MATH 580 ASSIGNMENT 5

DUE TUESDAY NOVEMBER 22

- 1. Let Ω be a bounded domain with $C^{k+2,\alpha}$ boundary, and let L be a second order linear elliptic operator with $C^{k,\alpha}(\overline{\Omega})$ coefficients.
 - (a) Prove the following Schauder estimate

$$\|u\|_{C^{k+2,\alpha}(\Omega)} \lesssim \|Lu\|_{C^{k,\alpha}(\Omega)} + \|u\|_{C(\Omega)}, \qquad u \in C^{k+2,\alpha}(\Omega).$$

The k = 0 case is treated in class, which can be assumed.

(b) Show that if $u \in C^{2,\alpha}(\overline{\Omega})$ satisfies

$$Lu = f \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega,$$

with $f \in C^{k,\alpha}(\overline{\Omega})$, then $u \in C^{k+2,\alpha}(\overline{\Omega})$. You may assume that the lowest order coefficient of L is so that the maximum principle holds for L, but also try without this assumption.

2. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with sufficiently smooth boundary, and consider the nonlinear Dirichlet problem

$$\Delta u = f(u) \quad \text{in } \Omega, \qquad u = 1 \quad \text{on } \partial\Omega, \tag{1}$$

where $f: I \to \mathbb{R}$ is a sufficiently smooth function defined on some interval $I \subseteq \mathbb{R}$. Then we look for a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$, with $u(x) \in I$ for $x \in \overline{\Omega}$. The choice of Imay depend on the nature of f, or on the context of the problem. For example, if f is given by $f(u) = u^{-1}$, then a natural choice would be $I = (0, \infty)$. This would also be the choice if one is interested in finding only a positive solution u.

- (a) Consider the case $f(u) = u^m$ with $m \in \mathbb{N}$ odd. Show that any solution of (1) in $C^2(\Omega) \cap C(\overline{\Omega})$ must satisfy $0 \le u \le 1$ in $\overline{\Omega}$, and is unique.
- (b) Show that the only solution of (1) with $f(u) = u u^{-1}$ is $u \equiv 1$.
- 3. We shall establish the existence of a solution to (1) by the so-called *sub-supersolution* method. To this end, a function $u_{-} \in C^{2}(\Omega) \cap C(\overline{\Omega})$ with $u_{-}(\overline{\Omega}) \subset I$ is called a subsolution to the above problem if

$$\Delta u_{-} \ge f(u_{-})$$
 in Ω , $u_{-} \le 1$ on $\partial \Omega$.

Similarly, a function $u_+ \in C^2(\Omega) \cap C(\overline{\Omega})$ with $u_+(\overline{\Omega}) \subset I$ is a supersolution if

$$\Delta u_+ \le f(u_+)$$
 in Ω , $u_+ \ge 1$ on $\partial \Omega$.

(a) Construct sub- and supersolutions satisfying $u_{-} \leq u_{+}$ in $\overline{\Omega}$, for the case $f(u) = \alpha u^{m} - \beta u^{-k}$ with $m, k \in \mathbb{N}$ and $\alpha, \beta \geq 0$. If $\beta \neq 0$ choose $I = (0, \infty)$.

Date: Fall 2011.

DUE TUESDAY NOVEMBER 22

(b) Let u_{-} and u_{+} be sub- and supersolutions satisfying $u_{-} \leq u_{+}$ in $\overline{\Omega}$, and let $a = \min u_{-}$ and $b = \max u_{+}$. Choose $\lambda \geq 0$ so that $s \mapsto f(s) - \lambda s$ is non-increasing on the interval [a, b]. Show that such a choice is possible. Let the sequence $u_{k} \in C^{2}(\Omega) \cap C(\overline{\Omega})$, (k = 0, 1, ...), be defined by $u_{0} = u_{+}$ and

$$\Delta u_k - \lambda u_k = f(u_{k-1}) - \lambda u_{k-1} \quad \text{in } \Omega, \qquad u_k = 1 \quad \text{on } \partial \Omega,$$

for $k \in \mathbb{N}$. Justify the existence of this sequence, and show that

$$u_{-} \le u_{k} \le u_{k-1} \le u_{+} \quad \text{in } \Omega,$$

for all $k \in \mathbb{N}$.

(c) By using, for example, the estimate

$$||u_k||_{C^1(\Omega)} \lesssim ||f(u_{k-1})||_{C(\Omega)} + ||u_{k-1}||_{C(\Omega)} + 1,$$

and a compactness argument, show that the sequence $\{u_k\}$ from (b) converges uniformly in $\overline{\Omega}$ to a function $u \in C(\overline{\Omega})$. Note that the above estimate is easy to get from the potential (or Schauder) estimates we proved in class.

- (d) Update the uniform convergence of $u_k \to u$ to a C^1 convergence, i.e., show that $\|u_k u\|_{C^1(\Omega)} \to 0$ as $k \to \infty$. With the help of the Schauder estimates, further update it to a $C^{2,\alpha}$ convergence.
- (e) Prove that u is a solution of (1).
- (f) Provide a new example of f that can be treated by this method. In particular, construct sub- and supersolutions for your example. How do we modify the method if we want to handle the general Dirichlet condition u = g on $\partial \Omega$?
- 4. Prove that if g is a bounded continuous function on \mathbb{R}^n , then

$$e^{t\Delta}e^{s\Delta}g = e^{(t+s)\Delta}g,$$

for s, t > 0. In combination with the property $e^{t\Delta}g \to g$ as $t \to 0$, this means that the heat propagators $e^{t\Delta}$, (t > 0), form a *one-parameter semigroup* of operators.

- 5. Using the heat kernel, devise an approach analogous to Green's formula (and/or the Green function approach) for representing solutions of the heat equation on a bounded spatial domain $\Omega \subset \mathbb{R}^n$ and a bounded time interval (0, T).
- 6. By way of examples, make a strong case against the well-posedness of the Cauchy problem for the *backward heat equation*

$$\partial_t u + \Delta u = 0 \quad \text{in } \{t > 0\}, \qquad u = g \quad \text{on } \{t = 0\},$$

or equivalently, of the backward Cauchy problem for the heat equation

 $\partial_t u = \Delta u$ in $\{t < 0\}$, u = g on $\{t = 0\}$.

 $\mathbf{2}$