MATH 580 ASSIGNMENT 4

DUE THURSDAY NOVEMBER 8

- 1. Here we will prove a version of the maximum principle for unbounded domains and for functions that are not necessarily continuous up to the boundary.
 - (a) Exhibit a harmonic function violating the (weak) maximum principle on an unbounded domain.
 - (b) Let $\Omega \subset \mathbb{R}^n$ be a domain, and let $K_1 \subset K_2 \subset \ldots$ be a nested sequence of compact subsets of Ω , such that $\bigcup_j K_j = \Omega$. Suppose that $u \in C(\Omega)$ is a subharmonic function satisfying

$$\limsup_{j \to \infty} \sup_{x \in \partial K_j} u(x) \le 0.$$

Show that $u \leq 0$ in Ω .

(c) Let $\hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$. We topologize it by identifying it with the *n*-sphere through a stereographical projection (which is required to be a homeomorphism by definition). In particular, we have $x_j \to \infty$ if $\{x_j\}$ eventually escapes any compact set of \mathbb{R}^n . For $\Omega \subset \mathbb{R}^n$ a domain, we denote its boundary in $\hat{\mathbb{R}}^n$ by $\hat{\partial}\Omega$. Show that $\hat{\partial}\Omega = \partial\Omega$ if Ω is bounded, and $\hat{\partial}\Omega = \partial\Omega \cup \{\infty\}$ if Ω is unbounded. Suppose that $u \in C(\Omega)$ is a subharmonic function satisfying

$$\limsup_{\Omega \ni x \to z} u(x) \le 0, \quad \text{for each} \quad z \in \hat{\partial}\Omega.$$

Show that $u \leq 0$ in Ω .

2. In this exercise, we will study a general version of Perron's method. Let $g: \hat{\mathbb{R}}^n \to \mathbb{R}$, and let

 $S_q = \{ v \in C(\Omega) : v \text{ subharmonic in } \Omega, \limsup u(x) \le g(z) \text{ for each } z \in \hat{\partial}\Omega \}.$

$$\Omega \ni x -$$

Define the *Perron solution* $u: \Omega \to \mathbb{R}$ by

$$u(x) = \sup_{v \in S_g} v(x), \qquad x \in \Omega.$$

We call a subharmonic function $\varphi \in C(\Omega)$ a *barrier at* $z \in \hat{\partial}\Omega$ if $\varphi(x) \to 0$ as $\Omega \ni x \to z$, and $\sup_{\Omega \setminus B_{\delta}(z)} \varphi < 0$ for each $\delta > 0$.

- (a) Show that if g is bounded, then u is well-defined.
- (b) Prove that if u is well-defined, then $\Delta u = 0$ in Ω .
- (c) Supposing that u is well-defined, prove that if there is a barrier at $z \in \partial \Omega$ and if g is continuous at z, then $u(x) \to g(z)$ as $\Omega \ni x \to z$.

Date: Fall 2012.

DUE THURSDAY NOVEMBER 8

- (d) Establish an analogue of the exterior sphere condition at ∞ .
- 3. (a) Why is the existence of a barrier for any specific point on the boundary $\partial\Omega$ of a domain Ω a local property of that point? In other words, if $z \in \partial\Omega$ is regular for the Dirichlet problem on Ω , and if Ω' is a domain that coincides with Ω in a neighbourhood of z (hence in particular $z \in \partial\Omega'$), then can you conclude that z is also regular for the Dirichlet problem on Ω' ?
 - (b) Show that in the plane the Dirichlet problem is solvable for continuous boundary values if the domain can be touched at any of its boundary points by one end of a straight line segment, however short, having no other point in common with the domain.
 - (c) Prove Zaremba's criterion: A boundary point z of a domain $\Omega \subset \mathbb{R}^n$ is regular if z is the vertex of a finite right circular cone, however small, which has no point in common with Ω . Take n = 3 if you prefer.
- 4. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, and let $\beta > 0$. For a given function f on Ω , define its *Riesz potential* by

$$(P_{\beta}f)(x) = \int_{\Omega} \frac{f(y) \, \mathrm{d}y}{|x-y|^{n-\beta}},$$

whenever it makes sense. Note that $\beta = 2$ corresponds to the Newtonian potential. (a) Prove that

$$||P_{\beta}f||_{L^{q}(\Omega)} \leq C||f||_{L^{p}(\Omega)}, \qquad f \in L^{p}(\Omega),$$

for some constant C > 0, if $1 \le p \le \infty$ and $1 \le q \le \infty$ satisfy $n - \beta p < np/q$.

- (b) Using this result, investigate the question $P_2 f \in C^1(\Omega)$ for $f \in L^p(\Omega)$.
- (c) Prove that if f is compactly supported and Dini continuous in \mathbb{R}^n , then its *Riesz* transform

$$(R_i f)(x) = \lim_{\varepsilon \searrow 0} \int_{|y-x| > \varepsilon} \frac{x_i - y_i}{|x-y|^{n+1}} f(y) \, \mathrm{d}y$$

is continuous in \mathbb{R}^n .

(d) Let K and K' be compact sets such that K is contained in the interior of K', and that $K' \subset \Omega$. Prove that

$$||P_2 f||_{C^{2,\alpha}(K)} \le C ||f||_{C^{0,\alpha}(K')}, \qquad f \in C^{0,\alpha}(K'),$$

where C > 0 is a constant and $0 < \alpha < 1$.

- (e) Let $\Delta u = f$ in Ω and u = 0 on $\partial \Omega$, with $f \in C^{0,\alpha}(\Omega)$. Show that $u \in C^{2,\alpha}(K)$ for any compact $K \subset \Omega$.
- 5. Let $\Omega \subset \mathbb{R}^n$ and let $\alpha > 0$. Recall that the Hölder space $C^{0,\alpha}(\Omega)$ is the space of functions $u \in C(\Omega)$ for which the Hölder norm

$$||u||_{C^{0,\alpha}(\Omega)} := \sup_{x \in \Omega} |u(x)| + \sup_{x,y \in \Omega} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

is finite. We know that $C^{0,\alpha}(\Omega)$ is a Banach space.

- (a) Show that $C^{0,\alpha}(\Omega)$ consists of only constants if $\alpha > 1$.
- (b) Show that $C^1(\mathbb{R})$ is not dense in $C^{0,\alpha}(\mathbb{R})$ for any $0 < \alpha \leq 1$.

- (c) Prove that for any $u \in C^{0,\alpha}(\mathbb{R}^n)$, there exists a sequence $\{u_i\} \subset C^{\infty}(\mathbb{R}^n)$ such that $u_j \to u$ uniformly and $||u_j||_{C^{0,\alpha}}$ uniformly bounded.
- 6. Let $\Omega \subset \mathbb{R}^n$ be an open set, let $k \geq 0$ be an integer, and let $1 \leq p \leq \infty$. Then the Sobolev space $W^{k,p}(\Omega)$ by definition consists of those $u \in \mathscr{D}'(\Omega)$ such that $\partial^{\alpha} u \in L^p(\Omega)$ for each α with $|\alpha| \leq k$. Equip it with the norm

$$||u||_{W^{k,p}(\Omega)} = N(\{||\partial^{\alpha}u||_{L^{p}(\Omega)} : |\alpha| \le k\}),$$

where N is a norm on the finite dimensional space $\{\lambda_{\alpha} \in \mathbb{R} : |\alpha| \leq k\}$.

- a) Show that the topology of $W^{k,p}(\Omega)$ does not depend on the choice of N.
- b) Show that $W^{k,p}(\Omega)$ is a Banach space for any k > 0 and 1 .
- c) Prove that $\mathscr{D}(\mathbb{R}^n)$ is a dense subspace of $W^{k,p}(\mathbb{R}^n)$, for any $k \geq 0$ and $1 \leq p < \infty$.
- 7. Recall that the Sobolev inequality

$$\|u\|_{L^q} \le C \|u\|_{W^{1,p}}, \qquad u \in \mathscr{D}(\mathbb{R}^n), \tag{1}$$

- with some constant C = C(p,q), is valid when $1 \le p \le q < \infty$, and $\frac{1}{p} \le \frac{1}{q} + \frac{1}{n}$. a) By way of a counterexample, show that the inequality (1) fails whenever q < p.
- b) Show that (1) fails when $\frac{1}{p} > \frac{1}{q} + \frac{1}{n}$.
- c) Show that (1) fails for p = n and $q = \infty$ when $n \ge 2$.
- d) Derive sufficient conditions on the exponents p, q, k, m under which the inequality

$$||u||_{W^{m,q}} \le C ||u||_{W^{k,p}}, \qquad u \in \mathscr{D}(\mathbb{R}^n),$$

is valid.