MATH 387 ASSIGNMENT 3

DUE WEDNESDAY MARCH 14

Note: You are encouraged to do additional reading for this assignment, and strongly encouraged to type your solutions in LATEX.

1. (a) Let $A \in \mathbb{R}^{n \times m}$ be a matrix with full column rank. Show that the reduced QR factorization

$$A = QR$$

exists and is unique, where $Q \in \mathbb{R}^{n \times m}$ has orthonormal columns and R is upper triangular with positive diagonal entries.

- (b) Recall that two matrices A and B are called *similar*, if there is an invertible matrix Θ such that $\Theta A \Theta^{-1} = B$. Show that similar matrices share the same collection of eigenvalues. In particular, if A is similar to B and B is diagonal, then we can simply read off the eigenvalues of A from the diagonal entries of B. If such B exists, then we say that A is *diagonalizable*. Show that even in exact arithmetic, there is no general procedure to construct Θ for any given diagonalizable A, such that $\Theta A \Theta^{-1}$ is diagonal, where by a "procedure" we mean a finite sequence of elementary operations, including taking *n*-th roots.
- 2. (a) Describe an algorithm for QR decomposition that is based on Givens rotations. Estimate the asymptotic complexity of the algorithm, and compare it to that of the Householder QR algorithm.
 - (b) Adapt the Householder QR algorithm so that it can efficiently handle the case when $A \in \mathbb{R}^{n \times m}$ has lower bandwidth p and upper bandwidth q, i.e., when $a_{ij} = 0$ for i j > p or j i > q.
 - (c) A square matrix B is called Hessenberg if $b_{ij} = 0$ for i-j > 1, i.e., if all entries below the first sub-diagonal are zero. Come up with a procedure based on Householder reflections, that constructs an orthogonal matrix Q such that $QAQ^{\top} = B$, where A is a given square matrix, and B is a Hessenberg matrix. Show that in this setting, if A is symmetric, then we can make B tridiagonal. (In view of 1(b), this is about the best we can do for eigenvalue problems, without resorting to infinite processes.)
- 3. In this exercise, we will study the *Cholesky factorization* $A = R^{\top}R$, which is an adaptation of the LU factorization to symmetric and positive definite matrices. Recall that A is called *positive definite* if $x^{\top}Ax > 0$ for all nonzero x. Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, and justify the following steps in detail.
 - (a) All eigenvalues of A are positive.
 - (b) All principal minors of A are positive, and therefore an LU factorization of A exists.

Date: Winter 2018.

DUE WEDNESDAY MARCH 14

- (c) Let A = LU be the LU factorization, and let D be the diagonal matrix consisting of the diagonal entries of U. Then $M = D^{-1}U$ satisfies $M = L^{\top}$, and hence $A = LDL^{\top}$.
- (d) There exists a diagonal matrix Λ such that $\Lambda^2 = D$, and with $R = \Lambda L^{\top}$, we have the Cholesky factorization $A = R^{\top}R$, where R is upper triangular with positive diagonal entries.
- (e) The entries of $R = [r_{ij}]$ satisfy the bound

$$r_{ij}^2 \le a_{jj} \qquad (1 \le i, j \le n),$$

where a_{jj} are the diagonal entries of A. This indicates a strong stability property of the Cholesky factorization.

(f) The *j*-th column of the relation $A = R^{\top}R$ is

$$A_{j} = \sum_{k=1}^{j} r_{kj} (R^{\top})_{k} = \sum_{k=1}^{j-1} r_{kj} (R^{\top})_{k} + r_{jj} (R^{\top})_{j},$$

where $(R^{\top})_k$ is the k-th column of R^{\top} , or the transposed k-th row of R. Let us rewrite it as

$$r_{jj}(R^{\top})_j = A_j - \sum_{k=1}^{j-1} r_{kj}(R^{\top})_k =: v.$$
 (*)

The vector $v \in \mathbb{R}^n$ depends only on the first j-1 rows of R, and hence the j-th row of R can be computed by

$$(R^{\top})_j = \frac{1}{\sqrt{v_j}}v, \qquad (**)$$

where v_j is of course the *j*-th component of *v*. Taking the second equality of (*) as a prescription to compute *v*, the relations (*) and (**), with j = 1, ..., n, define an algorithm to compute the Cholesky factor *R*.

- (g) The purpose of the *j*-th step of the aforementioned algorithm is to compute the *j*-th row of *R*. Hence we only need to be compute the last n j + 1 components of v in (*). Taking this into account, we estimate the number multiplications in the Cholesky factorization algorithm as $\frac{1}{6}n^3 + O(n^2)$, which shows that it is twice as efficient as the Gaussian elimination.
- 4. In class, we have shown that if K is a square matrix with ||K|| < 1, then I K is invertible, and

$$I + K + K^2 + \ldots + K^m \to (I - K)^{-1}$$
 as $m \to \infty$.

We can use this fact to design an iterative method to solve Ax = b. The starting point should be to somehow write A in terms of I - K, where K has small norm. We can write A = I - (I - A) and set K = I - A, but we would need ||I - A|| < 1 to ensure convergence. As a simple way to introduce some flexibility, let us multiply Ax = b by some number $\omega \in \mathbb{R} \setminus \{0\}$, to get

$$\omega A x = \omega b,$$

 $\mathbf{2}$

and then introduce $K = I - \omega A$, yielding

$$(I - K)x = \omega b \qquad \Longleftrightarrow \qquad Ax = b$$

If $||K|| = ||I - \omega A|| < 1$, then

$$x_m := (I + K + K^2 + \ldots + K^m)\omega b \to x.$$

The iterates x_m satisfy the recurrent relation

$$x_{m+1} = \omega b + K(I + K + \dots + K^m)\omega b = \omega b + Kx_m = \omega b + (I - \omega A)x_m$$
$$= x_m + \omega (b - Ax_m),$$

which is convenient for implementation.

- (a) Assuming that $||I \omega A|| < 1$, derive an estimate on $||x_m x||$ that goes to 0 geometrically as $m \to \infty$.
- (b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate $||I \omega A||$ in terms of λ_1 , λ_n , and ω . Here λ_1 and λ_n are the smallest and the largest eigenvalues of A, respectively.
- (c) In the estimate derived in (b), optimize the choice of the parameter ω .