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Introduction

Ever since Riemann introduces the concept of Riemann manifold, and abstract mani-

fold with a metric structure, we want to ask if an abstract Riemann manifold is a simply

a submanifold of some Euclidean space with its induced metric. This is isometric embed-

ding question.

In this project, we use the book Isometric Embedding of Riemann Manifold into Eu-

clidean Spaces written by Qin Han and Jiaxing Hong, and basically introduce that every

smooth n-dimensional Riemannian manifold admits a global smooth isometric embedding

in the Euclidean space RN , N = max{sn + 2n, sn + n + 5}, with sn = n(n + 1)/2. This

is first proved by John Nash in 1956 with larger N . Here we use the proof by Gunther,

which simplifies Nash’s original proof.

1. Fundamental Theorems

Given a smooth Riemannian manifold (Mn, g), we are interested in finding a smooth

map u : Mn → Rq, for some positive integer q, such that

dudu = g.(1)

with u = (u1, ..., uq), this is equivalent to

(du1)2 + ...+ (duq)2 = g.(2)

We then call the map u an isometric imbedding or immersion according to whether u

is an imbedding or an immersion. There is also a local version of the above problem in

which only a sufficiently small neighbourhood of some specific point on the manifold is

to be isometrically embedded in Rq.

Now let us examine (2) closely. Suppose in some local coordinate system the metric g

is given by

g = Σn
i,j=1gijdxidxj in B1 ⊂ Rn(3)

For the local isometric embedding, we need to find

Σq
k=1∂iu

k∂ju
k = gij, 1 ≤ i ≤ j ≤ n, in B1(4)

There are sn = n(n+1)
2

equations in (4), and sn is called the Janet dimension. In general,

the dimension q of the target space should be bigger than or equal to sn, i.e. q ≥ sn.

Throughout this project, sn will always denote the janet dimension and the dimension q
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of the target space always satisfied q ≥ sn. There’re three sections in this project. We dis-

cuss the local isometric embedding of analytic Riemannian manifolds in the first section

and that of smooth Riemannian manifolds in the second section. In the last section, we

discuss the global isometric embedding to smooth Riemann manifolds. The main results

are the following.

Theorem 1. Any analytic n-dimensional Riemannian manifold admits on analytic local

isometric embedding in Rsn .

Theorem 2. Any smooth n-dimensional Riemannian manifold admits a smooth local

isometric embedding in Rsn+n.

Theorem 3. Any smooth n-dimensional Riemann compact Riemannian manifold ad-

mits a smooth isometric embedding in Rq for q = max{sn + 2n, sn + n+ 5}.

We prove Theorem 1-3 by solving (1). For Theorems 1 and 2, it suffices to solve the

local version (4).

2. Local Isomeric Embedding of Analytic Metric

In this section, we discuss the local isometric embedding of analytic Riemannian man-

ifolds and prove Theorem 1 by solving (4). The proof is based on the Cauchy-Kowalevski

Theorem. We rewrite the equation to apply Cauchy-Kowalevski Theorem. We first

introduce a concept, which will be useful throughout this project. Let Mn be a C2 n-

dimensional manifold and let u : Mn → Rq be a C2 map. For any given point p ∈ Mn,

we define the osculating space T 2
p (u) by

T 2
p (u) = span{∂iu(p), ∂iju(p); i, j = 1...n}.(5)

Such a definition is independent of coordinates.

Definition 1.1. The map u is free at the point p ∈ Mn if dim(T 2
p (u))=sn + n, or

∂iu(p), ∂iju(p), i, j = 1...n, are linearly independent as vectors in Rq. Moreover, u is a

free map if u is free at each point in Mn.

It’s easy to see that if u : Mn → Rq is free, then q ≥ sn + n and u must be an

immersion. Finally, if φ : Mn → Nn is a C2 diffeomorphism and u : Nn → Rq is free,
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then the composition uφ is also free. The map

(x1, ..., xn) ∈ Rn → (x1, ..., xn,
1

2
x21, x1x2, ...,

1

2
x2n) ∈ Rsn+n(6)

gives the simplest example of a free map from Rn to Rsn+n. From (6) and the local charts

of manifolds, it is easy to see that every C2 differential manifold Mn has a local free map

into Rsn+n. The differential system (4) is highly degenerate. We will transform it to an

equivalent differential system which is easier to analyze. We first express the metric in a

special form, adopting the notation x = (x′, xn) = (x1, ..., xn).

Lemma 1.2. Let (Mn, g) be a smooth n-dimensional Riemannian manifold. Then for

anp p ∈ Mn, there exists a local coordinate system (x1, ..., xn) in a neighbourhood N(p)

of p where g is of the form

g = Σn−1
k,l=1gkl(x

′, xn)dxkdxl + dx2n,(7)

with

gkl(0) = δkl, ∂ngkl(0) = 0 for anyk, l = 1, ..., n− 1(8)

Proof. We start with a normal coordinate system (x1, ..., xn) centered at p, and let

Mn−1 = {xn = 0} and e be the unit normal field slong Mn−1 in Mn. For any q ∈Mn−1,

consider the geodesic c = c(t) in Mn with the initial conditions c(0) = q and c′(0) = e(q).

Then (x1, ..., xn−1, t) forms a local coordinate system in a neighborhood of p. First, we

note g(∂t, ∂t) = 1 since each t- curve is an are-length parametrized geodesic. Next, we

have for any k = 1, ..., n− 1

∂tg(∂t, ∂k) = g(∇t∂t, ∂k) + g(∂t,∇t∂k) = g(∂t,∇k∂t) =
1

2
∂kg(∂t, ∂t) = 0

Hence g(∂t, ∂k) = 0 since it is zero at t = 0. Therefore, the metric g is of the form (7) in

the coordinate (x1, ..., xn−1, t). To prove (8), we have for any k, l = 1, ..., n− 1

∂tg(∂k, ∂l) = g(∇t∂k, ∂l) + g(∂k,∇t∂l) = g(∇k∂t, ∂l) + g(∂k,∇l∂t) = ∂kg(∂t, ∂l) + ∂lg(∂k, ∂t)− g(∂t,∇k∂l)− g(∇l∂k, ∂t) = −g(∂t,∇k∂l)− g(∇l∂k, ∂t).

(9)

Since (x1, ..., xn−1, t) are normal coordinates at p, we have ∇k∂l(0) = 0 for all k and l.

Hence we have ∂tg(∂k, ∂l) = 0 at the origin.



6 SIYUAN LU

Remark 1.3. If n = 2, we may simply take M1 as a geodesic parameterized by the

arc-length parameter x1. Then g is of the form

g = g11(x1, x2)dx
2
1 + dx22,

where

g11(x1, 0) = 1, ∂2g11(x1, 0) = 0.

Suppose g is a smooth metric given by (7) in Bn. In order to construct a smooth

isometric imbedding of g in Rq, we need to find a smooth map u : Bn → Rq satisfying

∂ku∂nu = 0(10)

∂nu∂nu = 1(11)

∂ku∂lu = gkl,(12)

in Bn for any k, l = 1, ..., n − 1. Before proceeding, we derive some identities. By a

straightforward calculation, we have

∂n(∂ku∂lu) = ∂knu∂lu+ ∂ku∂lnu = ∂k(∂lu∂nu) + ∂l(∂ku∂nu)− 2∂klu∂nu,(13)

and

∂nn(∂ku∂lu) = 2∂knu∂lnu+ ∂knnu∂lu+ ∂ku∂lnnu = 2∂knu∂lnu− 2∂klu∂nnu+ ∂k(∂lu∂nnu) + ∂l(∂ku∂nnu).

(14)

By differentiating (10)-(12) with respect to xn, we get for any k, l = 1, ..., n− 1

∂ku∂nnu = 0(15)

∂nu∂nnu = 0(16)

∂klu∂nnu = ∂knu∂lnu−
1

2
∂nngkl.(17)

We call (15)-(17) the Janet system. There are sn equations in this system, and , as we

know, we should require that q ≥ sn. Now we prescribe Cauchy data for (15)-(17) as

follows:

u|xn=0 = u0, ∂nu|xn=0 = u1.(18)

By (10)-(13), u0 and u1 satisfy in Bn−1

∂ku0∂lu0 = gkl(, 0),(19)
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∂ku0u1 = 0,(20)

∂klu0u1 = −1

2
∂ngkl(, 0),(21)

u1u1 = 1(22)

We want to show that the Janet system (15)-(22) is equivalent to (10)-(12). It’s clear

that we can derive (15)-(22) from (10)-(12), just the way we did. Now, we want to

derive (10)-(12) from (15)-(22). Suppose u is a C3 solution to the Cauchy problem of

the Janet system (15)-(22). Then (16) together with (22), immediately implies (11). In

a similar way, (10) follows from (15) and (20). To prove (12), we first note (19) implies

glk − ∂lu∂ku = 0 at xn = 0. Considering the initial condition (20) and (21), we have, by

(13),

∂n(gkl − ∂ku∂lu) = −2∂klu0u1 + 2∂klu0u1 − ∂k(u1∂lu0)− ∂l(u1∂ku0) = 0

at xn = 0. Next by (14),(17),(15), we have

∂nn(gkl − ∂ku∂lu) = −∂k(∂lu∂nnu)− ∂l(∂ku∂nnu) = 0

Hence (12) is valid. Therefore, we have proved the equivalence of them.

If ∂ku, ∂klu, ∂nu, 1 ≤ k, l ≤ n − 1, are linearly independent, we can solve ∂nnu from

(15)-(17) to get

∂nnu = F (x, ∂ku, ∂nu, ∂klu, ∂knu)nearxn = 0,(23)

where F is smooth in x and analytic in other arguments and k, l run over 1, ..., n − 1.

Moreover, F is analytic in x if g ia an analytic metric. Note that there are sn equations

in (15)-(17). If q = sn, then ∂nn can be solved uniquely, for q ≥ sn, solutions may not

be unique. If g is an analytic metric, the Cauchy-Kowalevski theorem implies that (23)

always admits an analytic solution in a neithborhood of the origin with the given Cauchy

data (18). Hence we have the following result.

Lemma 1.4. Let g be an analytic metric of the form (7) in Bn ⊂ Rn and q ≥ sn.

Suppose that there exist analytic functions u0, u1 : Bn−1 → Rq satisfying (19)-(22) and

that ∂ku0, ∂klu0, u1, 1 ≤ k, l ≤ n− 1, are linearly independent in Bn−1. Then g, restricted

to a neighborhood of the origin 0 ∈ Bn, admits an analytic isometric embedding in Rq.

Sometimes we are interested in free isometric embeddings.
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Lemma 1.5. Let g be an analytic metric of the form (7) in Bn ⊂ Rn and q ≥ sn. Sup-

pose that there exist analytic functions u0, u1 : Bn−1 → Rq satisfying (19)-(22) and that

∂ku0, ∂klu0, u1, ∂ku1, 1 ≤ k, l ≤ n−1, are linearly independent in Bn−1. Then g, restricted

to a neighborhood of the origin 0 ∈ Bn, admits an analytic isometric embedding in Rq.

Proof. We look for a free isometric embedding u : Bn → Rq of the following form:

u(x) = (ũ(x),
1

2
x2n).(24)

By (15)-(17), ũ satisfies for 1 ≤ k, l ≤ n− 1

∂kũ∂nnũ = 0∂nũ∂nnũ = −xn∂klũ∂nnũ = ∂knũ∂lnũ−
1

2
∂nngkl(25)

By the Cauchy-Kowalevski theorem, there exists an analytic solution ũ in a neighborhood

of the origin 0 ∈ Bn with the Cauchy data

ũ|xn=0 = u0, ∂nũ|xn=0 = u1.

Then by the derivation of (25), the map u solves the Janet system (15)-(17) and satisfied

(18)-(22). Hence u is an analytic isometric embedding for g. Now we need to prove only

that u is free in a neighborhood of xn = 0. By the assumption, ∂ku, ∂nu, ∂klu, ∂knu, 1 ≤
k, l ≤ n− 1, are liniarly independent at xn = 0. By (24), the last components of all these

vectors are 0 at xn = 0 and ∂nnu = (..., 1). Hence ∂ku, ∂nu, ∂klu, ∂knu, ∂nnu, l ≤ n− 1 are

linearly independent for xn = 0.

The following is the main result in this section.

Theorem 1.6. Any n-dimensional analytic Riemannian manifold admits a local analytic

isometric embedding in Rsn and a local free analytic isometric embedding in Rsn+n.

Obviously, Theorem 1 is a part of Theorem 1.6. Proof. We prove Theorem 1.6 by an

induction on n. We first consider n = 2. Suppose g is given in a local coordinate system

by

g = g11(x1, x2)dx
2
1 + dx22 inB2,

where g11 satisfies g11(x1, 0) = 1 and ∂2g11(x1, 0) = 0. This can always be arranged by

Remark 1.3. Now let

u0 = (cosx1, sinx1, 0), u1 = (0, 0, 1).(26)

Then u0, u1 satisfy (19)-(22) and ∂1u0, ∂11u0, u1 are linearly independent in B1. We may

apply Lemma 1.4 to get a local analytic isometric embedding of g in R3. Now we prove the
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existence of a local free analytic isometric embedding for n = 2. In this case, sn + n = 5.

Set

u∗0 = (cosx1, sinx1, 0, 0), u∗1 = (0, 0, cosx1, sinx1).(27)

Obviously, u∗0, u
∗
1 still satisfy (19)-(22) and ∂1u

∗
0, ∂11u

∗
0, u
∗
1, ∂1u

∗
1 are linearly independent.

We may apply Lemma 1.5 to get a free local analytic isometric embedding of g in R5.

Now let us assume Theorem 1.6 holds for n− 1 for some integer n ≥ 3. We consider the

case n. By Lemma 1.2, we assume that the metric g is of the form

g = g̃ + dx2n = Σn−1
k,l=1gkl(x

′, xn)dxkdxl + dx2n inBn,(28)

with ∂ngkl(0) = 0 for 1 ≤ k, l ≤ n − 1. Note sn = sn−1 + n and g̃(, 0) is an analytic

metric in Bn−1. By the induction hypothesis, we may assume there exists a free analytic

map f : Bn−1 → Rsn satisfying dfdf = g̃(, 0). To prove the existence of a local analytic

isometric embedding in Rsn , we consider u0 = (f, 0) and ũ1 = (0, ..., 0, 1) ∈ Rsn . It is

easy to see that

∂ku0ũ1 = 0, ∂klu0ũ1 = 0, ũ1ũ1 = 1.

To ensure that u0 and u1 satisfy (19)-(22), we take u1 = ũ1 + δ, where δ : Bn−1 → Rsn is

a perturbation of 0 satisfying

∂ku0δ = 0, ∂klu0δ = −1

2
∂ngkl, ũ1δ = −1

2
δδ.(29)

Note that ∂ngkl(0) = 0. By the implicit function theorem, we can get an analytic solution

δ to (29) near x′ = 0. Obviously, ∂ku0, ∂klu0, u1, 1 ≤ k, l ≤ n−1, are linearly independent.

We may apply Lemma 1.4 to get a local analytic isometric embedding of g in Rsn . Next

we prove the existence of a local free analytic isometric embedding in Rsn+n. Let u∗0 =

(f, 0, ..., 0) : Bn−1 → Rsn+n−1 with all the last n components zero, and take ũ∗1 = (0, e)

for some smooth vector e : Bn−1 → Sn−1 ⊂ Rn. Then u∗0, ũ
∗
1 satisfy

∂ku
∗
0ũ
∗
1 = 0, ∂klu

∗
0ũ
∗
1 = 0, ũ∗1ũ

∗
1 = 1.

We may choose e such that ∂ku
∗
0, ∂klu

∗
0, ũ
∗
1, ∂kũ

∗
1, 1 ≤ k, l,≤ n−1, are linearly independent.

Analogously, by the implicit function theorem we can select an analytic map u∗1 = ũ∗1 +δ∗

where δ∗ : Bn−1 → Rsn+n−1 satisfies

∂ku
∗
0δ
∗ = 0, ∂klu

∗
0δ
∗ = −1

2
∂ngkl, ũ∗1δ

∗ = −1

2
δ∗δ∗.

Therefore, u∗0, u
∗
1 : Bn−1 → Rsn+n−1 satisfy (19)-(22), and ∂ku

∗
0, ∂klu

∗
0, u
∗
1, ∂ku

∗
1, 1 ≤ k, l ≤

n−1, are linearly independent in Bn−1. Now we may apply Lemma 1.5 to get a free local

analytic isometric embedding of g in Rsn+n.
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3. Local Isometric Embedding of Smooth Metrics

Turning to the smooth case from the analytic case, the seential difficulty we encounter

is finding a technique to replace the Cauchy-Kowalevski theorem. As far as the existence

of solutions to partial differential equations is concerned, there are essential differences

between the analytic case and the smooth case. As is well known, even a linear partial

differential equation with smooth coefficients may have no local solutions. The crucial

step here is to solve a perturbation problem for the isometric embedding. The nonlinear

partial differential equation for such a perturbed problem exhibits a loss of differentiabil-

ity. By applying the Laplacian operator, rearranging the equation and then applying the

inverse of the Laplacian operator, we may transfrom this equation into an equivalent one

which is essentially elliptic. Then there is no loss of differentiability and we may solve it

by a standard iteration.

We begin our discussion with the following question: If a given metric is isometrically

embedded, can we isometrically embed nearby metrics? Let u ∈ C∞(Bn,Rsn+n) be a

smooth map and h = hijdx
idxj be a small smooth quadratic differential form in Bn. We

look for a small map v ∈ C∞(Bn,Rsn+n), such that

d(u+ v)d(u+ v) = dudu+ h.(30)

To this end, we need to solve the following differential system for v:

∂iu∂jv + ∂iv∂ju+ ∂iv∂jv = hij, 1 ≤ i, j ≤ n(31)

To proceed, we rewrite (31) as

∂j(∂iuv) + ∂i(∂juv)− 2∂ijuv = hij − ∂iv∂jv, 1 ≤ i, j ≤ n(32)

In place of (32), we consider a new system

∂iuv = 0, i = 1, ..., n ∂ijuv = −1

2
hij +

1

2
∂iv∂jv, i, j = 1, ..., n.(33)

The left-hand side of (33) is a linear algebraic system. If u is free, we can rewrite (33) as

v = E(u)F (h, v),(34)

where F is given by

F (h, v) = (0, ..., 0, ...,−1

2
hij +

1

2
∂iv∂jv, ...)

T ∈ Rsn+n.

When we attempt to solve (34) by an iteration, there is a loss of order one derivative at

each step. This is obvious since only v itself appears at the left-hand side, while first order

derivatives of v appear at the right-hand side. Hence, we cannot prove the convergence
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of the sequence generated in the iteration. In order to overcome this difficulty, we rewrite

the system (33). As we have observed, the difficulty arises from the nonlinear terms

∂iv∂jv. Applying the Laplacian operator yields

∆(∂iv∂jv) = ∂i(∆v∂jv) + ∂j(∂iv∆v) + 2∂ilv∂jlv − 2∆v∂ijv

If we could invert the Laplacian operator ∆, we could then have

∂iv∂jv = ∆−1∂i(∆v∂jv) + ∆−1partialj(∂iv∆v) + 2∆−1(∂ilv∂jlv −∆v∂ijv)(35)

Instead of (33), now (32) becomes the following system

∂iuv = −∆−1(∆v∂iv), i = 1, ..., n ∂ijuv = −1

2
hij + ∆−1(∂ilv∂jlv −∆v∂ijv), i, j = 1, ..., n.

(36)

Here is an important observation. The expression for v on the left-hand side of (36)

has the same regularity as the expression for v on the right-hand side, by the regularity

theory for elliptic equations. To be specific, if v is Cm,α for some m ≥ 2 and 0 < α < 1,

then the right side expressions for v are also Cm,α. There’s no loss of derivatives. Hence,

if hij is small, we may solve (36) by the contraction mapping principle. When we try

to make the above procedure rigorous, a series of difficulties arises in inverting ∆ to get

(35), since the boundary values involved. To remedy this, we try to use cutoff functions.

We assume u+ a2v is a solution of (30), then like the calculation before, we get

∂iuv = Ni(v, a), i = 1, ..., n ∂ijuv = −1

2
hij +Mij(v, a), i, j = 1, ..., n.(37)

where

Ni(v, a) = −a∆−1(a∆v∂iv)− a∂ia|v|2,(38)

Mij(v, a) =
1

2
a∆−1rij(v, a)− (a∂ija+ ∂ia∂ja)|v|2 − 3

2
(∂ia∆−1(a∆v∂jv) + ∂ja∆−1(a∆v∂iv)),

(39)

rij(v, a) = ∆a∂iv∂jv − ∂ia∆v∂jv − ∂ja∂iv∆v + 2∂la∂l(∂iv∂jv) + 2a(∂ilv∂jlv −∆v∂ijv).

Let v : B̄n → Rsn+n be a solution of (38)-(39) in Bn. Obviously, v satisfies the isometrically

embedding. We assume u : B̄n → Rsn+n is free and write (38)-(39) as

v = E(u)F (v, h),(40)

where

E(u) = ((∂iu, ∂iju)T )−1

F (v, h) = (Ni(v, a),−1

2
hij +Mij(v, a))
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We should point out that E(u) involves first order and second order derivatives of u, not

u itself.

Theorem 2.1. Let u ∈ C2,α(B̄n,Rsn+n) be a free map and h be a C2,α quadratic

differential form in B̄n, 0 < α < 1. For any a ∈ C∞c (Bn), there’s a positive constant θ∗

depending only on |α|4,α, such that if

θ(u, h) ≡ |E(u)|2,α|E(u)F (0, h)|2,α ≤ θ∗,(41)

there exists a map v ∈ C2,α(B̄n,Rsn+n) satisfying (38)-(39) and

|v|2,α ≤ C|E(u)F (0, h)|2,α,(42)

where C is a positive constant independent of u and v. Moreover, v ∈ Cm,α(Bn) or C∞

if u, h ∈ Cm,α(Bn) or C∞, for some m ≥ 3.

Proof. We need to solve (38)-(39), or (40), for v. Letting v ≡ µw, we rewrite (40) as

w = µE(u)F (w, 0) +
1

µ
E(u)F (0, h).(43)

Set

Σ = {w ∈ C2,α(B̄n,Rsn+n); |w|2,α ≤ 1},

and

Tw = µE(u)F (w, 0) +
1

µ
E(u)F (0, h)

In the following, we take

µ = (
|E(u)F (0, h)|2,α
|E(u)|2,α

)
1
2 .

We claim that T : Σ→ Σ is a contraction mapping if θ = θ(u, h) is small. First, we have

for any w ∈ Σ

|Tw|2,α ≤ µ|E(u)|2,α|F (w, 0)|2,α +
1

µ|E(u)F (0, h)|2,α
=
√
θ(|F (w, 0)|2,α + 1) =

√
θC1

(44)

where C1 is a positive constant depending only on |a|4,α, and θ is as in (41). Hence, T

maps Σ into Σ if θ ≤ 1
C2

1
. Next, we note that F (w, 0) is quadratic in w. Then we have

for w1, w2 ∈ Σ

|Tw1 − Tw2|2,α ≤ µ|E(u)|2,α|F (w1, 0)− F (w2, 0)|2,α ≤
√
θC2|w1 − w2|2,α,(45)
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where C2 is a positive constant depending only on |a|4,α. Therefore, T is a contraction if

θ ≤ 1
C2

1+C
2
2
. By the contraction mapping principle, we have a fixed point of T in Σ. To

prove (42), we rewrite (43) as

v = µ2E(u)F (w, 0) + E(u)F (0, h)

Then (42) follows easily from the definition of µ and the boundedness of F (w, 0) in C2,α-

norm. The higher regularity is a consequence of regularity result for elliptic differential

equations. By setting w = E(u)W and applying ∆ to (43), we obtain

∆W − µ∆(F (w, 0)) =
1

µ
∆F (0, h).(46)

Note that ∆(F (w, 0)) can be considered as a bilinear form in the derivatives of w up to

the second order, with coefficients given by derivatives of a up to the second order. Then

the linearized operator associated with (46) is given by

∆W̃ + Σ|β|=2µA
β(w)E(u)∂βW̃ + lowerorderterms,(47)

where Aβ(w) is a matrix whose entries can be viewed as linear combinations of derivatives

of w up to the second order, with coefficients involving derivatives of a up to the second

order. in view of |w|2,α ≤ 1 and the expressions of Ni(w, a) and Mij(w, a), we have

Σ|β|=2|µAβ(w)E(u)| ≤ µC3|E(u)|2,α ≤ C3

√
θ ≤ 1

4
,

if

θ ≤ θ∗ =
1

C2
1 + C2

2 + 16C2
3

.(48)

If (48) holds, then (47), and therefore (46), are elliptic differential systems. Then, the

(interior) regularity of W an dthus that of w follow from the regularity theory for non-

linear elliptic systems.

Remark 2.2. For a fixed free map u as in Theorem 2.1, we may conclude u + awv is

freeif |h2,α| is small depending also on u. This can be seen easily from (42).

Remark 2.3. For any smooth function a in Bn with compact support, let v ∈ C2,α(B̄n,Rsn+n)

be the solution as in Theorem 2.1. Then, v satisfies isometric embedding.

Now we state the main result of this section.
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Theorem 2.4. Any smooth n-dimensional Riemannian manifold admits a smooth local

free isometric embedding in Rsn+n.

Note that Theorem 2.4 implies Theorem 2 easily.

Proof. We prove Theorem 2.4 by an induction on n. We start with the assumption

that it holds for n− 1, n ≥ 3, since the proof for n = 2 can be formulated easily from the

following argument. We divide the proof into two steps. Step 1. Suppose the metric g is

of the form (28) in Bn−1 × (−1, 1). We claim that, for any m ∈ Z+, we may find a free

map um : Bn−1 × (−1, 1)→ Rsn+n such that

g = dumdum + xmn h
(m)(x)inBn−1 × (−1, 1)(49)

for some smooth quadratic differential form h(m). In an argument similar to the proof

for the second part of Theorem 1.6, we can find smooth maps f0, f1 : Bn−1 → Rsn+n

such that f0 and f1 satisfy (19)-(22) and ∂kf0, ∂klf0, f1, ∂kf1, 1 ≤ k, l ≤ n− 1, are linearly

independent. Here we used the induction hypothesis. If n = 2, f0, f1 were constructed

in the proof of Theorem 1.6. Now we prove inductively that for any integer m ≥ 1

there exists a smooth map um : Bn−1 × (−1, 1)→ Rsn+n such that the following hold for

k, l = 1, ..., n− 1:

gkl = ∂kum∂lum +O(xm+1
n ),

gkn = ∂kum∂num +O(xmn ),

gnn = ∂num∂num +O(xmn ).

By taking um = (wm,
1
2
x2n), we need to find a smooth map wm : Bn−1×(−1, 1)→ Rsn+n−1

for which the following hold for k, l = 1, ..., n− 1:

gkl = ∂kwm∂lwm +O(xm+1
n ), gkn = ∂kwm∂nwm +O(xmn ), g̃nn = ∂nwm∂nwm +O(xmn ).

(50)

where g̃nn = gnn− x2n. We prove (50) by induction on m. For m = 1, we set w1(x
′, xn) =

f0(x
′) + f1(x

′)xn. It’s easy to check that w1 satisfies (50) by (19)-(22). Suppose (50)

holds for some m ≥ 1. We write (50) as

gkl = ∂kwm∂lwm + g
(m)
kl x

m+1
n +O(xm+2

n ), gkn = ∂kwm∂nwm + g
(m)
kn x

m
n +O(xm+1

n ), g̃nn = ∂nwm∂nwm + g(m)
nn x

m
n O(xm+1

n ).

(51)

where g
(m)
ij are smooth functions in Bn−1. We set

wm+1(x
′, xn) = wm(x′, xn) + fm+1(x

′)xm+1
n .
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From a straight forward calculation, we require

∂kf0fm+1 =
1

m+ 1
g
(m)
kn , ∂klf0fm+1 = −1

2
g
(m)
kl −

1

2(m+ 1)
∂kg

(m)
ln −

1

2(m+ 1)
∂lg

(m)
kn , f1fm+1 =

1

m+ 1
g(m)
nn .

This is an algebraic linear system for fm+1. We may solve for fm+1 since the coefficients

are linearly independent. Therefore, wm+1 satisfies (50). In the following, we simply

write u instead of um for a fixed m to be determined. Obviously, u is free, at least in a

neighborhood of the origin.

Step 2. Set x = εy and uε(y) = u(εy). In the y-coordinate, we may write (49) as

g = duεduε + h̃,

where h̃(y) = εmymn h
(m)(εy). Now we seek a solution ũ with the form

ũ(y) = uε(y) + a2(y)v(y) = u(εy) + a2(y)v(y)

where a ∈ C∞0 (Bn) with a = 1 on Bn3/4. Then (38)-(39) takes the following form:

ε2∂iu(εy)v = εNi(v, a),(52)

ε2∂iju(εy)v = −1

2
h̃(y) +Mij(v, a).(53)

In this case, we have

|E(uε)|2,α|E(uε)F (0, h̃)|2,α ≤ Cmε
m−4,

for some constant Cm independent of ε. Therefore, if m = 5 and ε is small, the re-

quirement fulfilled. By Theorem 2.1, there exists a smooth solution v : Bn → Rsn+n to

(52)-(53). By Remark 2.2 and 2.3, we get dwdw = g.

4. Global Isometric Embedding of Smooth metrics

In this section, we discuss the global isometric embedding of smooth Riemannian man-

ifolds in Euclidean spaces. We divide our discussion into two parts. First, we prove

that any n-dimensional smooth Riemannian manifold admits a global smooth isometric

embedding in some Euclidean space. Second, we seek to determine the lowest dimension

of the target space.

The discussion of global isometric embedding consists of two steps. First, for any Rie-

mannian metric g on a compact manifold Mn, we find an embedding u0 : Mn → Rq such

that g − du0du0 is also a metric. Second, we modify u0 to get u to satisfy dudu = f .

During this process, we need to be sure that u remains an embedding. The technique
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developed in the previous section plays an important role. The starting point of the

second step is to localize the problem so that we need to modify u0 in each local chart

is very similar to that in the proof of Theorem 2.4 of the previous section. Both steps

are quite easy if we are content with finding an isometric embedding in some Euclidean

space. However, the second step becomes extremely complicated when we attempt to

find the lowest target dimension.

First of all, we localize the global problem.

Lemma 3.1. Let (Mn, g) be a compact smooth n-dimensional Riemannian manifold.

Then there’s a (finite) open covering {Uj} and smooth functions φj ∈ C∞c (Uj) and ζj ∈
C∞(Uj) such that

g = Σφ2
jdζ

2
j .(54)

Proof. For any p ∈ Mn, there is a local chart (Vp, ηp), where ηp : Vp → Bn is a

diffeomorphism. By Theorem 2.4, there exists a neighborhood N of ηp(p) in Bn such that

(η−1p )∗g = Σsn+n
j=1 dx2j inN,

for some smooth function x1, ..., xsn+n on N . Hence we have

g = η∗p(η
−1
p )∗g = Σsn+n

j=1 d(xjηp)
2 inUp,

where Up = η−1p (N) ⊂ Vp is a neighborhood of p. Since Mn is compact, we can complete

the proof by using the partitions of unity.

Remark 3.2. Let (Mn, g) be a precompact smooth n-dimensional Riemannian manifold.

Then (54) still holds. Moreover, (54) can be written in the form

g = Σφ4
jdζ

2
j .

This is useful for later discussions.

Lemma 3.3. Let (Mn, g) be a compact smooth Riemannian manifold. Then there exists

a smooth free embedding u : Mn → Rsn+2n such that g − dudu is a smooth Riemannian

metric in Mn.

Proof. It suffices to prove that there is a smooth free embedding of Mn into Rsn+n. In

fact, if u is such a map, by the compactness of Mn, it follows that g − c2dudu is positive

definite on Mn if c is sufficiently small.



ISOMETRIC EMBEDDING OF RIEMANNIAN MANIFOLDS 17

The proof consists of two parts. First, we prove that there is a smooth free embedding

from Mn into Rq for some q. Second, we prove that the existence of a smooth free

embedding from Mn into Rq for q > sn + 2n implies the existence of such a map into

Rq−1.

By Whitney’s embedding theorem, there exists a smooth embedding φ : Mn → R2n.

Set σ : R2n → Rsn+2n by

σ(x1, ..., x2n) = {x1, ..., x2n, x21, x1x2, ..., x22n}.

Obviously σ is free, and hence σφ is a smooth free embedding of Mn into Rq with

q = s2n + 2n.

Next, we assume φ is a smooth free embedding into Rq with q > sn + 2n. We denote

by Σ(φ(p)) the unit sphere of the osculating space T 2
p (φ) ⊂ T∗(Rq) and by Σ the smooth

submanifold of Mn × Rq consisting of {(p,Σ(φ(p))); p ∈ Mn}. Denote by P the smooth

map : (p, e) ∈ Σ → e ∈ Sq−1. Since dim{Σ} = sn + 2n − 1 < q − 1, it follows that

P{Σ} is of measure zero in Sq−1. Hence Sq−1 \ P{Σ} is not empty, and we may take an

e∗ ∈ Sq−1\P{Σ}. We denote by Pe∗ the projection of Rq onto the subspace perpendicular

to e∗. Then Pe∗φ is a smooth free embedding of Mn into Rq−1.

Now, we prove that any smooth compact Riemannian manifold admits a smooth free

isometric embedding in a Euclidean space. The dimension of the target space could be

large. We include this result to illustrate how to get the global isometric embedding from

the local version.

Proposition 3.4. Any smooth n-dimensional compact Riemannian manifold admits a

smooth free isometric embedding in Rq for some integer q.

Proof. Let (mn, g) be a smooth n-dimensional compact Riemannian manifold. By

Lemma 3.3, there exists a smooth free embedding u : Mn → Rq1 such that g − dudu is

positive definite on Mn, where q1 = sn + 2n. By Lemma 3.1, there is a finite collection

of open sets {Ul} of Mn with φl ∈ C∞c (Ul), ηl ∈ C∞(Ul) such that

g − dudu = ΣL
l=1φ

2
l dη

2
l ,

for some positive integer L. Set uε : Mn → R2L by

uε = ε(φ1 cos
η1
ε
, φ1 sin

η1
ε
, ..., φL cos

ηL
ε
, φL sin

ηL
ε

).

We then have

g = duεduε + dudu− ε2(dφ2
1 + ...+ dφ2

L).
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Now we claim there is a smooth free embedding w : Mn → Rq1 such that

dwdw = dudu− ε2ΣL
l=1dφ

2
l .(55)

If (55) holds, then (w, uε) : Mn → Rq1+2L is a smooth free isometric embedding of g.

It suffices to prove (55). To present the idea clearly, we discuss only the case L = 1.

In the sequel, we omit the subscript l and consider the equation

dwdw = dudu− ε2dφ2

in the unit ball Rn, with φ ∈ C∞c (Rn). Assume w = u + a2v for some a ∈ C∞c (Rn) with

a = 1 on suppφ. Then according to the proof in previous section, if ε is small enough, we

can find such v. Thus we can find w. Proof done.

The dimension q in Proposition3.4 depends on the manifold Mn itself, and not just n.

In the rest of the section, we try to find the best q. We first state the main result.

Theorem 3.5. Let (Mn, g) be a smooth n-dimensional Riemannian manifold and let

u0 : Mn → Rq be a smooth free map such that g − du0du0 is positive definite, with

q ≥ sn + n+ 5. Then there is a free map u ∈ C∞(Mn,Rq) such that g = dudu. Further-

more, if u0 is an embedding, so is u.

Theorem 3.5 holds for both compact and noncompact Riemannian manifolds.

Corollary 3.6. Any smooth n-dimensional compact Riemannian manifold admits a

smooth free isometric embedding in Rq for q = max{sn + 2n, sn + n+ 5}.

Corollary 3.7. Any smooth 2-dimensional compact Riemannian manifold admits a

smooth free isometric embedding in R10.

Before proving Theorem 3.5, we need to introduce several lemmas.

Lemma 3.8. Suppose e1, ..., em are m vectors in Rq, with q > m. Then e1, ..., em are

linearly independent if and only if

det(eiej)m×m 6= 0

It’s just some linear algebra stuff, we omit the proof.
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Lemma 3.9. Let e1, ..., en+5 ∈ C∞(B̄n,Rq) be linearly independent for any x ∈ B̄n, with

q ≥ n+ 5, and let Px be the orthogonal projection

Px : Rq → span{e1(x), ..., en+5(x)}.

Then there exist u, v ∈ C∞(B̄n,Rq) ∩ span{e1(x), ..., en+5(x)} such that, for any x ∈ B̄n,

s ∈ R1 and (a, b) ∈ S1,

u(x), v(x), ei(x) + sPx(a∂u + b∂iv), 1 ≤ i ≤ n,

are linearly independent.

Proof. Consider the unit ball Bn as a subset of

Tn = {(x1, ..., xn) ∈ Rn;−π ≤ xi ≤ π}

Set

f1(x) = sin x1, fk(x) = Πk−1
i=1 (cosxi+2) sinxk, k = 2, ..., n, fn+1(x) = Πk−1

i=1 (cosxi+2) cosxn.

Define f = (f1, ..., fn+1). Obviously, f : Rn → Rn+1 is a smooth and periodic. Moreover,

∂1f(x), ..., ∂nf(x) are linearly independent for any x ∈ Tn, and

∂ifl = 0 forn ≥ i ≥ l + 1 ≥ 2.(56)

Set

u(x) = Σn+1
l=1 εfl(

x

ε2
)el+1(x) + en+4(57)

v(x) = Σn+1
l=1 εfl(

x

ε2
)el+2(x) + en+5(58)

where ε is a small parameter to be specified. A differentiation of (57)-(58) yields

∂iu(x) =
1

ε
Σn+1
l=1 ∂ifl(

x

ε2
)el+1(x) +O(1)(59)

∂iv(x) =
1

ε
Σn+1
l=1 ∂ifl(

x

ε2
)el+2(x) +O(1)(60)

Combine (59)-(60)gives

a∂iu+ b∂v =
1

ε
Σn+1
l=1 (ael+1 + bel+2) +O(1)

For any (a, b) ∈ S1 and any x ∈ B̄n, define

wl(x) = ael+1(x) + bel+2(x), l = 1, ..., n+ 1, wl(x) = el+2(x), l = n+ 2, n+ 3(61)
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Then, w1(x), ..., wn+3(x) are linearly independent for any x ∈ B̄n. To prove this, we

consider constants c1, ..., cn+3 such that Σn+3
l=1 clwl(x) = 0 at some point x ∈ B̄n. This

implies cn+2 = cn+3 = 0 and

c1ae2(x) + (c1b+ c2a)e3(x) + ...+ (cnb+ cn+1a)en+2(x) + cn+1ben+3(x) = 0

Thus, we get cl = 0, l = 1, ..., n+ 1, since a2 + b2 6= 0.

Similarly, we define for x ∈ B̄n and y ∈ Tn

w̃i(y, x) = Σn+1
l=1 ∂ifl(y)wl(x), i = 1, ..., n, w̃i(y, x) = wi+1, i = n+ 1, n+ 2.

Then, w̃1(y, x), ..., ˜wn+2(y, x) are linearly independent for any x ∈ B̄n and any y ∈ Tn.

To prove this, we consider constants µ1, ..., µn+3 such that

Σn
i=1µiΣ

n+1
l=1 ∂ifl(y)wl(x) + Σ2

j=1µn+jwn+j+1(x) = 0

first we get µn+1 = µn+2 = 0, and

Σn
i=1µi∂ifl(y) = 0, for any l = 1, ..., n+ 1

by the linear independence of ∂ifl(y), we get µ1 = ... = µn = 0. Therefore, Lemma 3.8

yields to

det(w̃iw̃j)(n+2)×(n+2) ≥ θ,(62)

for some positive constant θ independent of x ∈ B̄n, y ∈ Tn and (a, b) ∈ S1.

In the following, we prove that u(x), v(x) defined above satisfy the requirements of this

lemma. For each s ∈ R1 and (a, b) ∈ S1, consider (n+ 2) vectors

Vi = di(x) + sPx(a∂iu+ b∂v), i = 1, ..., n(63)

Vn+1 = u = en+4 +O(ε),(64)

Vn+2 = v = en+5 +O(ε)(65)

We may write

Vi = ei +
s

ε
w̃i(

x

ε2
, x) + sO(1), i = 1, ..., n,

we consider two cases |s| ≥ ε1−(1/2n) and |s| < ε1−(1/2n). For the first case, we have

Vi =
s

ε
[w̃i(

x

ε2
, x) +O(ε

1
2n )], i = 1, ..., n, Vn+1 = w̃n+1 +O(ε), Vn+2 = w̃n+2 +O(ε)

In view of (62), it follows that

det(ViVj) =
s2n

ε2n
{det(w̃iw̃j) +O(ε

1
2n )} ≥ 1

ε
{θ − Cε

1
2n} ≥ θ

2ε
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if ε ∈ (0, ε0] for some universal constant ε0. By Lemma 3.8, {V1, ..., Vn+2} is linearly

independent as ε ∈ (0, ε0] and |s| ≥ ε1−(1/2n).

For the second case |s| < ε1−(1/2n), we assume for some x ∈ B̄n

Σn+2
i=1 ciVi(x) = 0.

Set

sup|ci| = A

We may write

c1 +O(Aε1−
1
2n ) = 0,

c2 +
s

ε
c1a∂1f1(

x

ε2
) +O(Aε1−

1
2n ) = 0,

ci +
s

ε
Σi−1
l=1cl[a∂lfi−1(

x

ε2
) + b∂lfi−2(

x

ε2
)] +O(Aε1−

1
2n ) = 0,

cn+1 +O(Aε1−
1
2n ) = 0,

cn+2 +O(Aε1−
1
2n ) = 0,

Consequently, there hold for some constant C independent of ε

|c1| ≤ CAε1−
1
2n , |c2| ≤ CAε1−

1
2n , |ci| ≤ CAε1−

i
2n , i = 3, ..., n, |cn+1|, |cn+2| ≤ CAε1−

1
2n .

Then we have |ci| ≤ CA
√
ε for all i, and hence

A = sup|ci| ≤ CA
√
ε ≤ 1

2
A,

for any ε ∈ (0, ε0] with C
√
ε0 ≤ 1

2
. Therefore, A = 0 and V1, ..., Vn+2 is linearly indepen-

dent as |s| < ε1−(1/2n) and ε ∈ (0, ε0].

Remark 3.10. With the aid fo the normalizing procedure, we may assume |u(x)| =

|v(x)| = 1 and u(x)v(x) = 0, since this procedure does not affect linear independence.

Lemma 3.11. There exist two smooth functions β1, β2 on S1 such that

β′1(t)β
′′
2 (t)− β′′1 (t)β′2(t) 6= 0,(66) ∫

S1
β′i(t)βj(t)dt = 0, i, j = 1, 2,(67)

∫
S1
β′i(t)ρ(t)dt = 0, i = 1, 2.(68)

where

ρ(t) =
√
β′1(t)

2 + β′2(t)
2(69)
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is positive on S1.

Proof. Set β1(t) = cos t− 1
2

cos 2t+ b, β2(t) = sin t+ sin 2t+ a. Then, we have

β′1(t)β
′′
2 (t)− β′′1 (t)β′2(t) = 3(sin 2t sin t− 1) < 0

It’s easy to check that
∫
S1 β

′
i(t)βj(t)dt = 0. It is easy to see that ρ is positive on S1. Thus

a special choice of constants a and b implies (68).

Lemma 3.12. Suppose u0 ∈ C∞(B̄n,Rq) is a free map, q ≥ sn + n + 5. Then there

exists a v1(t, x) ∈ C∞(S1 × B̄n,Rq)) such that the following hold for u1 = φv1, for any

φ ∈ C∞c (Bn):

∂ku0u1 = 0, ∂ku0∂tu1 = 0, 1 ≤ k ≤ n, ∂iju0u1 = 0, 2 ≤ i, j ≤ n,(70)

∂iu0, ∂iju0, 2 ≤ i, j ≤ n, ∂1u0 + s∂tu1, ∂11u0 + 2s∂t1u1, ∂1iu0 + s∂tiu1, 2 ≤ i ≤ n, ∂tv1, ∂ttv1

(71)

are linearly independent for any (t, x) ∈ S1 × B̄n and s ∈ R,

and

|∂tu1|2 = φ4(x)ρ2(t)(72)

for any (t, x) ∈ S1 × B̄n, where ρ(t) is a positive function on S1.

Proof. Since u0 is free and q ≥ sn +n+ 5, there exist f1, ..., f5 ∈ C∞(B̄n,Rq) such that

∂ku0, ∂klu0, 1 ≤ k, l ≤ n, f1, ..., f5(73)

are linearly independent in B̄n. Denote by Lx the space spanned by ∂ku0, 1 ≤ k ≤ n and

∂iju0, 2 ≤ i, j ≤ n, and the projection operator by

Px : Rq → L⊥x .(74)

Here L⊥x is contained in the linear space spanned by functions in (73). Set

ei(x) = Px∂1iu0(x), i = 1, ..., n, ei(x) = Pxfi−n(x), i = n+ 1, ..., n+ 5.(75)

Obviously, e1, ..., en+5 are linearly independent. By Lemma 3.9, there exist u, v ∈ C∞(B̄n,Rq)∩
span{e1, ..., en+5} such that

u(x), v(x), ei(x) + Px(a∂iu(x) + b∂iv(x)), i = 1, ..., n(76)

are linearly independent for any x ∈ B̄n, a, b ∈ R1, a2 + b2 6= 0.
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By Remark 3.10, we may assume |u(x)| = |v(x)| = 1 and u(x)v(x) = 0. With β1, β2

constructed in Lemma 3.11, we set

v1(t, x) = β1(t)u(x) + β2(t)v(x)(77)

Obviously, (72) holds since u1 = φ2v1 satisfies

|∂tu1(t, x)|2 = φ4(β′1(t)
2 + β′2(t)

2) = φ4ρ2(t)

Since u(x), v(x) are in L⊥x , (70) holds too. By (66), we know that ∂tv1, ∂ttv1 are linearly

independent and that

span{∂tv1, ∂ttv1} = span{u, v}(78)

Note Px{∂1iu0 + s∂tiv1} = ei(x) + sPx{β′1(t)∂iu(x) + β′2(t)∂iv(x)}, thus (71) follows from

(76).

Now we may assume that

∂th1 = −(ρ∂1u0 + ∂tu1)∂1u1, ∂thi = −ρ∂1u1∂iu0 − (ρ∂1u0 + ∂tu1)∂iu1, i = 2, ..., n(79)

The key step in proving Theorem 3.5 is the following result.

Theorem 3.13. Suppose u0 ∈ C∞(B̄n,Rq) is a free map and φ ∈ C∞c (Bn) is a smooth

function, with q ≥ sn + n+ 5. Then there exists a compact set C ⊂ Bn with suppφ ⊂ C

such that the following holds: For any k ∈ Z+, there is a positive constant εk such that

for any ε ∈ (0, ε0] there exists a smooth free map uεk : B̄n → Rq) such that

duεkduεk = du0du0 + φ4dx21 + εk+1gεk,(80)

where

uεk − u0 ∈ C∞c (B̄n,Rq), supp(gεk) ⊂ C(81)

|uεk − u0| ≤ cε(82)

for some constant c independent of ε.

Remark 3.14. As we see in the proof, the function uεk is of the form

uεk = ũεk(ε,
x1
ε
, x).

for some ũεk ∈ C∞((0, εk] × S1 × B̄n). Here ũεk(, t, ) is considered to be a function in

t ∈ S1, or a 2π-periodic function in t ∈ R. A similar form holds for gεk.
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Proof. We prove by an induction on k that uεk can be taken in the form

uεk = u0(x) + εu1(t, x) + ε2w2(ε, t, x) + ...+ εkwk(ε, t, x) with t = γ(
x1
ε

)(83)

where u1 is as in Lemma 3.12 and wl(ε, t, x) = ul(t, x) + εvl(t, x) will be determined,

l = 2, ..., k.
∫ γ
0
ρ(s)ds = t defines γ.

We begin with k = 2 an look for a function uε2 of the following form:

uε2 = u0(x) + εu1(t, x) + ε2w2(ε, t, x)

for some smooth function w2(ε, t, x), yet to be determined. Then, we have

∂1uε2 = (∂1u0 +
1

ρ
∂tu1) + ε(∂1u1 +

1

ρ
∂tw2) + ε2∂1w2, ∂iuε2 = ∂iu0 + ε∂iu1 + ε2∂iw2

By (70) and the definition of h, yields

∂1uε2∂1uε2 = |∂1u0|2 + φ4 +
2ε

ρ
(−∂th1 + (∂1u0 +

1

ρ
∂tu1)∂tw2)

+ε2|∂1u1 +
1

ρ
∂tw2|2 + 2ε2(∂1u0 +

1

ρ
∂tu1)∂1w2 +O(ε3)

∂1uε2∂iuε2 = ∂1u0∂iu0 +
ε

ρ
(−∂thi + ∂iu0∂tw2)

+ε2(∂iu0∂1w2 + (∂1u1 +
1

ρ
∂tw2)∂iu1 + (∂1u0 +

1

ρ
∂tu1)) +O(ε3)

∂iuε2∂juε2 = ∂iu0∂ju0 + ε2(∂iu1∂ju1 + ∂iu0∂jw2 + ∂ju0∂iw2) +O(ε3)

We claim all the above holds if w2 satisfies

(∂1u0 +
1

ρ
∂tu1 + ε∂1u1)w2 = h! +O(ε2)

(∂iu0 + ε∂iu1)w2 = hi +O(ε2)

(∂11u0 +
2

ρ
∂t1u1)w2 =

1

2
(|∂1u1|2 + 2∂1h1) +O(ε)

(∂1iu0 +
1

ρ
∂tiu1)w2 =

1

2
(∂1u1∂iu1 + ∂ih1 + ∂1hi) +O(ε)

∂iju0w2 =
1

2
(∂iu1∂ju1 + ∂ihj + ∂jhi) +O(ε)

∂tu1w2 = 0, ∂ttu1w2 =
ε

2
|∂tw2|2 +O(ε2)

Note that it’s an algebraic system for w2, while the above involves derivatives of w2. To

prove the claim, we rewrite it so that no differentiation is applied directly to w2. We do

this for ∂t first and then for ∂1 and ∂i for i = 2, ..., n. We may omit this calculation, as

it’s clear and not hard.
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To solve the algebraic system of w2, we consider

w2(ε, t, x) = u2(t, x) + εv2(t, x)

By substituting w2 in the algebraic system and comparing the order of ε, we require

(∂1u0 +
1

ρ
∂tu1)w2 = h1, ∂iu0u2 = hi(84)

(∂11u0 +
2

ρ
∂t1u1)u2 =

1

2
(|∂1u1|2 + 2∂1h1), (∂1iu0 +

1

ρ
)u2 =

1

2
(∂1u1∂iu1 + ∂ih1 + ∂1hi)

(85)

∂iju0u2 =
1

2
(∂iu1∂ju1 + ∂ihj + ∂jhi), ∂tv1u2 = 0, ∂ttv1u2 = 0.(86)

and

(∂1u0 +
1

ρ
∂tu1)v2 = −∂1u1u2(87)

∂iu0v2 = −∂iu1u2, ∂tv1v2 = 0, ∂ttv1v2 =
|∂tu2|2

2φ2
.(88)

According to Lemma 3.12, the coefficients of u2 is linearly independent and of full rank

in S1× B̄n. Thus we may find a u2 ∈ C∞(S1× B̄n) satisfying the above algebraic system.

Besides, suppu2 ⊂ S1 × suppφ. So we can find v2 ∈ C∞c (S1 × B̄n). And thus we have

proved the case for k = 2.

Now, we assume Theorem 3.13 holds for k ≥ 2 and then prove it for k + 1. Suppose

uε(k+1)(x) = uεk(x) + εk+1wk+1(ε, t, x), with t = γ(
x1
ε

)

for some smooth function wk+1(ε, t, x) to be determined. Like what we do in k = 2

case, we find some conditions for wk+1(ε, t, x), and derive a equivalent algebraic system.

Then we let wk+1(ε, t, x) = uk+1(t, x) + εvk+1(t, x) and again get a algebraic system for

uk+1, vk+1. And happily, we find the coefficient is just as we stated in Lemma 3.12. So

we can solve these uk+1, vk+1, which leads to the statement of the Theorem.

Now we are able to prove Theorem 3.5.

Proof of Theorem 3.5. By Lemma 3.3 and Remark 3.2, we may assume that the metric

g is given by

g = du0du0 + Σl≥1h
(l),
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where h(l) is a smooth symmetric covariant 2-tensor on M such that in a suitable local

coordinate system x : U (l) → Rn

h(l) = φ4dx21

with φ ∈ C∞c (U (l)). The support of h(l) is in U (l), and the family {U (l)} is a cover of M .

To prove Theorem 3.5, it suffices to consider the case where there is only one term in the

summation for the expression of g.

In the following, we assume

g = du0du0 + φ4dx21,

for some φ ∈ C∞c (U (l)) and some local coordinate system x : U → Rn. We may identify

U with Bn. By Theorem 3.13, we may find a compact set C ⊂ Bn with suppφ ⊂ C, a

smooth free map uεk : R̄n → Rq and a smooth symmetric covariant 2-tensor gεk in R̄n

such that suppgεk ⊂ C and

duεkduεk = du0du0 + φ4dx21 + εk+1gεk.

Now suppose u = uεk + a2w for some a ∈ C∞c (Bn) with a = 1 on C. Then dudu = g is

equivalent to

d(uεk + a2w)d(uεk + a2w) = duεkduεk − εk+1gεk.(89)

Since we have εk+1 in front of gεk, as in the section 2, we can find w satisfying the equation.

Thus u = uεk + a2w is a free map if ε is small enough. This ends the proof of Theorem

3.5.
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