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Abstract

This report will deal with content of Yau’s article, Harmonic Functions
on Complete Riemannian Manifolds.
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1 Introduction

We may classify open Riemann surfaces by properties of curvature by whether
or not there exists a non-constant, bounded harmonic function on the surface.
We will deal with higher-dimensional manifolds of non-negative Ricci curvature.
Yau shows in his paper that for a complete Riemannian manifold M, with Ricci
curvature bounded from below, we can find an upper bound on the absolute
value of the gradient of f. In the case of harmonic functions, the constant in-
volved in the bound is simply given by

√
(dimM − 1)K, where -K is the lower

bound for the Ricci curvature of M. The inequality that Yau proves in his ar-
ticle can be thought of as an infinitesimal form of the Harnack inequality. We
approach this result by first showing a generalized maximal principle and then
using gradient estimates to achieve an upper bound, as desired.

The Harnack inequality that we have seen in class deals with functions on
Rn and states that for harmonic, non-negative function u ∈ C2(Ω) such that
cl(BR(y)) ⊂ Ω with R > 0, and x ∈ BR(y):

u(x) ≤ (
R

R− |x− y|
)nu(y) (1)

What the inequality does is relate the value of u on some point in the ball
centered at y with the value of u(y). Now, we wish to establish an analogue
of the Harnack inequality on a manifold M with Ricci curvature bounded from
below. The main result will be in showing that for all harmonic functions f
bounded from below, we have

|∇f(x)| ≤ C(f(x)− infMf) (2)

Using this, we can see that for x, y ∈ V ⊂M ,

f(x)− f(y) ≤
∫ `

0

< σ′(t),∇f(t) > dt

≤
∫ `

0

|σ′(t)||∇f(t)|dt

≤ `supV |∇f |
≤ Cdiam(V )(supV f − infMf)

(3)

Suppose f is non-negative on M , then the previous inequality gives us

supV f − infV f ≤ Cdiam(V )(supV f) (4)

and hence, supV f ≤ infV f
1−Cdiam(V ) whenever diam(V ) < 1/C which is clearly a

form of Harnack’s inequality.
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Before we proceed, note that the Laplacian on a manifold with Riemannian
metric gi,j , is defined as

∆f = gi,jDiDjf (5)

where gi,j is the inverse of gi,j and Di is the covariant derivative in the direction
of the xi coordinate.

2 A Generalized Maximal Principle

Lemma 1. Let M be an n-dimensional Riemannian manifold. Let x ∈M be a
point which can be joined to p by a minimal geodesic. Then if x is not on the
cut locus of p, we have

∆γ(x) ≤ K(x)

= min0≤k≤`
n− 1

`− k
− 1

(`− k)2

∫ `

0

(t− k)2Ric(N)dt
(6)

Proof. Let σ : [0, `]→ M be the minimal geodesic of length l = γ(x) from p
to x, and Ji the unique Jacobi fields vanishing at σ(0) such that Ji(l) = Ei(l),
where E1, E2, . . . , En−1, N = σ′ form a parallel field along σ. Firstly, we need
to show that,

0 = ∂Ji < N, Ji >=< DJiN, Ji > − < DJiJi, N > (7)

∂N < N, Ji > = ∂t < N, Ji >

=< DNN, Ji > + < N,DNJi >
(8)

Now, < DNN, Ji >= 0, so

< DNN, Ji > + < N,DNJi > =< N,DNJi >

∂t < N,DN , Ji > =< DNN,DNJi > + < N,DNDNJi >

=< N,DNDNJi >

=< R(Ji, N)N,N >

= 0

(9)

Since < Ji(0), N >= 0 and < Ji(l), N >= 0 since Ji(l) = Ei which is orthogonal
to N. Thus, < N, Ji > does not change with respect to N and its second deriva-
tive is 0. This means that < N, Ji > is identically 0 on [0, `]. A straightforward
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computation then yields:∫ `

0

Σn−1i=1 < DNJi, DNJi > − < R(N, Ji)Ji, N > dt

=

∫ `

0

Σn−1i=1 < DNJi, DNJi > + < R(N, Ji)N, Ji > dt

=

∫ `

0

Σn−1i=1 < DNJi, DNJi > + < DNDNJi, Ji > dt

=

∫ `

0

Σn−1i=1 ∂N < DNJi, Ji > dt

=

∫ `

0

Σn−1i=1 ∂t < DJiN, Ji > dt

= −
∫ `

0

Σn−1i=1 ∂t < DJiJi, N > dt

= −Σn−1i=1 < DEi
Ei, N >

= −Σn−1i=1 ∂DEi
Ei
γ

= ∆γ

(10)

and hence, we have

∆γ(x) =

∫ `

0

Σn−1i=1 < DNJi, DNJi > − < R(N, Ji)Ji, N > dt (11)

Now let f(t) be any piecewise smooth function defined on [0, `] such that f(0) =
0 and f(`) = 1. Using the fundamental inequality of the index form we have
that∫ `

0

Σn−1i=1 < DNJi, DNJi > − < R(N, Ji)Ji, N > dt

≤
∫ `

0

Σn−1i=1 < DNf(t)Ei, DNf(t)Ei > − < R(N, f(t)Ei)f(t)Ei, N > dt

(12)

For 0 ≤ k ≤ `, we define f to be zero for 0 ≤ t ≤ k and (t− `)/(`− k) for t ≥ k.
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Then, we have that:

∆γ ≤
∫ `

0

Σn−1i=1 < DNf(t)Ei, DNf(t)Ei > − < R(N, f(t)Ei)f(t)Ei, N > dt

≤
∫ `

0

(Σn−1i=0 (f ′(t))2)− (f(t))2Ric(N)dt

=

∫ `

0

(n− 1)(f ′(t))2 − (f(t))2Ric(N)dt

= (1/(`− k)2)(`− k)(n− 1)− (1/(`− k)2)

∫ `

0

(t− k)2Ric(N)dt

= (n− 1)/(`− k)− (1/(`− k)2)

∫ `

0

(t− k)2Ric(N)dt

(13)

And since this inequality holds for all k ∈ [0, `], it must also hold for the mini-
mum. Thus,

∆γ ≤ min0≤k≤`(n− 1)/(`− k)− (1/(`− k)2)
∫ `
0

(t− k)2Ric(N)dt
and we have shown the result for Lemma 1.

Corollary 1. Let M be a complete Riemannian manifold with Ricci curvature
bounded from below. Then, ∆γ is bounded uniformly from above when γ ≥ 1

Proof. Suppose the Ricci curvature is bounded below by a constant R and
γ(x) ≥ 1, then

K(x) ≤ min0≤k≤`−1(n− 1)/(`− k)− (1/(`− k)2)

∫ `

0

(t− k)2Rdt

= min0≤k≤`−1(n− 1)/(`− k)− (`− k)R/3

= (n− 1)−R/3

(14)

Thus, by Lemma 1, ∆γ(x) ≤ (n− 1)−R/3,∀x such that γ(x) ≥ 1.

Let us consider C2 function f defined on M and the graph Γ = {(f(x), x) :
x ∈ M}. Γ is a closed submanifold of the product space R×M with R being
the real line and M the manifold. The metric defined on Γ is the product metric.

Now, let us fix a point p ∈ M. Let us define pk = (k, p), where k ∈ N and
let gk be a segment of a geodesic from pk to the graph Γ and so the length
of gk represents the shortest distance curve joining pk and the graph Γ. Let
(f(qk), qk) be another end point of gk and let π(gk) be the projection of gk on
M with end points p and qk. Since gk was a minimal geodesic, its projection
π(gk) is also a minimal geodesic, since we have chosen the metric to be the
product metric.

Claim 1. The point qk is not a conjugate point of p along π(gk).
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Proof. If qk were a conjugate point of p along the projected geodesic π(gk), then
the point (f(qk), qk) would also be a conjugate point of p along gk. Representing
the arclength of gk by lk, for any ε > 0 chosen sufficiently small, there exists
a sphere centered at gk(lk + ε) with radius ε which touches the graph Γ at a
single point, gk(lk). If we assumed that (f(qk), qk) were a conjugate point of
pk along gk, then in a neighbourhood of gk there would exist another geodesic,
say g′k from pk to gk(lk + ε) of length < lk + ε. However, now if you let q′k be
the point of intersection of Γ and g′k, then the distance from pk to q′k is < lk,
contradicting the fact that gk was a minimal geodesic segment.

Call the neighbourhood of the geodesic π(gk) Nk such that π(gk) is the
unique minimal geodesic in Nk which joins p and gk. Let γk represent the
distance function on Nk that is smooth at x, since p and qk are not conjugate
points. Let us, for now, shift f such that f(p) = 0 and define:

Fk(x) = k −
√
l2k − γ2k (15)

The squared distance from (f(p), p) to (k, p) is given by k2 since f(p) = 0.
Then, we have that

(k − f(qk))2 + γk(qk)2 ≤ k2 (16)

Furthermore, again since (qk, f(qk)) is the closest point from pk to Γ, for any
x ∈M .

l2k ≤ (k − f(x))2 + γk(x)2 (17)

By the latter inequality and rearranging its terms, we see that f(x) ≤ Fk(x)
and at x = qk, we have that f(qk) = Fk(qk) since

Fk(qk) = k −
√
l2k − γk(qk)2

≤ k −
√

(k − f(qk)2

= f(qk)

(18)

Thus, qk is a local minimum for the function Fk(x)−f(x) since 0 ≤ Fk(x)−f(x)
∀x and equality holds at x = qk. Thus, the Laplacian at Fk(x)− f(x) at x = qk
should be greater than or equal to 0 since it is a local minimum.

∆(Fk(x)− f(x)) ≥ 0

∆f(qk) ≤ ∆Fk(qk)

= ∆(k −
√
l2k − γ2k)

=
∆γ2k(qk)

2(k − f(qk))
+
∇γ2∇γ2(qk)

4(k − f(qk)3)

≤ γk(qk)∆γk(qk)

k − f(qk)
+

1

k − f(qk)
+

(γk(qk)2

(k − f(qk)3

(19)
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By the result of Lemma 1, we can replace ∆γk(qk) by K(qk) with an inequality
to get:

∆f(qk) ≤ γk(qk)K(qk)

k − f(qk)
+

1

k − f(qk)
+

(γk(qk)2

(k − f(qk)3
(20)

We also have that since f(p) = 0, f(qk) ≥ 0 = f(p). A straightforward compu-
tation then gives that

∆f(qk) ≤ (K(qn) +
1

γ(qk)
)(

2f(qk)

γ(qk)(1− f(qk)/k)
+

1

γ(qk)
(

2f(qk)

γ(qk)(1− f(qk)/k))
)3

(21)
Suppose function f satisfies,

limsupγ(x)→∞
f(x)− f(p)

γ(x)
<∞ (22)

Then, we may find an appropriate scale factor a such that

supγ(x)≥δ
a(f(x)− f(p))

γ(x)
< ε (23)

where δ = liminfk→∞γ(qk) which exists unless γ(qk) = 0∀k. Letting dk =
f(qk)/γ(qk), choosing a small enough and taking ε ≤ 1/6, we get:

∆af(qk) ≤ (K(qn) +
1

γ(qk)
)(

2af(qk)

γ(qk)(1− af(qk)/k)
) +

1

γ(qk)
(

2af(qk)

γ(qk)(1− af(qk)/k))
)3

∆f(qk) = (K(qn) +
1

γ(qk)
)(

2f(qk)

γ(qk)(1− af(qk)/k)
) +

1

γ(qk)
(

2f(qk)

γ(qk)(1− af(qk)/k))
)3

≤ (K + 1/γ)(
2

1− af
)dk +

a2

γ
dk
f2

γ2
(

2

1− af
)3

≤ (K + 1/γ +
4

γ
ε2(1− ε)−2)(2dk(1− ε)−1)

≤ (K +
1 + ε

γ
)(

2dk
1− ε

)

(24)

Observe that since qk is a local minimum of the function Fk(x)−f(x), ∇f(qk) =
∇Fk(qk), we get

|∇f(qk)| = |∇Fk(qk)| = γ(qk)

a(k − af(qk)

≤ 2dk
1

a(1− af(qk)/k)

≤ 2dk
a(1− ε)

(25)

Claim 2. For all x ∈ M , for all δ > 0, there exists a point qk in our sequence
such that f(qk) ≥ f(x)− δ.
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Proof. Let us assume that there exists δ > 0 such that

f(x) > limsupk→∞f(qk) + δ (26)

Then, for any k sufficiently large,

δ(2k − f(x)− f(qk)) + γ(qk)2 − γ(x)2 > 0

(f(x)− f(qk))(2k − f(x)− f(qk)) + γ(qk)2 − γ(x)2 > 0

2f(x)k − f(x)2 − f(x)f(qk)− 2f(qk)k + f(x)f(qk) + f(qk)2 + γ(qk)2 − γ(x)2 > 0

(k − f(x))2 + γ(x)2 < (k − f(qk))2 + γ(qk)2

(27)

This, however, contradicts the choice of qk as having minimized the quantity on
the right-hand side which equals to l2k.

If there exist infinitely many values of γ(qk) such that γ(qk) ≤ 1, then on
this compact set, f must attain its supremum at one of the limit points of the
qk. Thus, we have proven the following theorem.

Theorem 1. Let f be a C2-function defined on a complete Riemannian mani-
fold. Suppose

limsupγ(x)→∞
f(x)− f(p)

γ(x)
<∞ (28)

Then either f attains its supremum at some point with γ(x) ≤ 1 or, for all
ε ∈ (0, 1), we can find a sequence {qk} in M such that γ(qk) ≥ 1 and the
following hold, where dk = (f(qk)− f(p))/γ(qk).

limk→∞f(qk) = supf

| 4 f(qk)| ≤ 2dk
a(1− ε)

∆f(qk) ≤ (K(qk) +
1 + ε

γ(qk)
)

2dk
1− ε

(29)

Corollary 2. Suppose in Theorem 1

limsupγ(x)→∞
f(x)− f(p)

γ(x)
≤ 0

limsupγ(x)→∞,f(x)≥f(p)
K(x)(f(x)− f(p))

γ(x)
= 0

(30)

Then, there are points {qk} ⊂M such that limk→∞f(qk) = supf , limk→∞∇f(qk) =
0 and limsupk→∞∆f(qk) ≤ 0.

Proof. Suppose limsupk→∞γ(qk) =∞. Then, Corollary 2 follows by taking the
limsup of both sides of the inequalities in Theorem 1. Otherwise, f(x) attains
its supremum at some point q′. In this case, we may simply choose p = q′ and
the inequalites hold.
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Let X : M → RN be a proper isometric immersion of a complete Riemannian
manifold into some Euclidean space of dimension N. Let the distance function
be given simply by the Euclidean distance function restricted to M that is,
γ(x) = ||X(x)−X(p)||.

Claim 3. Let H represent the mean curvature vector of M, then

|∇γ| ≤ 1

γ∆γ + |∇γ|2 = n+ n < H,X(x)−X(p) >
(31)

Proof. Using the fact thatHn =
∑
i,j g

i,j∆i∆jX and that< DiX(x), DjX(x) >
is the first fundamental form and thus given by gi,j , where the product of∑
i,j g

i,jgi,j = trace(In), we have

∆(γ2) = 2γ∆(γ) + 2(∇γ)2

= 2γ∆(γ) + 2(∇γ)2

= ∆(< X(x)−X(p), X(x)−X(p) >)

=
∑
i,j

gi,jDiDj(< X(x)−X(p), X(x)−X(p) >)

= 2
∑
i,j

gi,jDi < DjX(x), X(x)−X(p) >

= 2
∑
i,j

gi,j(< DiDjX(x), X(x)−X(p) > + < DjX(x), DiX(x) >)

= 2
∑
i,j

gi,j < DiDjX(x), X(x)−X(p) > +2gi,j

= 2 < Hn,X(x)−X(p) > +2n

(32)

Now, let f be any C2− function which is bounded from above on M. Let us
define, for all k > 0,

g(x) =
f(x)− f(p) + 1

[log(γ2(x) + 2)]k
(33)

It is clear that g(p) = 1/(log2)k and that the limit of g(x) as γ(x) → ∞ is 0.
Thus, g must attain its supremum at some point xk ∈M . So,

g(xk) = supg(x)

∇g(xk) = 0

∆g(xk) ≤ 0

(34)

A straightforward computation, that can be found in Yau’s original article,
shows the above.
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Theorem 2. Let M be a complete, properly immersed submanifold of some
Euclidean space. Let f be any C2-function which is bounded above on M. Then
there exists a sequence of points {xk} in M such that

limsupk→∞f(xk) = supf

|∇f | ≤ 2(f(xk)− f(p) + 1)γ(xk)

k(γ2(xk) + 2)log(γ2(xk) + 2)

∆f(xk) ≤ 2n(f(xk)− f(p) + 1)

k(γ2(xk) + 2)log(γ2(xk) + 2)
[1+ < H,X(xk)−X(p) >]

− 4γ2(f(xk)− f(p) + 1)

k(γ2(xk) + 2)log(γ2(xk) + 2)
(35)

3 Gradient Estimates of Partial Differential Equa-
tions on a Riemannian Manifold

In this section, we will state results from Yau’s article which were obtained by
applying Corollary 2 on the function

g(x) = −f(x) + b− inff√
|∇f |2 + a

(36)

where a and b are small positive constants. This allows us to obtain a nega-
tive upper bound, -C, on the supremum of g which then yields the following
theorems.

Theorem 3. Let M be a complete Riemannian manifold with Ricci curvature
bounded from below by a constant -K. Let f be a C2-function bounded from below
on M such that, for positive constants Ci,

|∆f | ≤ Ci| 4 f |+ C2(f − inff) + C3

|∇(∆f)| ≤ C4

√∑
i,j

f2i,j + C5|∇f |+ C6(f − inff) + C7
(37)

Then, for any constant b such that b+inf f > 0, there exists a constant C that
depends only on b, K, dimM, and the Ci such that

|∇f | ≤ C(f − inff) (38)

From the above theorem, we see that for harmonic functions, the Ci are all
zero and we have the following theorem. In particular, this gives us the result
we discussed in the introduction.

Theorem 4. Let M be an n-dimensional complete Riemannian manifold with
Ricci curvature bounded from below by -K. Let f be a harmonic function bounded
from below on M. Then,

|∆f | ≤
√

(n− 1)K(f − inff) (39)

10



Corollary 3. Let M be a complete Riemannian manifold with non-negative
Ricci curvature. Then every positive harmonic function on M is a constant.

Corollary 4. Let B be the open unit ball in an n-dimensional Euclidean space.
Let f be a harmonic function which is bounded from below on B. Then there is
a constant C, depending only on n, such

|∇f |(x) ≤ C(f(x)− inff)

1− |x|2
(40)

Corollary 5. Let M be a complete Riemannian manifold with Ricci curvature
bounded from below. Let H be a smooth function defied on M such that both
—H— and |∇H| are uniformly bounded. If the equation ∆f = Hf has a smooth
positive solution, then, for any sequence of domains {Di} of M with smooth
boundaries {∂Di} and limi→∞(V ol(Di)/V ol(∂Di)) =∞, we have

limi→∞
1

V ol(Di)

∫
Di

H ≥ 0 (41)
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