathbb{D} = \{ x \in \mathbb{R}^2 : |x| < 1 \} \).
 (c) Show that if \(\Omega \subset \mathbb{R}^2 \) is a domain of convergence of some power series centred
 at 0, then \(\Omega \) is reflection symmetric with respect to the coordinate axes, and
 \(\{(\log x_1, \log x_2) : x \in \Omega, x_1 > 0, x_2 > 0\} \) is a convex domain.

5. (Poincaré 1887) In this exercise, we will implement Poincaré’s method of sweeping out
 (méthode de balayage) to solve the Dirichlet problem. Let \(\Omega \) be a bounded domain in
 \(\mathbb{R}^n \), and let \(g \in C(\Omega) \). Suppose that \(u_0 \in C(\overline{\Omega}) \) is a function subharmonic in \(\Omega \) and

\text{Date: Fall 2013.}
$u_0 = g$ on $\partial \Omega$. The idea is to iteratively improve the initial approximation u_0 towards a harmonic function by solving the Dirichlet problem on a suitable sequence of balls.

(a) Show that there exist countably many open balls B_k such that $\Omega = \bigcup_k B_k$.
(b) Consider the sequence $B_1, B_2, B_1, B_2, B_3, B_1, \ldots$, so that each B_k is occurring infinitely many times, and let us reuse the notation B_k to denote the k-th member of this sequence. Then we define the functions $u_1, u_2, \ldots \in C(\Omega)$ by the following recursive procedure: For $k = 1, 2, \ldots$, put $u_k = u_{k-1}$ in $\Omega \setminus B_k$, and let u_k be the solution of $\Delta u_k = 0$ in B_k with the boundary condition $u_{k-1}|_{\partial B_k}$. Prove that $u_k \to u$ locally uniformly in Ω, for some $u \in C^\infty(\Omega)$ that is harmonic in Ω.

(c) Show that if there exists $v \in C(\overline{\Omega})$ satisfying $\Delta v = 0$ in Ω and $v = g$ on $\partial \Omega$, then indeed $u = v$, where u is the function we constructed in (b). So if there exists a solution, then our method would produce the same solution. However, we want to demonstrate existence without any prior assumption on existence.

(d) Prove that if there exists a barrier at $z \in \partial \Omega$, then $u(x) \to g(z)$ as $\Omega \ni x \to z$, where u is the function we constructed in (b). Recall that a function $\varphi \in C(\overline{\Omega})$ is called a barrier for Ω at $z \in \partial \Omega$ if

- φ is subharmonic in Ω,
- $\varphi(z) = 0$,
- $\varphi < 0$ in $\overline{\Omega} \setminus \{z\}$.

We call the boundary point $z \in \partial \Omega$ regular if there is a barrier for Ω at $z \in \partial \Omega$.

(e) Assuming that all boundary points are regular, this procedure reduces the Dirichlet problem into the problem of constructing a subharmonic function u_0 with $u_0|_{\partial \Omega} = g$. Instead of constructing such u_0 for the given g directly, let us approximate g by functions for which such a construction is simpler. Show that if $\{v_j\} \subset C(\overline{\Omega})$ is a sequence with $\Delta v_j = 0$ in Ω and $v_j \to g$ uniformly on $\partial \Omega$, then there exists a function $u \in C(\overline{\Omega})$ satisfying $\Delta u = 0$ in Ω and $u = g$ on $\partial \Omega$.

(f) Show that any polynomial can be written as the difference of two subharmonic functions in Ω. Hence it suffices to extend g into a continuous function on $\overline{\Omega}$, and approximate the resulting function by polynomials (explain why). State what standard results we need in order to realize this.

6. Let Ω be a bounded domain in \mathbb{R}^n.

(a) Show that if the Dirichlet problem in Ω is solvable for any boundary condition $g \in C(\partial \Omega)$, then each boundary point $z \in \partial \Omega$ admits a barrier.

(b) Why is regularity of a boundary point a local property? In other words, if $z \in \partial \Omega$ is regular, and if Ω' is a domain that coincides with Ω in a neighborhood of z (hence in particular $z \in \partial \Omega'$), then is z also regular as a point on $\partial \Omega'$?

7. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $u \in C^2(\Omega)$ satisfy

$$E_s(u) := \int_{\Omega} (|\nabla u|^2 + |u|^2) < \infty.$$

Prove the followings.

(a) If $\Delta u = u$ in Ω, then $E_s(u + v) > E_s(u)$ for all nontrivial $v \in \mathcal{D}(\Omega)$.

(b) Conversely, if $E_s(u + v) \geq E_s(u)$ for all $v \in \mathcal{D}(\Omega)$, then $\Delta u = u$ in Ω.
