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H
odge theory is an important perspective on the study of

differential forms on a smooth manifold. The theory was

named after British mathematician William Hodge and it

has applications on Riemannian manifolds, Kahler manifolds and

algebraic geometry of complex projective variaties. This expository

paper is aimed as an introduction to basic ideas of Hodge theory. In

particular we will prove Hodge theorem and study its consequences.

Introduction

The connection between the differential forms which represents infinitesimal

volume elements on a manifold and global geometry of the manifold has been

elusive for centuries. Hodge theory is a bridge that connects the two seemingly

unrelated realms. It says that we can get information about the cohomology
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groups, which gives global information about the manifold, from special type of

differential forms. We study both of the subjects and explore their connections

using Hodge theory.

Differential forms and Integration

In this section we will introduce differential k forms. It is convienent to think of

them as k-dimensional volume. Hence in differential geometry differential forms

are often used to integrate over manifolds. Integration of forms are volumes, so

they should not depend on the parametrization thus there is natural restrictions

on what constitutes differential forms.

In order to show what are differential forms it is necassary to show few

things from linear algebra. Let T be a k-tensor set of all k tensors on a smooth

manifold M is denoted as Jk(M).

Definition 1. A tensor product between T ∈ Jk(M) and P ∈ Jr(M) is

denoted T ⊗ P ∈ Jk+r(M) satisfying

T ⊗ P (x1, · · · , xk, xk+1, · · · , xk+r) = T (x1, · · · , xk, xk+1, · · · , xk+r)

This tensor product is multilinear and associative. Notice that the vector

space J1(M) is same as T ∗M. In a similar fashion for 1 covariant tensors

T : T ∗M → R which is equivalent to T ∈ TM, so J1(M) = TM . Thus

any mixed tensor of type (m,n) which is also a vector space denoted by

Jmn (M) =
⊗m T ∗M

⊗n TM . Hence in local coordinates xi , these tensors can

be written as

T = T j1,··· ,jni1,··· ,imdx
i1 ⊗ · · · ⊗ dxim ⊗ ∂j1 ⊗ · · · ⊗ ∂jn T ∈ Jmn (M)

Given that we now know tensor products we are in position to define

Page 2 of 18



differential forms. Simply stated differential forms are tensors that satisfy the

property Alt(T ) = T ,where the function Alt is defined as

Alt(T )(x1, · · · , xk) =
1

k!

∑
σ∈Sk

sgn(σ)T (xσ(1), · · · , xσ(k))

where Sk is the group of permutations of numbers 1 to k. From this definition

it is clear that space of k differential forms denoted by Λk(M) is a subspace of

Jk(M). In particular Alt has interesting properties as

• If T ∈ Jk(M) then Alt(T ) ∈ Λk(M)

• For any k tensor T Altn(T ) = Alt(T ) for all n ≥ 2

Analogous to tensor product we would like to define a product that respects

the vector space structure for Λk(M). In other words we want to define a

product such that if we multiply two differential forms we are guaranteed to

get another differential form. For this purpose wedge product of differential

forms are defined.

Definition 2. A wedge product between ξ ∈ Λk(M) and η ∈ Λr(M) is denoted

ξ ∧ η ∈ Λk+r(M) satisfying

(ξ∧η)(x1, ., xn+m) =
1

m!n!

∑
σ∈Sm+n

sgn(σ)ξ(xσ(1), .., xσ(m))η(xσ(m+1), ., xσ(m+n))

Wedge product is associative and anticommutative: ξ ∧ η = (−1)mnη ∧ ξ.

Under local coordinates xi a general k-form η ∈ Λk looks like

η =
∑

i1<···<ik

Ti1,··· ,ik(x)dxi1 ∧ · · · ∧ dxik

where Ti1,··· ,ik are differentiable real valued functions. Another important map

that allows to construct one form to another is a exterior diffentiation we shall
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see later this allows one to integrate things easier via stokes theorem. Exterior

derivatives take k form to k+1 forms. In a local coordinates it will looke like

dη =
∑

i1<···<ik

dTi1,··· ,ik ∧ dx
i1 ∧ · · · ∧ dxik

There are two important special types of forms that one need to know.

Definition 3. A differential form w is called exact form if w = dη for some η.

Also the form ξ is called closed if dξ = 0.

By the way we defined, it is clear that exact form is a closed form as well. It

is convenient to be able to distinguish them since their integral always turn

out to be simple. For now we show how integration of forms work. Recall the

change of variables formula in a multiple integral in Rn:

∫
f(y1, · · · , yn)dy1 · · · dyn =

∫
f(y1(x), · · · , yn(x))| det

∂yi
∂xj
|dx1 · · · dxn

and compare to the change of coordinates for an n-form on an n-dimensional

manifold

w = f(y1, · · · , yn)dy1 ∧ · · · ∧ dyn

= f(y1(x), · · · , yn(x))
∑
i

∂y1

∂xi
dxi ∧ · · · ∧

∑
p

∂yn

∂xp
dxp

= f(y1(x), · · · , yn(x))(det
∂yi
∂xj

)dx1 ∧ · · · ∧ dxn

The only difference is the absolute value, so that if we can sort out a consistent

sign, then we should be able to assign a coordinate-independent value to the

integral of an n-form over an n-dimensional manifold. By fixing the orientation

we get rid of the sign problem

Now we are ready to define an integral of differential forms. For n-dimensional

manifold we can define the integral of any n-form that is compactly supported
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denoted below ∫
M
w

Assume M is orientable, and let w be a non-vanishing n-form. In a coordinate

chart w = f(x1, · · · , xn)dx1 ∧ · · · ∧ dxn.On each coordinate neighbourhood Uα

we have partition of unity φi subordinate to this covering. Then

φiw|Uα = gi(x
1, · · · , xn)dx1 ∧ · · · ∧ dxn

where gi is a smooth function of compact support on the whole of Rn . We

then define the integration of forms as

∫
M
w =

∑
i

∫
M
φiw =

∑
i

∫
Rn
gi(x

1, · · · , xn)dx1 ∧ · · · ∧ dxn

The integral is well-defined precisely because of the change of variables formula

in integration, and the consistent choice of sign from the orientation. Another

indispensible tool in integration is stokes theorem.

Theorem 4. (Stoke‘s) Given a differential n-form w whose support is the

n-dimensional manifold M then

∫
M
dw =

∫
∂M

w

The reason that we explained about integration is to persuade the readers

that differential forms contain information about the topology of the space

since the integral does not depend on the parametrization of the manifold so

no matter how crazy parametrization one chooses in the end the integral would

be same.

In general n-forms in n-dimensional space represent volume, or other extensive

quantities that appears in physics such as mass, pressure and temperature etc.

If the reader prefers, value of the n-form at a point is the infinitesimal mass
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located at the point.

Homology and Cohomology

Homology is a way of associating free abelian groups or modules with a

topological spaces in our case manifolds. In a broad sense nth homology

group or class of a manifold measures n dimensional ”holes”. There are lot of

machinery involved in Homology and Cohomology calculations so we will skip

the details about how to obtain such groups. Nevertheless I will try to give

some intuition about what it is from my own experience.

Definition 5. A chain complex is a sequence of free abelian groups or modules

with

∂n+2−−−→ Cn+1(M)
∂n+1−−−→ Cn(M)

∂n−→ Cn−1(M)
∂n−1−−−→

Each of the ∂i is called a boundary map which are homomorphism from the

chain group (free ablelian group) Ci to Ci−1 satisfying ∂i∂i+1 = 0 for all i.

Furthermore nth homology group is

Hn =
ker(∂n)

Im(∂n+1)

The usual way that one calculates homology group is by building a simplicial

complexes that is homotopic to the manifold and calculate the homotopy group

of the simplicial complex. This works because two topological spaces with

same homotopy type has isomorphic Homology groups. Furthermore one uses

cellular complexes instead of simplicial complexes which do not change the

homology groups. This is advantageous since we know that any manifold is

homotopic to some cell complex. Hence we can calculate homology groups of

any manifold by using cellular homology.

A most basic example of geometric object is maybe sphere. The homology
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groups of sphere is Hm(Sn) = Z if m = 0, n and zero otherwise. For a closed

surface of genus 3 the homology groups are H2(S3) = Z,H1(S3) = Z6,H0(S3) =

Z and zero otherwise. For most of the 2 and 3 dimensional manifold there are

not many nonzero homology groups and it is useful to know the interpretations

of the lower dimensional ones.

• H0(M) ∼= Zp where p is number of path components

• H1(M) ∼= Zg where g is the cardinality of the smallest set which generates

the fundemental group.

• H2(M) ∼= Zh where h is the number of holes needed on the manifold in

order to have inside and outside of the manifold to be path connected. If

manifold is nonorientable then H2(M) = 0

Few words of caution that our homology groups here are computed using Z

coefficients but we can go back and forward between coefficients using Universal

Coefficient Theorem, and coefficients in our case are not very important. Also

people may have different views on the interpretations above, it is by no means

only way to think about them but they are my way of interpreting it. For

H2(M) a convienant way to imagine it is to fill the manifold with water and

count the number of holes to poke in order to completely get rid of all the water

inside the manifold.To persuade indeed the interpretation is correct observe

that for any closed orientable surface with genus g the homology groups are

H0(Sg) = Z, H1(Sg) = Z2g and H2(Sg) = Z.

Now we shall talk about cohomology since we developed enough knowledge

of homology. Basically cohomology is a dual of homology groups.

Definition 6. A cochain complex is a sequence of free abelian groups or

modules C∗i = Hom(Ci, G) where G is abelian group and Ci is a chain complex.

∂∗n+2←−−−− C∗n+1(M)
∂∗n+1←−−−− C∗n(M)

∂∗n←−− C∗n−1(M)
∂∗n−1←−−−−
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Each of the ∂∗i (α) = α(∂i+1) is called a coboundary map which are homo-

morphism from the chain group (free ablelian group) C∗i − 1 to C∗i satisfying

∂∗i+1∂
∗
i = 0 for all i. Furthermore nth cohomology group is

Hn =
ker(∂∗n+1)

Im(∂∗n)

There is very useful cohomology that is called De Rham cohomology. It turns

out by De Rhams theorem that this cohomology is isomorphic to the singular

cohomology groups which is generated from the singular chain complexes. To

see what is De Rham cohomology is we will choose the cochain complexes as

space of smooth k forms Ωk as follows

d−→ Ωn−1(M)
d−→ Ωn(M)

d−→ Ωn+1(M)
d−→

where d is a exterior derivative as we discussed before. This map is natural

since exterior derivative of any k-form is k+1-form. Now we can look at the

nth De Rham cohomology groups

Hn
DR(M) :=

ker
(
d : Ωn(M)→ Ωn+1(M)

)
Im (d : Ωn−1(M)→ Ωn(M))

We know that dd = 0 hence, ker
(
d : Ωn(M)→ Ωn+1(M)

)
= {Closed n forms}

and similarly Im
(
d : Ωn−1(M)→ Ωn(M)

)
= {Exact n forms}. As an exam-

ple Hm
DR(Sn) = R for m = 0, n and zero otherwise. As we mentioned before

that Hm
DR(M) ∼= Hm(M,R) by De Rhams theorem so it is convenient way

to understand the cohomology groups. Also by Poincare duality we have for

n-dimensional compact oriented manifold Hk(M,R) ∼= Hn−k(M,R). So we

can define something called k-th betti number which is βk = dim(Hm(M,R)).

Betti numbers are good way to find n dimensional holes. Betti numbers are

also used to define Euler characteristics which is another topological invariant
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χ(M) =
∑dim(M)

i=0 (−1)iβi. One can classify all closed compact surfaces in terms

of their Euler characteristics.

Hodge Laplace Operator

In order to introduce laplace operator on a manifold we need to introduce a

Hodge star operator. Hodge star operator is an isomorphism between smooth

p forms to smooth d-p forms on compact d-dimensional Riemannian manifold.

∗ : Ωp(M)→ Ωd−p(M)

Throughout this section, we let M be a compact, oriented, Riemannian

manifold of dimension d. Using this we define an L2 inner product on the

space Ωp(M) as follows

(α, β) =

∫
M
α ∧ ∗β,

for any α, β ∈ Ωp(M). We can integrate this form since α ∧ ∗β ∈ Ωd which

we can see is a top form. From this inner product we define the L2 norms as

||α||L2 = 〈α, α〉.

From the first section recall the exterior derivative d : Ωp(M)→ Ωp+1(M).

We define d∗ as the adjoint of d with respect to the inner product 〈., .〉.

(dα, β) = (α, d∗β)

for α ∈ Ωp(M), β ∈ Ωp+1(M).Hence we see d∗ : Ωp+1(M) → Ωp(M).We use

the definitions of d, d∗ to introduce the notion of a harmonic p-form.

Lemma 7. d∗ : Ωp(M)→ Ωp−1(M) satisifies

d∗ = (−1)d(p+1)+1 ∗ d∗
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Proof. Let µ ∈ Ωp−1(M), ν ∈ Ωp(M)

d(µ ∧ ∗ν) = dµ ∧ ∗ν + (−1)(p−1)µ ∧ d ∗ ν

= dµ ∧ ∗ν + (−1)(p−1)(−1)d−p+1µ ∧ ∗ ∗ (d ∗ ν)

= dµ ∧ ∗ν − (−1)d(p+1)+1µ ∧ ∗ ∗ d ∗ ν

= ± ∗ (〈dµ, ν〉 − (−1)d(p+1)+1〈µ, ∗d ∗ ν〉

Use Stokes’s theorem to integrate and integral on the left hand side vanishes

giving the desired equality.

Definition 8. The Laplace-Beltrami or Hodge-Laplace operator ∆ : Ωp(M)→

Ωp(M) is defined as

∆α = dd∗α+ d∗dα.

A form w ∈ Ωp(M) is called harmonic if ∆w = 0

Lemma 9. Let w ∈ Ωp(M) then

(∆w,w) = (dd∗w,w) + (d∗dw,w) = (d∗w, d∗w) + (dw, dw) ≥ 0

In particular, ∆w = 0 if and only if dw = 0 and d∗w = 0

Hodge Theorem

We are finally ready to see the statement of Hodge theorem and its consequences.

However in order to prove Hodge theorem we need tools from differential

equations and functional analysis. These results will be directly applied in the

proof of Hodge later on.
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Analytic Preliminaries

We shall state few theorems that are going to be used in the proof of Hodge.

Theorem 10. (Sobolev Embedding) Let Ω ⊂ Rn open and bounded, then

Hk,p
0 ⊂ Cm(Ω̄) for 0 ≤ m < k − n

p

in particular, if f ∈ Hk,p
0 (Ω) for all k ∈ N and some fixed p, then f ∈ C∞(Ω̄)

Theorem 11. (Rellich-Kondrachov Compactness Theorem) Let Ω ⊂ Rn open

and bounded. Suppose 1 ≤ q < np
n−p if p < d and 1 ≤ q < ∞ if p ≥ d. Then

H1,p
0 is compactly embedded in Lq(Ω). In other words (fn)n∈N ⊂ H1,p

0 satisfies

‖fn‖2W 1,2(Ω) ≤ K for some K ∈ R

then the subsequence converges in Lq(Ω)

Hodge Theorem and Applications

The basic idea of Hodge theory is that differentiability gives an information

about continuouty which encodes informations about the underlying topology.

Theorem 12. (Hodge) Let M be a compact Riemannian manifold.Then every

cohomology class Hp(M) contains unique harmonic representative.

Proof. We will divide the proof into two parts that of existence and uniqueness.

Between the two, uniqueness is much easier than existence hence we will show

uniqueness proof first.

For the uniqueness, let ξ1 ξ2 be both harmonic p-form such that ξ1 − ξ2 is

an exact form (this condition is called cohomologous ). We have two possible

scenarios wether p = 0 or p ≥ 1. If p = 0 then ξ1 = ξ2 trivially. So assume
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p ≥ 1 then

(ξ1 − ξ2, ξ1 − ξ2) = (ξ1 − ξ2, dη)

= (d∗(ξ1 − ξ2), η)

= 0

For some η ∈ Ωp−1(M) and the last equality follows from the fact that ξ1, ξ2

are assumed to be harmonic which means d∗ξi = 0. Recall that the norm is

positive definite hence we conclude that ξ1 = ξ2.

We will prove now the existence, let ξ0 be closed form representing given

cohomology class Hp(M). Now consider set of all forms that are cohomologous

to ξ0 which can be written as ξ = ξ0 + dη for some η ∈ Ωp−1(M). We will

minimize L2 norm in the class of all such forms.

In order to minimize we shall make use of Sobelev spaces, hence we define a

Sobelev norm ‖.‖H1,2 :

‖ξ‖2H1,2 = (dξ, dξ) + (d∗ξ, d∗ξ) + (ξ, ξ)

We complete Ωp(M) with respect to the norm we just defined, which gives

us a Hilbert space H1,2(M) of p-forms. In order to make use of the tools we

developed previously we need to be able to compare the norms. To recall the

Sobolev norm in Euclidean space, let V ∈ Rd be open and f : V → Rn then

‖f‖2
H1,2

R (V )
=

∫
V
f · f +

∫
V
∂if · ∂if

notice we are using Einstein’s summation convention and dot product as

Euclidean scalar product. Since M is smooth manifold there exist charts and

bundle charts for every p ∈ M , hence we can find an open neighborhood U
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and corresponding diffeomorphism such that

φ : Λp(M)|U → V × Rn

notice the dimension of fibers of Λp is n =
(
n
m

)
. The fiber x ∈ U is mappet to

a fiber {π(φ(x))} × Rn where π : V × Rn → V is the projection map to the

first component. Using this information we have the following useful lemma to

bridge between sobolev space on manifolds and euclidnian spaces.

Lemma 13. On any U ′ b U the norms

‖ξ‖
H1,2

R (U ′) and ‖φ(ξ)‖
H1,2

R (V ′)

where V ′ := π(φ(U ′)) are equivalent

Proof. The theorem says that as long as we restrict ourselves on compact

subsets of U ′ then we will get an equivalence of norms. This is equivalent

to showing that for any x ∈ Ū ′ there is a neighborhood W such that above

equivalence holds. Hence without loss of generality assume that π ◦ φ is a map

onto normal coordinates with center x0 secondly metric in our neighborhood

of x0 we have the following

|gij(x)− δij | < ε and |Γij,k| < ε for i, j, k = 1, · · · , d

Given this we see that if (α, β) = αi1,··· ,ipβ
i1,··· ,ip then

(dα, dβ) =
∂αki1,··· ,ip
∂xk

∂βj1,··· ,jp
∂xl

gklgi1j1 · · · gipjp

(d∗α, d∗β) =

(
gkl(

∂αki1,··· ,ip
∂xl

− Γjklαji1,··· ,ip−1)ei1 ∧ · · · ∧ eip−1 ,

gmn
∂βj1,··· ,jp
∂xn

− Γrmnβmj1,··· ,jp−1)ej1 ∧ · · · ∧ ejp−1

)
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as we can see under our assumtion for sufficiently small ε > 0 above implies

two neighborhood agrees. Since Ū ′ ⊂ U by initial assumption, claim for U ′

follows by a covering argument.

Above lemma implies that all results we introduced for sobolev spaces in

the Euclidean setting is applicable to Riemannian situation . Specifically,

Rellich-Kondrachov compactness theorem and Sobolev embedding theorem

can be used in our proof.

Lemma 14. (Application of Rellich-Kondrachov) Let (ξn)n∈N ⊂ H1,2(M) be

a bounded sequence, then subsequence of (ξn) converges with respect to the

L2 norm

‖ξ‖L2 := (ξ, ξ)

for some ξ ∈ H1,2(M)

Corollary 15. There exist a constant K such that for all closed forms η that

are orthogonal to the kernel of d∗ following holds

(η, η) ≤ K(d∗η, d∗η)

where K only depends on the Riemannian metric

Proof. Suppose on the contrary there above is not true then there would exist

a sequence of closed forms ηn orthogonal to the kernel of d∗ such that following

is true

(ηn, ηn) ≥ n(d∗ηn, d
∗ηn)

Denote λn := (ηn, ηn)−
1
2 then we see that

(λnηn, λnηn) ≥ n(d∗(λnηn), d∗(λnηn))
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Since ηn is closed by assumption we have

‖λnηn‖H1,2 ≥ 1 +
1

n

by the prevous lemma λnηn converges in L2 to some form ψ. From above

inequalities we see that d∗(λnηn) converges to 0 in L2. Furthermore for all φ

lim
n→∞

(d∗λnβn, φ) = lim
n→∞

(λnβn, dφ) (1)

= (ψ, dφ) = (d∗ψ, φ) = 0 (2)

Hence we see that d∗ψ = 0. Now since d∗ψ = 0 and ηn are orthogonal to the

kernel of d∗ we have

(ψ, λnηn) = 0 for all n

On the other hand, (λnηn, λnηn) = 1 and L2 convergence of λnηn to ψ imply

that

lim
n→∞

(ψ, λnηn) = 1

but this is impossible. Hence by contradiction the inequality in the corollary

holds.

We are now finally have enought tools to complete Hodge. Recall we were

trying to minimize over L2 norm of forms ξ = ξ0 + dη for some η ∈ Ωp−1(M).

Let (ξn)n∈N be minimizing sequence for L2 norms D := (ξn, ξn) in a fixed

cohomology class. Using Dirichlet’s principle in Rd, the sequence ξn converges

weakly to some ξ. After selection of a subsequence we have

(ξ − ξ0, φ) = 0 for all φ ∈ Ωp(M) with d ∗ φ = 0

above is because w (ξn − ξ0, φ) = (dηn, φ) = 0 hence ξ − ξ0 is weakly exact.
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We define a linear functional on d∗(Ωp(M)) by

L(δφ) := (η, φ)

One can check that above linear functional is well defined. For φ ∈ Ωp(M) let

π(φ) be the orthogonal projection onto the kernel of d∗, and ψ := φ − π(φ),

which imply d∗ψ = d∗φ. Then we have L(d∗φ) = L(d∗ψ) = (η, ψ) since ψ is

orthogonal to the kernel of δ. By corollary 12 there is a constant K such that

‖ψ‖L2 ≤ K ‖d∗ψ‖L2 = K ‖d∗φ‖L2

which imply that

|L(d∗φ)| ≤ K ‖η‖L2 ‖d∗φ‖L2

Hence the functional L on d∗(Ωp(M)) is bounded which means that it can be

extended to the L2 closure of d∗(Ωp(M)). We will use Riesz Representation

theorem which says that a bounded linear functional on a Hilber space is

representable as the scalar product with an element of the space itself. By this

theorem there exist w such that

(w, d∗φ) = (η, φ)

for all φ ∈ Ωp(M). Thus we have dw = η weakly. Thus ξ = ξ0 + η is contained

in the closure of the considered class. Hence instead of minimizing over ξ that

is cohomologous to ξ0 we can just as well minimize over space of all ξ such

that there exist some w with

(w, d∗φ) = (η, ξ − ξ0) for all φ ∈ Ωp(M)

Then xi the weak limit of a minimizing sequence is contained in the class. In
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other words that suppose ξn = ξ0 + dwn weakly meaning

Ln(d∗φ) := (wn, d
∗φ) = (wn − w, φ) ∀φ ∈ Ωp(M)

By the same estimate above linear functionals Ln converge to some functional

L which again represented by some w. Since D is also weakly lower semi-

continuous with respect to weak convergence, it follows that c ≥ D(ξ) ≥

limn→∞ inf D(ξn) = c which imply that D(ξ). Furthermore by the Euler-

Lagrange equations for D we see that if smooth form ξ is the infimum achieved

then

0 =
d

dt
(ξ + tdτ, ξ + tdτ)|t=0 (3)

= 2(ξ, dτ) (4)

= 2(d∗ξ, τ) ∀τ ∈ Ωp−1(M) (5)

To show indeed that ξ is smooth we use Sobolev embedding theorem. Hence

we see that the minimizer of D(ξ) is a harmonic form that always exist which

completes the proof.

The similar proof can be found using heat equations. This theorem is

important since it gives rise to a nice theorem that allows one to classify all

square integrable forms on the manifold.

Theorem 16. (Hodge Decomposition) Let Bp be a the L2 closure of {dα :

α ∈ Ωp−1} and similarly B∗p closure of {d∗β ∈ Ωp+1} then space of square

integrable p-form admits orthogonal decomposition

L2
p(M) = Bp ⊕B∗p ⊕ ker(∆p)

Above classification of squere integrable forms have some interesting corollar-
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ies. Among these includes rather surprising facts about topology emerges, for in-

stance if M is a odd dimensional compact manifold then χ(M) = 0. Another eye

opening fact that follows from Hodge is that βn(M×N) =
∑n

i=1 βi(M)βn−i(N)

where M,N are compact manifolds. This implies that χ(M ×N) = χ(M)χ(N)

which simplifies life of topologists much easier.

The Hodge decomposion has also interesting applications in partial differntial

equations. An obvious corrolary of hodge to differential equations is that the

poisson equation ∆w = α has a solution if and only if α is orthogonal to ker(∆)

and a solution has a degree of smoothness two more than α. These results are

generalized using theory of pseudo differential operators, and not surprisingly

one can prove Hodge using the language of psuedo differential operators.

As seen from these applications Hodge theorem is an important bridge that

gaps the field of Partial Differential Equations and Algebraic Topology. Some

problems that are hard in the nature of PDE’s can easily approached via

Algebraic topology and vice versa, hence a clever use of Hodge can open up

many new possibilities in both fields.
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