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We reconsider the symmetry analysis of a modified system of one-dimensional shallow-water equa-
tions (MSWE) recently studied by T. Raja Sekhar and V.D. Sharma [Commun. Nonlinear Sci.
Numer. Simulat. 20 (2012) 630–636]. Only a finite dimensional Lie-subalgebra of the MSWE was
found in the aforementioned paper, in fact that subalgebra is infinite dimensional. We show that
the MSWE can be linearized using a hodograph transformation. An optimal list of inequivalent
one-dimensional subalgebras of the maximal Lie invariance algebra is constructed and used for Lie
reduction. Non-Lie solutions are found by extending suitable solutions of the linearized modified
shallow-water equations to solutions of the original system.

1 Introduction

The computation of exact solutions of nonlinear systems of partial differential equations remains
an important task, despite the increased interest in the numerical simulations of such differential
equations. Exact solutions are crucial, for instance, in the testing of numerical methods as well
as in the analytical study of the associated partial differential equations.

Finding exact solutions remains rather challenging, unless the equations of interest belong to
a category for which well-known solving methods exist. However, in general, the most we can do
is to obtain particular solutions. Particular solutions, albeit often simple, can be of great help
to gain understanding and insight into the principal dynamics of such systems of equations.

One way to obtain exact solutions of differential equations is through the study of their Lie
symmetries (see e.g. [?, 10, 22] for a discussion on non-Lie methods for finding exact solutions).
Lie symmetries and related computational methods for group-invariant solutions of system of
differential equations is a well investigated subject. The current paper concerns itself with a
hydrodynamical problem. Relevant results on symmetries and exact solutions can be found e.g.
in the textbooks [1, 2, 9, 19,22,24,25] and in the papers [3, 12,14–16,20,21,27].

The recent paper [30] intended to find Lie symmetries and exact solutions of the following
system of one-dimensional shallow-water equations:

∆1 := ut + uux + g

(
1 +

H

h

)
hx = 0, ∆2 := ht + uhx + hux = 0, (1)

where u is the fluid velocity in x-direction, h is the height of the water column, and g and H
are constants related to the gravity acceleration and momentum transport, respectively. The
constant g can be scaled to g = 1 by an equivalence transformation. In the case of H = 0, this
system reduces to the usual form of the one-dimensional shallow-water equations.

We found a number of incorrect and incomplete results in [30], which is why we reconsider
the symmetry analysis of the system (1). Our main concern was that in (1) some of the invariant
“solutions” that were found were not solutions. Moreover, the symmetry algebra is supposed to
be infinite dimensional although in [30] it was found to be finite dimensional.
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This sits ill with the fact that the system (1) can be linearized via a hodograph transformation
and thus should display an infinite dimensional maximal Lie invariance algebra.

Another problem with the Lie reductions carried out in (1) is that no optimal list of in-
equivalent subalgebras was determined, which should be the base for an efficient computation of
group-invariant solutions. As a consequence, the exact solutions found in [30] are in an overly
complicated form.

The structure of this paper is as follows:
In section 2 we compute the Lie symmetries admitted by system (1). We find an infinite

dimensional maximal Lie invariance algebra and compare it to the algebra found in [30] which
is only finite dimensional. We indicate how the modified shallow-water equations are linearized
through a hodograph transformation.

In section 3 we classify inequivalent one-dimensional subalgebras of the infinite dimensional
maximal Lie invariance algebra of the modified shallow-water equations. The classification of
inequivalent one-dimensional subalgebras of the symmetry algebra found in [30] is also given.

In section 4 we construct the group-invariant solutions based on the optimal system found in
Section 3. We also determine non-Lie solutions of the modified shallow-water equations through
solutions of the linearized modified shallow-water equations.

The results obtained are summed up in the final Section 5.

2 Lie symmetries of the system
of modified shallow-water equations

In this section, we compute the maximal Lie invariance algebra g of the system (1). This is done
by determining the coefficients of the general infinitesimal generator

Q = τ(t, x, u, h)∂t + ξ(t, x, u, h)∂x + η(t, x, u, h)∂u + φ(t, x, u, h)∂h,

of a one-parameter Lie symmetry group. These coefficients are found using the infinitesimal
invariance criterion, which in the present case reads

Q(1)∆1 = 0, Q(1)∆2 = 0, (2)

where this equality has to hold on the manifold defined by ∆1 = 0 and ∆2 = 0. In this last
system, Q(1) denotes the first prolongation of the operator Q, which is of the form

Q(1) = Q+ ηt∂ut + ηx∂ux + φt∂ht + φx∂hx

where the coefficients are given by

ηt = Dt(η − τut − ξux) + τutt + ξutx, ηx = Dx(η − τut − ξux) + τutx + ξuxx,

φt = Dt(φ− τht − ξhx) + τhtt + ξhtx, φx = Dx(φ− τht − ξhx) + τhtx + ξhxx,
(3)

they follow from the general prolongation formula, see e.g. [2, 9, 10, 24, 25]. The total derivative
operators Dt and Dx arising in the expression of the coefficients ηt, ηx, φt and φx of the prolonged
operator Q(1) are given by

Dt = ∂t + ut∂u + ht∂h + utt∂ut + htt∂ht + utx∂ux + htx∂hx + · · · ,
Dx = ∂x + ux∂u + hx∂h + utx∂ut + htx∂ht + uxx∂ux + hxx∂hx + · · · .
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Explicitly, the infinitesimal invariance criterion (2) reads

ηt + uηx + ηux +

(
1 +

H

h

)
φx − H

h2
φhx = 0,

φt + uφx + ηhx + hηx + φux = 0.

Plugging the coefficients (3) into the above system, substituting ut = −(uux + (1 + H/h)hx)
and ht = −(uhx + hux) wherever they arise and splitting the resulting equations with respect
to powers of the derivatives of u and h, we derive the following system of determining equations
for coefficients of the vector field Q,

ξu − uτu + hτh = 0,

ξh − uτh +

(
1 +

H

h

)
τu = 0,

H

h2
φ−

(
1 +

H

h

)
(τt − ξx − ηu + φh + 2uτx) = 0,

φ+ h(τt − ξx + ηu − φh + 2uτx) = 0,

η − hηh + u(τt − ξx)− ξt + u2τx +

(
1 +

H

h

)
(φu + hτx) = 0,

η + hηh + u(τt − ξx)− ξt + u2τx −
(

1 +
H

h

)
(φu − hτx) = 0,

ηt + uηx +

(
1 +

H

h

)
φx = 0,

φt + uφx + hηx = 0.

(4)

This system has two inequivalent solutions, depending on whether H 6= 0 or H = 0.
If H 6= 0, the system of determining equations (4) yields the solution

τ = c1t+ f(u, h), ξ = c1x+ c2t+ g(u, h), η = c2, φ = 0,

where c1, c2 ∈ R and the functions f and g run through the set of solutions of the system

gu − ufu + hfh = 0, gh − ufh +

(
1 +

H

h

)
fu = 0. (5)

If H = 0, system (1) reduces to the usual one-dimensional shallow-water equations for which
the solution of the determining equations (4) is

τ = c1t+ c4(2x− 6tu) + f(u, h), ξ = c1x+ c2t+ c3x+ c4t(6h− 3u2) + g(u, h),

η = c2 + c3u+ c4(u
2 + 4h), φ = 2c3h+ 4c4uh,

where c1, . . . , c4 ∈ R and the functions f and g run through the set of solutions of the system (5)
in which H = 0. They give rise to the vector fields

C1 = t∂x + ∂u

C2 = t∂t + x∂x

C3 = 2h∂h + u∂u − t∂t
C4 = 4hu∂h + (4hg + u2)∂u + (−6ut+ 2x)∂t + (6hgt− 3u2t)∂x

L(f, g) = f(u, h)∂t + g(u, h)∂x.

This case is well investigated [references] and so we will concentrate on H 6= 0.
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When H 6= 0 one subsequently finds that the maximal Lie invariance algebra g of system (1)
is infinite dimensional and spanned by the vector fields

D = t∂t + x∂x, G = t∂x + ∂u, L(f, g) = f(u, h)∂t + g(u, h)∂x. (6)

The first operator is associated with scaling symmetries in t and x and the second operator gives
rise to Galilean boosts. Similarly to the usual one-dimensional shallow-water equations [7, 18],
the operator L(f, g) indicates that system (1) can be linearized to system (5) by the hodograph
transformation in which f = t and g = x serve as the new unknown functions and u and h
become the new independent variables.

We have verified our computations, leading to the maximal Lie invariance algebra g, using
the package desolv for finding Lie symmetries [31].

Besides Lie symmetries, also discrete point symmetries of systems of differential equations
can be useful, especially in the classification of optimal lists of inequivalent subalgebras or the
construction of structure-preserving low-dimensional dynamical systems, see e.g. [5,8]. Discrete
point symmetries can be computed systematically using the direct method or, often more con-
venient, a version of the algebraic method proposed in [17] and refined in [6, 11] for systems
admitting infinite dimensional maximal Lie invariance algebras. In the present case, it is found
that system (1) admits two independent point symmetries (up to composition with continuous
symmetries), which are given by the pairwise alternation of signs in t, x and x, u, respectively.

Remark 1. In [30] the authors stated that the maximal Lie invariance algebra of system (1) is
generated by the four vector fields

∂t, ∂x, t∂x + ∂u, t∂t + x∂x.

Comparing this algebra, which we denote by g1, with the algebra (6), it is obvious that g1 is
only a subalgebra of g, the first two operators being special instances of the generator L(f, g),
for which f = const, g = 0 and f = 0, g = const, respectively. It is thus also missed in [30] that
system (1) can be linearized using a hodograph transformation.

In the following, we denote by G1 the subgroup of the maximal Lie invariance pseudogroup
G of the modified shallow-water equations (1) that is associated with the subalgebra g1 in [30].

3 Classification of subalgebras of the system
of modified shallow-water equations

The computation of exact solutions of system (1) was of central importance in [30]. This was
done with the method of group-invariant (or Lie) reduction. Unfortunately these reductions
were constructed without a classification of optimal lists of inequivalent subalgebras, which is
a common mistake. This topic is extensively discussed in e.g. [24, 25], where it is pointed out
that only group-invariant solutions stemming from inequivalent subalgebras of the maximal Lie
invariance algebra of a system of differential equations are guaranteed to be inequivalent. This
means that they cannot be related to each other by means of a symmetry transformation.

Hence, the first step in the construction of exact solutions of a system of differential equations
using Lie reduction should be the classification of subalgebras of appropriate dimensions. In the
present case, system (1) is a system in (1 + 1)-dimensions, so it is sufficient to carry out the Lie
reductions with respect to one-dimensional subalgebras of g, which then yield systems of ordinary
differential equations. In the following, we classify both subalgebras of the infinite dimensional
maximal Lie invariance algebra g and the subalgebra g1 found in [30], as no classification of
one-dimensional subalgebras of g1 was given in this paper.

The commutation relations between elements of g are

[D,G] = 0, [L(f, g),D] = L(f, g), [G,L(f, g)] = L(fu, gu− f), [L(f1, g1),L(f2, g2)] = 0,
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where the functions f1, g1 and f2, g2 are solutions of system (5). The four nonidentical adjoint
actions of the maximal Lie invariance pseudogroup G on the generating vector fields D, G and
L(f, g) then are

Ad(eεD)L(f, g) = eεL(f, g), Ad(eεL(f,g))D = D − εL(f, g),

Ad(eεG)L(f, g) = L(f ′, g′), Ad(eεL(f,g))G = G + εL(fu, gu − f),

where f ′ = f(u− ε, h) and g′ = (g(u− ε, h) + εf(u− ε, h)). For each pair of generating vector
fields (v,w0) of g, these adjoint actions can be computed either through the Lie series [24],

w(ε) = Ad(eεv)w0 :=

∞∑
n=0

εn

n!
(ad v)nw0,

or through a pushforward of the vector fields from g by elementary symmetry transformations
from the maximal Lie invariance pseudogroup G, see [4,13] for more details. The second method
is particularly suitable for computations involving infinite dimensional Lie algebras.

Now that we have the nonidentical adjoint actions at hand, we can proceed with the classifi-
cation of the one-dimensional subalgebras of g. To accomplish this classification, we start with
the most general element of a one-dimensional subalgebra from g,

v = aD + bG + L(f, g),

where a, b ∈ R and f and g are arbitrary but fixed functions of the system (5). We subsequently
simplify it as much as possible by applying the adjoint actions that we found previously. As the
classification is rather short, we will give it explicitly here.

(i) If a 6= 0, we can scale a = 1 and use the adjoint action Ad(eεL(f̃ ,g̃)) to cancel L(f, g)
from v. No further simplifications are possible and so the simplified form of v is v = D + bG.

(ii) For a = 0 and b 6= 0, we can set b = 1 and the adjoint action Ad(eεL(f̃ ,g̃)) can be used
again to cancel L(f, g), and thus v = G in this case.

(iii) The final one-dimensional subalgebra is spanned by v = L(f, g).

Collecting the results obtained, we have thus proved the following theorem.

Theorem 1. The optimal list of inequivalent one-dimensional subalgebras of the maximal Lie
invariance algebra g of the system of modified shallow-water equations (1) consists of the subal-
gebras

〈D + aG〉, 〈G〉, 〈L(f, g)〉,

where a ∈ R and f and g are arbitrary but fixed functions that are solutions of the system (5).

In principle, Theorem 1 tells us which subalgebras should be used for the Lie reductions of
system (1). At the same time it is useful to classify the subalgebra g1 found in [30], for which
no optimal system of one-dimensional subalgebras was given. This is a simple task, since the
classification of subalgebras of real four-dimensional Lie algebras has already been discussed in
the literature. See [23, 26, 28] for classifications of real low-dimensional algebras of dimensions
up to six. For Lie algebras of dimension higher than six exhaustive classification results exist,
provided that the Lie algebra possesses a special structure: see the review in [28] for more details.

In the present case, the algebra g1 is isomorphic to the algebra A0
4,8 in the classification [28],

the nilradical of which is 〈∂t, ∂x,G〉, which is isomorphic to the Heisenberg algebra. The one-
dimensional subalgebras of this algebra A0

4,8 can be presented as follows in a way suitable for
Lie reduction

〈D + aG〉, 〈G + δ∂t〉, 〈∂t + δ∂x〉, 〈∂x〉, (7)

where a ∈ R and δ ∈ {0, 1}.
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4 Exact solutions of the system
of modified shallow-water equations

We now present the associated Lie reductions obtained using the optimal list of one-dimensional
subalgebras of g given in Theorem 1. We solve the arising systems of ordinary differential
equations whenever possible.

(i) Subalgebra 〈D + aG〉. The reduction ansatz in this case is u = ũ(p) + a ln t, h = h̃(p),
where p = x/t− a ln t+ a is the new independent variable. Plugging this ansatz into system (1)
reduces the two equations to the system of nonlinear ordinary differential equations

a− pũ′ + ũũ′ +

(
1 +

H

h̃

)
h̃′ = 0, −ph̃′ + ũh̃′ + h̃ũ′ = 0,

where here and in the following a prime denotes the derivative with respect to p. As this equation
is still too complicated to be solved in closed form, one could resort to numerical integration for
finding a solution of the above nonlinear system and then extending the numerical solution to a
solution of the original modified shallow-water equations.

(ii) Subalgebra 〈G〉. The ansatz for Lie reduction in this case is u = ũ(p) + x/t, h = h̃(p),
where p = t. The system of modified shallow-water equations (1) then reduce to

ũ′ +
ũ

p
= 0, h̃′ +

h̃

p
= 0.

The solution of this system is ũ = c1/p and h̃ = c2/t, where c1, c2 ∈ R, giving rise to the Galilean
invariant solution

u =
x+ c1
t

, h =
c2
t

(8)

of the modified shallow-water equations (1).

(iii) Subalgebra 〈L(f, g)〉. For this algebra a suitable reduction ansatz is u = ũ(p), h = h̃(p),
where p = fx− gt. Implicitly differentiating this ansatz with respect to t and x and solving the
resulting algebraic system for the required derivatives ut, ux, ht and hx yields

ut = −gũp
D
, ux =

fũp
D

, ht = −gh̃p
D
, hx =

fh̃p
D

,

where the precise expression for D is not required. Plugging this ansatz into the modified
shallow-water equations leads to

−gũp + fũũp + f

(
1 +

H

h̃

)
h̃p = 0, −gh̃p + fũh̃p + fh̃ũp = 0,

where f = f(ũ, h̃) and g = g(ũ, h̃). The reduction with respect to the algebra 〈L(f, g)〉 includes
several physically relevant solution ansatzes. For example, in the case of f = 1 and g = const
(which obviously is a solution of the system (5) as required), the reduction ansatz coincides with
that of a traveling wave solution. Similarly, for f = const and g = 0 (or f = 0 and g = const)
we obtain the stationary (or space independent) reduced system. In the present case, all these
reduced equations admit only the constant solution u = c1 and h = c2 and thus are not of great
interest. Less trivial but implicit solutions can be found by choosing f and g in a way such that
they explicitly depend on u and h.

We now review succinctly the Lie reductions and results obtained in [30]. As noted in the
previous section, no optimal list of one-dimensional subalgebras of their algebra g1 was used to
systematically carry out reductions. This deficiency gave rise to overly complicated reduction
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ansatzes in [30]. As a consequence, these ansatzes could lead to solutions which in fact can be
mapped to each other using a symmetry transformation, i.e. that are equivalent.

Three Lie reductions were presented in [30]. The first reduction (Case Ia) is carried out with
respect to the algebra 〈a1D + a2G + a3∂x + a4∂t〉, where a1 6= 0. In view of our classification
results and the optimal system (7), it is obvious that this case is equivalent to our case (i), i.e.
the algebra 〈D + aG〉. Thus, the ansatz found in [30] should reduce to the ansatz presented
above for case (i) when a1 = 1 and a3 = a4 = 0. However, this is not the case. In fact, it can
be directly checked that the ansatz in [30] for this case is incorrect. The correct (but overly
complicated) ansatz for the algebra 〈a1D + a2G + a3∂x + a4∂t〉 would be

p =
a21x+ a1a3 − a2a4
a21(a1t+ a4)

− a2
a21

ln(a1t+ a4), u = ũ(p)− a2
a1

ln(a1t+ a4), h = h̃(p).

The second reduction (Case Ib) rests on the algebra 〈a2G + a3∂x + a4∂t〉. It is equivalent to
our case (ii), i.e. it is needless to assume a3 6= 0, a4 6= 0. However, it is crucial to point out
that one cannot put a4 = 0 using only the weaker equivalence relation imposed by the adjoint
action associated with the subgroup G1 of G on the subalgebra g1. This is why it is instructive
to compare the second case in the optimal list of subalgebras of the maximal Lie invariance
algebra g given in Theorem 1 with the second case in the optimal list of subalgebras of the
subalgebra g1 in (7) to each other. On the other hand, even with the adjoint action of G1 on
g1, it would be possible to set a3 = 0.

The last reduction (Case II) employs the algebra 〈a2G + a3∂x〉 for reduction. The associated
group-invariant solution is equivalent to our case (ii) i.e. it is again needless to assume a3 6= 0,
and the exact solution found in [30] can be obtained from the Galilean invariant solution (8)
through re-scaling of t and x and shifting of t.

To sum up, the three reductions carried out in [30] are either incorrect (Case Ia) or equivalent
to a solution that could be obtained from a simpler reduction ansatz (Case Ib and Case II). From
the more general point of view, if one would seek only reductions based on the subalgebra g1,
the optimal list (7) should be used to find the proper reduction ansatzes.

So far, we have not used the property that (1) is linearized to (5) by the hodograph trans-
formation. We now investigate the possibility of finding exact solutions of (5) that can be used
to obtain exact solutions of the initial system of modified shallow-water equations (1). To this
end, we start by combining the two equations of the system (5) to a single equation for f by
excluding g, which reads

2fh + hfhh −
(

1 +
H

h

)
fuu = 0. (9)

A solution for this equation can be found from the separation ansatz f = f1(u)f2(h), which
yields the following form for f ,

f =
1√
h

(
c1 sin

(√
c

H
u

)
+ c2 cos

(√
c

H
u

))(
c3Jb

(
2

√
c
h

H

)
+ c4Yb

(
2

√
c
h

H

))
,

where c 6= 0, c1, . . . , c4 ∈ R, Jb and Yb are the Bessel functions of the first and second kind,
respectively, and b =

√
1− 4c. As it is quite intricate to obtain the corresponding solution for

g from the system (5) using the above solution for f , we restrict ourselves to finding particular
solutions of system (5) following from simpler forms of f .

To give one example, let us set c = 3/16, c2 = c4 = 0. The above solution then reduces to

f =
c1

h3/4
sin

(√
c

H
u

)
sin

(√
4c
h

H

)
,
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and the solution for g from the system (5) becomes

g =
c1H

h5/4

(√
h

H
sin

(√
c
h

H

)(
1√
3

cos

(√
4c
h

H
u

)
+

+
u√
H

sin

(√
4c
h

H

))
+
h

H
cos

(√
c
h

H
u

)
cos

(√
4c
h

H

))
+ c2.

This solution cannot be solved for f = t and g = x in terms of u and h globally, but could
be solved (e.g. numerically) pointwise and would then yield a solution manifold for the original
modified shallow-water equations. This solution is obviously inequivalent to the group-invariant
solutions found above.

Another, somewhat simpler solution of Eq. (9) is

f = c1
u

h
+ c2

1

h
+ c3u+ c4

which, when we substitute it back into (5) yields the following solution for g,

g = c1

(
u2

h
+
H

h
− lnh

)
+ c2

u

h
+ c3

(
1

2
u2 −H lnh− h

)
+ c5

where again c1, . . . , c5 ∈ R. In the special case when c1 = c3 = c4 = c5 = 0, this solution becomes
the Galilean invariant solution (8) of the modified shallow-water equations found above. If all
the constants c1, . . . , c5 are non-zero, it is again impossible to solve the above solutions for f = t
and g = x globally in terms of u and h.

In the same way one could proceed to find particular solutions of the system (5) and then
extend them to solution of the original modified shallow-water equations. We will not pursue
this idea here further though.

5 Conclusion

In the present paper we have reconsidered the problem of studying the Lie symmetries of a system
of modified shallow-water equations (1) recently investigated in [30]. We have derived that the
maximal Lie invariance algebra of this system is in fact infinite dimensional, containing the
algebra found in [30] as a subalgebra. The infinite dimensional part of the maximal Lie invariance
algebra (6) indicates that the system (1) can be linearized using a hodograph transformation,
the result of which is the system (5). This is not unexpected, as any homogenous first-order
system of partial differential equations with two dependent and two independent variables can
be linearized by a hodograph transformation, provided that the coefficients in the system are
only dependent on the unknown functions. As in [30] only a finite dimensional symmetry algebra
is found, the indication, provided by the infinite dimensional symmetry algebra, of the existence
of a linearizing transformation is missed.

When it comes to determining exact solutions of the system (1) we observe some common
errors in finding exact solutions of partial differential equations. These errors are discussed
in [?, 29] in the study [30]. The algebra g1 is not maximal as a symmetry algebra of the
system (1), moreover no optimal list of inequivalent one-dimensional subalgebras of the algebra
g1 was constructed. The algebra g1 is only four-dimensional and for four-dimensional Lie algebras
the problem of classifying all inequivalent subalgebras is completely solved. If one omits the
construction of such an optimal list of inequivalent subalgebras, prior to carrying out the Lie
reductions, then one might end up with unnecessarily complicated reduction ansatzes, which then
lead to needlessly complicated exact solutions for the system of partial differential equations
(or for the reduced systems). We observed this with the exact solutions found in [30]. In
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another light, carrying out Lie reductions without reference to the optimal list of inequivalent
subalgebras can lead to equivalent exact solutions, i.e. solutions that are related through a
symmetry transformation.

Finally, as the linearizing hodograph transformation was missed in [30] the authors could not
construct exact solutions of the linearized modified shallow-water equations (5), some of which
can be extended to exact (and non-Lie) solutions of the modified shallow-water equations (1).
This is another possible source for finding exact solutions of system (1).
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