MATH 580 ASSIGNMENT 1

DUE THURSDAY SEPTEMBER 15

1. Let $\alpha > 0$, and let

$$f(x) = \begin{cases} \exp(-x^{-\alpha}) & \text{for } x > 0, \\ 0 & \text{for } x \le 0. \end{cases}$$

Prove that $f \in C^{\infty}(\mathbb{R})$, but f is not real analytic at 0.

- 2. (Analyticity of multiplicative inverse) Let f be a function real analytic at $a \in \mathbb{R}$, and suppose that $f(a) \neq 0$. Show that 1/f is real analytic at a.
- 3. Multi-indices are defined as *n*-tuple of nonnegative integers $\alpha = (\alpha_1, \ldots, \alpha_n)$. We define the operations $|\alpha| = \alpha_1 + \ldots + \alpha_n$, $\alpha! = \alpha_1! \ldots \alpha_n!$, and $x^{\alpha} = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$ for $x \in \mathbb{R}^n$ or $x = \partial$. We also define $\alpha \pm \beta$ and $\alpha \leq \beta$, etc., acting componentwise. Prove the following relations.
 - (a) $\alpha! \leq |\alpha|! \leq n^{|\alpha|} \alpha!$.

(a)
$$\alpha \in \underline{A} \cap \underline{A}$$
 and
(b) $(x_1 + \ldots + x_n)^m \leq \sum_{|\alpha|=m} \frac{m!}{\alpha!} x^{\alpha}$.
(c) $\partial^{\beta} x^{\alpha} = \begin{cases} \frac{\alpha!}{(\alpha-\beta)!} x^{\alpha-\beta} & \text{if } \alpha \geq \beta, \\ 0 & \text{otherwise.} \end{cases}$.

4. Consider the system

$$\partial_n^{q_i} u_i = F_i(x, u, \dots, \partial^{\alpha} u, \dots), \qquad i = 1, \dots, p,$$

where each F_i is analytic, and all α that occur in F_i satisfy $|\alpha| \leq q_i$ and $\alpha_n < q_i$. Here x varies in \mathbb{R}^n , and $u = (u_1, \ldots, u_p)$ is a function in \mathbb{R}^n taking values in \mathbb{R}^p . Such a system is called of *Kovalevskaya type*. We adjoin the initial conditions

$$\partial_n^k u_i(\xi, 0) = \phi_{i,k}(\xi), \qquad \xi \in \mathbb{R}^{n-1}, \quad 0 \le k \le q_i - 1, \quad 0 \le i \le p,$$

where $\phi_{i,k}$ are analytic functions of n-1 variables. Prove the Cauchy-Kovalevskaya theorem in this general case, i.e., prove that the above Cauchy problem has a unique analytic solution in a neighbourhood of the origin in \mathbb{R}^n .

5. Supposing that the solution of the heat equation $\partial_t u = \partial_x^2 u$, with initial data

$$u(x,0) = \sum_{j=0}^{\infty} a_j x^j,$$

Date: Fall 2011.

can be written in the form

$$u(x,t) = \sum_{j,k=0}^{\infty} b_{j,k} x^j t^k,$$

determine the coefficients $b_{j,k}$. Now assuming that $a_j = j^{-\alpha j}$ with a constant $\alpha \in (0, \frac{1}{2})$, show that the radius of convergence of u(x, 0) is equal to ∞ . On the other hand, show that the radius of convergence of

$$u(0,t) = \sum_{k=0}^{\infty} b_{0,k} t^k,$$

is equal to 0. In other words, if it exists, the solution is not analytic in any neighbourhood of (0,0). Explain why this example does not contradict the Cauchy-Kovalevskaya theorem.

6. Consider the Laplace equation $\Delta u = 0$ on the unit disk, given in polar coordinates by $\mathbb{D} = \{(r, \theta) : r < 1\}$. Specify the Cauchy data

$$u(1,\theta) = f(\theta), \qquad \partial_r u(1,\theta) = g(\theta),$$

where f and g are 2π -periodic real analytic functions. Then show that a real analytic solution exists for all $\theta \in \mathbb{R}$ and |r-1| sufficiently small. Investigate what happens to the solution as $r \to 0$ and $r \to \infty$, if f and g are of the form

$$a_0 + \sum_{n=1}^m a_n \cos n\theta + b_n \sin n\theta,$$

i.e., trigonometric polynomials.

7. ¹ Let $f: \Omega \to \mathbb{R}$ be a function defined on some nonempty open set $\Omega \subset \mathbb{R}^2$. Then one can define the *directional derivative* Df(z, X) of f at $z \in \Omega$ along the vector $X \in \mathbb{R}^2$, by considering the function g(t) = f(z + tX) defined on some nonempty interval $(-\varepsilon, \varepsilon)$. So we define Df(z, X) = g'(0) if the latter exists, or more explicitly, if there is a number $\lambda \in \mathbb{R}$ such that

$$f(z+tX) = f(z) + \lambda t + o(t), \quad \text{for } t \in \mathbb{R} \text{ with } t \to 0,$$

then we say that f is differentiable at z in the direction X, and write $Df(z, X) = \lambda$. Assuming that Df(z, X) exists for all $X \in \mathbb{R}^2$ and for all $z \in \Omega$, the totality of all possible directional derivatives of f defines a function $(z, X) \mapsto Df(z, X)$ on $\Omega \times \mathbb{R}^2$. There is no obvious a priori structure on this function, except to say that Df(z, X) is homogeneous in X, i.e., Df(z, tX) = tDf(z, X) for any $t \in \mathbb{R}$. This essentially means that at each $z \in \Omega$, the directional derivatives Df(z, X) are completely determined by their values on the unit circle $S^1 = \{z \in \mathbb{R}^2 : |z| = 1\}$.

¹Bonus problem: not counted in this assignment, but +1 point towards the final grade. At the minimum, it is important to read and understand the statement of the problem.

A substantial simplification occurs if we require the graph of f to be locally a plane, i.e., if we require that f can be locally approximated by linear functions of two variables. To be precise, if there is a vector $\Lambda \in \mathbb{R}^2$ such that

$$f(z+h) = f(z) + \Lambda \cdot h + o(|h|), \quad \text{for} \quad h \in \mathbb{R}^2 \quad \text{with} \quad |h| \to 0,$$

then we say that f is differentiable at z, and write $Df(z) = \Lambda$. An obvious consequence of differentiability is that the directional derivative Df(z, X) is now linear in X, and is given by $Df(z, X) = Df(z) \cdot X$. This means that at each $z \in \Omega$, the directional derivatives are completely determined by their values at two non-collinear vectors, that is, if $X = \alpha_1 X_1 + \alpha_2 X_2$, then we have $Df(z, X) = \alpha_1 Df(z, X_1) + \alpha_2 Df(z, X_2)$. Prove the following partial converse:

Let $X_1, X_2 \in \mathbb{R}^2$ be non-collinear vectors, and assume that the directional derivatives $Df(z, X_1)$ and $Df(z, X_2)$ exist and are continuous in Ω as functions of z. Then f is differentiable in Ω , and the derivative Df is continuous in Ω .

Note that this explains why we *can* simply focus on the partial derivatives $\partial_x f(z) = Df(z, e_1)$ and $\partial_y f(z) = Df(z, e_2)$, where $e_1 = (1, 0)$ and $e_2 = (0, 1)$, and their continuity, rather than the totality Df(z, X) for $X \in \mathbb{R}^2$. There is nothing special about the directions e_1 and e_2 ; any non-collinear directions X_1 and X_2 would do.

For $X \in \mathbb{R}^2$ fixed, let us denote by D_X the operator sending the function f to the function $z \mapsto Df(z, X)$, i.e., $D_X f = Df(\cdot, X)$. Since $D_X f$ is again a function defined on \mathbb{R}^2 with values in \mathbb{R} , not only one can talk about its directional differentiability but the operators D_X can be applied recursively, so for instance, $D_X D_X f$, $D_Y D_X f$, or even $D_X^n f$ can be defined. Prove the following:

Let $X, Y \in \mathbb{R}^2$, and assume that $D_X D_Y f$ and $D_Y D_X f$ exist and are continuous in Ω . Then $D_X D_Y f = D_Y D_X f$ in Ω .

Note that this in particular justifies the formula $\partial_x \partial_y f = \partial_y \partial_x f$ under the condition that the participated derivatives are continuous.