
MATH 580 ASSIGNMENT 1

DUE THURSDAY SEPTEMBER 15

1. Let α > 0, and let

f(x) =

{
exp(−x−α) for x > 0,

0 for x ≤ 0.

Prove that f ∈ C∞(R), but f is not real analytic at 0.
2. (Analyticity of multiplicative inverse) Let f be a function real analytic at a ∈ R, and

suppose that f(a) 6= 0. Show that 1/f is real analytic at a.
3. Multi-indices are defined as n-tuple of nonnegative integers α = (α1, . . . , αn). We define

the operations |α| = α1 + . . .+ αn, α! = α1! . . . αn!, and xα = xα1
1 . . . xαn

n for x ∈ Rn or
x = ∂. We also define α±β and α ≤ β, etc., acting componentwise. Prove the following
relations.
(a) α! ≤ |α|! ≤ n|α|α!.

(b) (x1 + . . .+ xn)m ≤
∑
|α|=m

m!

α!
xα.

(c) ∂βxα =

{
α!

(α−β)!x
α−β if α ≥ β,

0 otherwise.
.

4. Consider the system

∂qin ui = Fi(x, u, . . . , ∂
αu, . . .), i = 1, . . . , p,

where each Fi is analytic, and all α that occur in Fi satisfy |α| ≤ qi and αn < qi. Here
x varies in Rn, and u = (u1, . . . , up) is a function in Rn taking values in Rp. Such a
system is called of Kovalevskaya type. We adjoin the initial conditions

∂knui(ξ, 0) = φi,k(ξ), ξ ∈ Rn−1, 0 ≤ k ≤ qi − 1, 0 ≤ i ≤ p,

where φi,k are analytic functions of n − 1 variables. Prove the Cauchy-Kovalevskaya
theorem in this general case, i.e., prove that the above Cauchy problem has a unique
analytic solution in a neighbourhood of the origin in Rn.

5. Supposing that the solution of the heat equation ∂tu = ∂2xu, with initial data

u(x, 0) =
∞∑
j=0

ajx
j ,
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can be written in the form

u(x, t) =

∞∑
j,k=0

bj,kx
jtk,

determine the coefficients bj,k. Now assuming that aj = j−αj with a constant α ∈ (0, 12),
show that the radius of convergence of u(x, 0) is equal to ∞. On the other hand, show
that the radius of convergence of

u(0, t) =

∞∑
k=0

b0,kt
k,

is equal to 0. In other words, if it exists, the solution is not analytic in any neighbour-
hood of (0, 0). Explain why this example does not contradict the Cauchy-Kovalevskaya
theorem.

6. Consider the Laplace equation ∆u = 0 on the unit disk, given in polar coordinates by
D = {(r, θ) : r < 1}. Specify the Cauchy data

u(1, θ) = f(θ), ∂ru(1, θ) = g(θ),

where f and g are 2π-periodic real analytic functions. Then show that a real analytic
solution exists for all θ ∈ R and |r − 1| sufficiently small. Investigate what happens to
the solution as r → 0 and r →∞, if f and g are of the form

a0 +

m∑
n=1

an cosnθ + bn sinnθ,

i.e., trigonometric polynomials.
7. 1 Let f : Ω → R be a function defined on some nonempty open set Ω ⊂ R2. Then one

can define the directional derivative Df(z,X) of f at z ∈ Ω along the vector X ∈ R2, by
considering the function g(t) = f(z + tX) defined on some nonempty interval (−ε, ε).
So we define Df(z,X) = g′(0) if the latter exists, or more explicitly, if there is a number
λ ∈ R such that

f(z + tX) = f(z) + λt+ o(t), for t ∈ R with t→ 0,

then we say that f is differentiable at z in the direction X, and write Df(z,X) = λ.
Assuming that Df(z,X) exists for all X ∈ R2 and for all z ∈ Ω, the totality of all
possible directional derivatives of f defines a function (z,X) 7→ Df(z,X) on Ω × R2.
There is no obvious a priori structure on this function, except to say that Df(z,X) is
homogeneous in X, i.e., Df(z, tX) = tDf(z,X) for any t ∈ R. This essentially means
that at each z ∈ Ω, the directional derivatives Df(z,X) are completely determined by
their values on the unit circle S1 = {z ∈ R2 : |z| = 1}.

1Bonus problem: not counted in this assignment, but +1 point towards the final grade. At the minimum,
it is important to read and understand the statement of the problem.
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A substantial simplification occurs if we require the graph of f to be locally a plane,
i.e., if we require that f can be locally approximated by linear functions of two variables.
To be precise, if there is a vector Λ ∈ R2 such that

f(z + h) = f(z) + Λ · h+ o(|h|), for h ∈ R2 with |h| → 0,

then we say that f is differentiable at z, and write Df(z) = Λ. An obvious consequence
of differentiability is that the directional derivative Df(z,X) is now linear in X, and
is given by Df(z,X) = Df(z) · X. This means that at each z ∈ Ω, the directional
derivatives are completely determined by their values at two non-collinear vectors, that
is, if X = α1X1 + α2X2, then we have Df(z,X) = α1Df(z,X1) + α2Df(z,X2). Prove
the following partial converse:

Let X1, X2 ∈ R2 be non-collinear vectors, and assume that the directional derivatives
Df(z,X1) and Df(z,X2) exist and are continuous in Ω as functions of z. Then f is
differentiable in Ω, and the derivative Df is continuous in Ω.

Note that this explains why we can simply focus on the partial derivatives ∂xf(z) =
Df(z, e1) and ∂yf(z) = Df(z, e2), where e1 = (1, 0) and e2 = (0, 1), and their continuity,
rather than the totality Df(z,X) for X ∈ R2. There is nothing special about the
directions e1 and e2; any non-collinear directions X1 and X2 would do.

For X ∈ R2 fixed, let us denote by DX the operator sending the function f to the
function z 7→ Df(z,X), i.e., DXf = Df(·, X). Since DXf is again a function defined
on R2 with values in R, not only one can talk about its directional differentiability but
the operators DX can be applied recursively, so for instance, DXDXf , DYDXf , or even
Dn
Xf can be defined. Prove the following:
Let X,Y ∈ R2, and assume that DXDY f and DYDXf exist and are continuous in

Ω. Then DXDY f = DYDXf in Ω.
Note that this in particular justifies the formula ∂x∂yf = ∂y∂xf under the condition

that the participated derivatives are continuous.


