MATH 580 ASSIGNMENT 2

DUE THURSDAY OCTOBER 11

1. Let X and Z be Banach spaces, and let $U \subset X$ be an open set. Then a mapping $f: U \to Z$ is called *Fréchet differentiable* at $x \in U$ if

$$f(x+h) = f(x) + \Lambda h + o(||h||), \quad \text{as} \quad X \ni h \to 0,$$

for some bounded linear operator $\Lambda : X \to Z$. We call $Df(x) = \Lambda$ if it exists, the *Fréchet derivative* of f at x. Prove the followings.

- a) The *inverse function theorem*: Suppose that Df exists and is continuous in U, and that Df(x) is invertible. Then there is an open neighbourhood of x on which f is invertible. *Hint*: Given $z \in Z$ close to f(x), consider the map $\phi : U \to X$ defined by $\phi(y) = y + [Df(x)]^{-1}(z f(y))$.
- b) The implicit function theorem: Let X, Y and Z be Banach, and with A ⊂ X × Y an open set, let g : A → Z be a continuously differentiable mapping. Moreover, assume that the point (a, b) ∈ A has the property that g(a, b) = 0 and that D_yg(a, b) is invertible, where D_yg(x, y) is the Fréchet derivative of y → g(x, y), with fixed x. Then there is an open set U ⊂ X and a function h : U → Y with h(a) = b, such that g(x, h(x)) = 0 for all x ∈ U. Hint: Consider the function f(x, y) = (x, g(x, y)).
 c) In a), prove that the inverse f⁻¹ is C¹. You can take X = Y = ℝⁿ if you prefer.
- 2. Let X be a Banach space, and with $U \subset X$ open, let $f: U \to X$ be a locally Lipschitz
- map, which means that f is Lipschitz on any closed bounded subset of U. Consider the initial value problem

$$u'(t) = f(u(t)), \qquad u(0) = x \in U.$$
 (1)

- a) Prove that for any $x \in U$ there exists a unique maximal solution $u: (a, b) \to U$ to (1), and if $b < \infty$ then u(t) leaves any closed bounded subset of U as $t \nearrow b$.
- b) Extend the above result to *nonautonomous* problems, where $U \subset X \times \mathbb{R}$ is open, $f: U \to X$ is locally Lipschitz, and the problem is replaced by

$$u'(t) = f(u(t), t), \qquad u(t_0) = x, \quad \text{with} \quad (x, t_0) \in U.$$

- c) Prove a theorem that makes sense of the following: If f depends on a parameter continuously, then the solution to (1) depends on that parameter continuously.
- d) In a), prove that u is C^2 if f is C^1 . You can take $U = X = \mathbb{R}^n$ if you prefer.

 $Date: \ {\rm Fall} \ 2012.$

3. Prove that the Lorenz system

$$\begin{cases} x' = \sigma(y - x) \\ y' = x(\rho - z) - y \\ z' = xy - \beta z \end{cases}$$

where σ , ρ , and β are positive parameters, is globally well-posed, meaning that for any given initial data, a unique solution exists for all time $t \in \mathbb{R}$, which depends continuously on the initial data.

4. Consider the equation

$$xyu_x + (2y^2 - x^6)u_y = 0, \qquad x > 0, \ y > 0.$$

Determine and sketch the characteristics. For n = 1, 2, 3, and $\alpha > 0$, consider the initial condition

$$u(x, \alpha x^n) = x^2$$

For which $\alpha > 0$ does the problem have a solution? Give an explicit expression for the solution. For which $\alpha > 0$ is the solution uniquely determined?

5. Consider the quasilinear first-order evolution equation

$$\partial_t u(t,x) + \sum_{i=1}^n \alpha_i(t,x,u(x,t))\partial_i u(t,x) = \alpha_{n+1}(t,x,u(t,x)), \tag{2}$$

where α_i , i = 1, ..., n + 1, are C^1 functions of the n + 2 variables (t, x, u). We impose the initial condition

$$u(0,x) = g(x),$$

with a C^1 function g.

a) Suppose that $\gamma(t,\xi)$ is a function with values in \mathbb{R}^{n+1} , satisfying

$$\partial_t \gamma(t,\xi) = \alpha(t,\gamma(t,\xi)), \qquad \gamma(0,\xi) = (\xi,g(\xi)), \qquad \xi \in \mathbb{R}^n.$$

Show that if u solves (2) with the initial condition g, then

$$u(t, \hat{\gamma}(t, \xi)) = \gamma_{n+1}(t, \xi),$$

where $\hat{\gamma} = (\gamma_1, \ldots, \gamma_n).$

b) Prove a local existence theorem for the initial value problem for (2).6. Consider the initial value problem

$$u_t + uu_x = u^2$$
, $u(x, 0) = g(x)$.

Prove that a solution u satisfies

$$u(x,t) = \frac{g(\xi)}{1 - tg(\xi)},$$
 with $x = \xi - \log(1 - tg(\xi)).$

Prove that if $g \in C^1(\mathbb{R})$ and $||g||_{\infty,\mathbb{R}} + ||g'||_{\infty,\mathbb{R}} < \infty$, then there exists T > 0 such that the initial value problem has a unique C^1 solution defined on $\mathbb{R} \times (-T, T)$. Show that

 $\mathbf{2}$

if g is given by

$$g(x) = \begin{cases} 1, & x \le 0, \\ 1 - x, & 0 \le x \le 1, \\ 0, & x \ge 1, \end{cases}$$

then not only we have the issues caused by the multi-valuedness, but also that $u(x,t) \rightarrow \infty$ for x < 0 as $t \rightarrow 1$.

7. Consider the problem

$$u_t + h(u)u_x = 0, \qquad (x,t) \in \mathbb{R} \times \mathbb{R}_+, u(x,0) = g(x), \qquad c \in \mathbb{R},$$
(3)

where $h \in C^{\infty}(\mathbb{R})$ and $g \in C^{1}(\mathbb{R})$.

- a) Determine a condition on g and h so that (3) has a unique C^1 solution u on $\mathbb{R} \times [0, T]$ for some T > 0 small enough.
- b) What is the least upper bound T_c on T?
- c) In the case we cannot expect that all solutions remain C^1 we need to introduce the concept of weak solutions. Give a definition of weak solutions to (3).
- d) Derive the equivalent of the Rankine-Hugoniot jump conditions for (3).