MATH 580 ASSIGNMENT 5

DUE TUESDAY NOVEMBER 22

1. Let © be a bounded domain with C**+2:@ houndary, and let L be a second order linear
elliptic operator with C*%(Q) coefficients.
(a) Prove the following Schauder estimate

lullcrszay S Iullona@) + lulew), — ue CF2(Q).

The k = 0 case is treated in class, which can be assumed.
(b) Show that if u € C*%(Q) satisfies

Lu=f inQ, u=0 on 0,

with f € CP*(Q), then u € C**29(Q). You may assume that the lowest order
coefficient of L is so that the maximum principle holds for L, but also try without
this assumption.
2. Let 2 C R™ be a bounded domain with sufficiently smooth boundary, and consider the
nonlinear Dirichlet problem
Au = f(u) in , u=1 on 09, (1)
where f : I — R is a sufficiently smooth function defined on some interval I C R. Then
we look for a solution u € C?(2) N C(), with u(x) € I for x € Q. The choice of T
may depend on the nature of f, or on the context of the problem. For example, if f is
given by f(u) = u~!, then a natural choice would be I = (0,00). This would also be
the choice if one is interested in finding only a positive solution w.
(a) Consider the case f(u) = ™ with m € N odd. Show that any solution of (1) in
C?(2) N C(Q) must satisfy 0 < u < 1 in €2, and is unique.
(b) Show that the only solution of (1) with f(u) =u —u~!isu=1.
3. We shall establish the existence of a solution to (1) by the so-called sub-supersolution
method. To this end, a function u_ € C2%(Q) N C(Q) with u_(Q) C I is called a
subsolution to the above problem if

Au_ > f(u-) in €, u_ <1 on 0NQ.
Similarly, a function uy € C2?(2) N C(Q) with u,(Q) C I is a supersolution if
Auy < f(uy) in £, uy > 1 on 0.
(a) Construct sub- and supersolutions satisfying u_ < wuy in €, for the case f(u) =

au™ — Bu~" with m,k € N and o, 8 > 0. If 8 # 0 choose I = (0, 00).
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(b) Let u_ and u; be sub- and supersolutions satisfying v < u, in €, and let a =
minu_ and b = maxwuy. Choose A > 0 so that s — f(s) — As is non-increasing
on the interval [a,b]. Show that such a choice is possible. Let the sequence uy €
C?2()NC), (k=0,1,...), be defined by ug = u; and

Aug, — Mg = f(uk—1) — dug—1 in Q, up, =1 on 09,
for k € N. Justify the existence of this sequence, and show that
u- <up <up—g <ug in Q,

for all k£ € N.
(c) By using, for example, the estimate

lurllcr) S I1f (ue—1)lle@) + lue-1lle@) + 1,
and a compactness argument, show that the sequence {ux} from (b) converges uni-
formly in Q to a function u € C(). Note that the above estimate is easy to get
from the potential (or Schauder) estimates we proved in class.

(d) Update the uniform convergence of u, — u to a C' convergence, i.e., show that
|ur — ullcr@) — 0 as k — oco. With the help of the Schauder estimates, further
update it to a C*“ convergence.

(e) Prove that w is a solution of (1).

(f) Provide a new example of f that can be treated by this method. In particular,
construct sub- and supersolutions for your example. How do we modify the method
if we want to handle the general Dirichlet condition v = g on 97

. Prove that if g is a bounded continuous function on R", then

a5y — (A

for s,t > 0. In combination with the property e/®g — ¢ as t — 0, this means that the
heat propagators etA, (t > 0), form a one-parameter semigroup of operators.

. Using the heat kernel, devise an approach analogous to Green’s formula (and/or the
Green function approach) for representing solutions of the heat equation on a bounded
spatial domain  C R™ and a bounded time interval (0,7).

. By way of examples, make a strong case against the well-posedness of the Cauchy
problem for the backward heat equation

Ou+ Au=0 in {t > 0}, u=g¢g on{t=0},
or equivalently, of the backward Cauchy problem for the heat equation
Owu = Au in {t <0}, u=g on {t=0}



