MATH 579 ASSIGNMENT 3

DUE TUESDAY MARCH 31

1. Let $\Omega = (0,1)^2$ be the unit square, and for $j \in \mathbb{N}$, let P_j be the collection of 2^{2j} small squares of side length 2^{-j} tiling up Ω . Denote by \mathbb{P}_{d-1} the set of bivariate polynomials of the form $p(x_1)q(x_2)$ with $p, q \in \mathbb{P}_{d-1}$ single variable polynomials. Given $d \in \mathbb{N}$, we define the space S_j of *dyadic splines* as follows:

$$S_j^{d,r} = \{ u \in C^r(\Omega) : u |_Q \in \overline{\mathbb{P}}_{d-1} \text{ for each cube } Q \in P_j \}.$$

We also define the *cardinal B-splines* on \mathbb{R} by the recursive formula

$$N^d = N^{d-1} * N^1, \qquad d = 2, 3, \dots,$$

with $N^1 = \chi_{(0,1)}$ the characteristic function of the unit interval.

- a) Show that $N^d \in C^{d-2}(\mathbb{R}), N^d|_{(k,k+1)} \in \mathbb{P}_{d-1}$ for $k \in \mathbb{Z}$, and $\operatorname{supp} N^d = [0,d]$.
- b) We fix d, and define the dyadic cardinal *B*-splines

$$\phi_{j,k}(x) = N^d (2^j x - k), \qquad j \in \mathbb{N}_0, \, k \in \mathbb{Z},$$

and their tensor product version

$$\phi_{j,\alpha}(x,y) = \phi_{j,\alpha_1}(x)\phi_{j,\alpha_2}(y), \qquad j \in \mathbb{N}_0, \, \alpha \in \mathbb{Z}^2$$

For $j \in \mathbb{N}_0$, let Φ_j be the collection of those $\phi_{j,\alpha}$ ($\alpha \in \mathbb{Z}^2$) whose supports nontrivially intersect the unit square Ω . Show that Φ_j is a basis of $S_j^{d,d-2}$.

c) From now on we will fix d = 4. For each $Q \in P_i$, we define the Hermite interpolant $v = H_Q u \in \overline{\mathbb{P}}_3$ for functions $u \in C^1(\overline{\Omega})$ by the following relations

$$v(x) = u(x),$$

$$\partial_i v(x) = \partial_i u(x), \quad (i = 1, 2),$$

$$\partial_1 \partial_2 v(x) = \partial_1 \partial_2 u(x),$$

where x runs over the corner points of Q. Since dim $\overline{\mathbb{P}}_3 = 16$, the polynomial v is well defined. Let us define the global interpolant $H_j u$ by $(H_j u)|_Q = H_Q u$ for each $Q \in P_j$. Show that $H_j u \in S_j^{4,1}$ for $u \in C^1(\overline{\Omega})$.

d) Prove the error estimate

$$|u - H_j u||_{W^{k,p}(\Omega)} \le c \, 2^{-j(m-k)} |u|_{W^{m,p}(\Omega)},$$

for $0 \le k \le m \le 4$, $m > \frac{n}{p} + 1$ and $1 \le p \le \infty$. Why are there restrictions on m? 2. Identify the spaces $[C(\mathbb{T}), C^1(\mathbb{T})]_{\theta,q}$. 3. Show that $[W^{1,1}(\Omega), W^{1,\infty}(\Omega)]_{1-1/p,p} = W^{1,p}(\Omega)$.

- 4. Show that $B_{p,q}^1(\mathbb{T}) \neq W^{1,p}(\mathbb{T})$ unless p = q = 2.

Date: Winter 2020.