MATH 579 ASSIGNMENT 2

DUE TUESDAY FEBRUARY 18

- 1. Let T be an infinite collection of triangles (in \mathbb{R}^2). For any triangle $\tau \in T$, we let $h_{\tau} = \operatorname{diam}(\tau), |\tau|$ denote the area of τ , and let ρ_{τ} be the radius of the inscribed circle of τ . Show that the following conditions are equivalent.
 - (a) The ratio $h_{\tau}^2/|\tau|$ is uniformly bounded.
 - (b) The ratio h_{τ}/ρ_{τ} is uniformly bounded.
 - (c) The minimum angle of τ is uniformly bounded away from 0.

If any (hence all) of the preceding conditions holds for T, then we say that the collection T is shape regular (or non-degenerate).

- 2. Show that each of the following conditions is *not* equivalent to any of the conditions (a)–(c) in the preceding problem.
 - (a) The ratio between the maximum and minimum edge lengths of τ is uniformly bounded.
 - (b) The maximum angle of τ is uniformly bounded away from π .
- 3. Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain and let \mathscr{P} be a family of *conforming* triangulations of Ω . We say that \mathscr{P} is graded (or locally quasi-uniform, or has the K-mesh property), if

$$\sup\left\{\frac{h_{\sigma}}{h_{\tau}}:\sigma,\tau\in P,\,\overline{\sigma}\cap\overline{\tau}\neq\varnothing,\,P\in\mathscr{P}\right\}<\infty.$$

Prove that if \mathscr{P} is shape regular (as the collection $\bigcup_{P \in \mathscr{P}} P$), then it is graded. Note that shape regularity is defined at the end of Problem 1.

- 4. Let $\Omega \subset \mathbb{R}^n$ be a bounded polyhedral domain. Show that the Lagrange finite element spaces are contained in $W^{1,p}(\Omega)$ for all $1 \leq p \leq \infty$, but not in $W^{2,p}(\Omega)$ for any $p \geq 1$.
- 5. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a finite union of bounded star-shaped domains. By using the error bound for averaged Taylor polynomials in terms of truncated Riesz potentials as we have developed in class, prove the following *Sobolev inequality*

$$||u||_{L^q(\Omega)} \le C ||u||_{W^{1,p}(\Omega)}$$

for $1 \le p \le q < \infty$, and $\frac{1}{p} < \frac{1}{q} + \frac{1}{p}$. *Hint*: Use the Young inequality

$$||f * g||_{L^q(\mathbb{R}^n)} \le ||f||_{L^r(\mathbb{R}^n)} ||g||_{L^p(\mathbb{R}^n)},$$

where $1 + \frac{1}{q} = \frac{1}{p} + \frac{1}{r}$ and $1 \le p, q, r \le \infty$. (Note that the Sobolev inequality is true for the borderline case $\frac{1}{p} = \frac{1}{q} + \frac{1}{n}$ as well, which can be proved for instance by using

Date: Winter 2020.

the Hardy-Littlewood-Sobolev inequality for the Riesz potentials, or by the elementary method due to Gagliardo and Nirenberg.)

- 6. Let $\tau \subset \mathbb{R}^n$ be a simplex and let $I_{\tau} : C(\overline{\tau}) \to \mathbb{P}_{d-1}$ be the standard nodal interpolation onto the polynomials of order d. Derive a bound on the interpolation error $||u I_{\tau}u||_{W^{k,\infty}(\tau)}$ in terms of $h = \operatorname{diam} \tau$ and Sobolev (semi) norms of u. Explicitly state what parameters $(k, \gamma \text{ etc.})$ the constant may depend on.
- 7. Identify the classical boundary value problem corresponding to the following variational problem: Minimize

$$E(u) = \frac{1}{2} \int_{\Omega} |\Delta u|^2 - \int_{\Omega} fu,$$

over $u \in H^2(\Omega)$, where Ω is a bounded domain with smooth boundary, and $f \in L^2(\Omega)$.