MATH 387 ASSIGNMENT 2

SAMPLE SOLUTIONS BY IBRAHIM AL BALUSHI

Problem 4

A matrix $A = [a_{ik}] \in \mathbb{R}^{n \times n}$ is called *symmetric* if $a_{ik} = a_{ki}$ for all i, k, and is called *positive definite* if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$, with $x^T A x = 0$ only when x = 0. Suppose that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

- (a) Show that $a_{ii} > 0$ for all *i*.
- (b) Show that $\max_i a_{ii} = \max_{i,k} |a_{ik}|$.
- (c) Let $A_k = [a_{ij}^{(k)}]$ be the matrix that enters in the k-th step of the Gaussian elimination process (with $A_1 = A$). Show that for each k = 1, ..., n, the submatrix $[a_{ij}^{(k)}]_{k \leq i,j \leq n}$ is symmetric and positive definite. Conclude that Gaussian elimination does not break down (hence in particular, that A is invertible).
- (d) Show that $a_{ii}^{(k)} \leq a_{ii}^{(k-1)}$ for $k \leq i \leq n$ and for all k = 2, 3, ..., n. Conclude that for Gaussian elimination in exact arithmetics, the growth factor is 1. Note that in exact arithmetics, the growth factor would be defined by

$$g(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|}.$$

SOLUTION

(a) Let $e_j \in \mathbb{R}^n$ be *j*th canonical basis vector for \mathbb{R}^n .

$$\boldsymbol{e}_j^T A \boldsymbol{e}_j = a_{jj} > 0 \quad \forall j = 1, ..., n.$$

(b) Let $x = e_i - \alpha e_j$ for some $\alpha \in \mathbb{R}$.

$$x^T A x = \boldsymbol{e}_i^T A(\boldsymbol{e}_i - \alpha \boldsymbol{e}_j) - \alpha \boldsymbol{e}_j^T A(\boldsymbol{e}_i - \alpha \boldsymbol{e}_j) = a_{ii} - 2\alpha a_{ij} + \alpha^2 a_{jj}.$$

Suppose that some $i \neq j$ the quantity $|a_{ij}|$ is maximal. The entry a_{ij} cannot be zero; otherwise it will contradict the assumption.

$$x^T A x = a_{ii} - \alpha a_{ij} + \alpha (\alpha a_{jj} - a_{ji})$$

If a_{ij} is positive then pick $\alpha = 1$ and obtain

$$x^{T}Ax = (a_{ii} - a_{ij}) + (a_{jj} - a_{ji}) < 0$$

Date: Winter 2016.

whereas if a_{ji} is negative pick $\alpha = -1$ and obtain

$$x^T A x = a_{ii} + a_{ij} + (a_{jj} + a_{ji}) < 0$$

m

(because diagonal entries are always positive).

(c) We may write
$$L_j = I - \ell_j \boldsymbol{e}_j^T$$
 where $\ell_j = \left(\mathbf{0}, \frac{x_{j+1,j}}{x_{jj}}, ..., \frac{x_{nj}}{x_{jj}}\right)^T \in \mathbb{R}^n$.
 $L_j L_{j+1} = (I - \ell_j \boldsymbol{e}_j^T)(I - \ell_{j+1} \boldsymbol{e}_{j+1}^T) = I - \ell_j \boldsymbol{e}_j^T - \ell_{j+1} \boldsymbol{e}_{j+1}^T$

because $\boldsymbol{e}_{j}^{T}\ell_{j+1} = 0$. Therefore at any k - 1th step,

$$L_1 \cdots L_{k-1} = I - \ell_j \boldsymbol{e}_j^T - \cdots - \ell_{k-1} \boldsymbol{e}_{k-1}^T$$

and $[L_1 \cdots L_{k-1}]_{k \leq i,j \leq n} = \mathbf{O} \in \mathbb{R}^{k \times k}$ zero matrix, so the symmetry of kth step submatrix $[a_{ij}^{(k)}]_{k \leq i,j \leq n}$ remains unchanged. As for positive definiteness, it follows from the fact

$$x^T A x \ge 0 \ \forall x \in \{x \in \mathbb{R}^n : x_j = 0 \ \forall 1 \le j < k\}.$$

It follows that at each step $a_{ii}^{(k)} > 0$ for every $k \leq i \leq n$ and therefore the resulting matrix $A_n = LA$, with $L = L_1 \cdots L_n$, is upper triangular with non-zero diagonal entries; det (A_n) is nonzero and $A^{-1} = A_n^{-1}L^{-1}$.

(d) By direct computation: Let $k \leq i \leq n$. $[\ell_{k-1} \boldsymbol{e}_{k-1}^T]_{ii} = a_{i,k-1}^{(k-1)} / a_{k-1,k-1}^{(k-1)}$

$$\begin{aligned} a_{ii}^{(k)} &= [L_{k-1}A_{k-1}]_{ii} \\ &= a_{ii}^{(k-1)} - \frac{a_{i,k-1}^{(k-1)}}{a_{k-1,k-1}^{(k-1)}} a_{i,k-1}^{(k-1)} \\ &= a_{ii}^{(k-1)} - \frac{\left(a_{i,k-1}^{(k-1)}\right)^2}{a_{k-1,k-1}^{(k-1)}} \\ &\leqslant a_{ii}^{(k-1)}. \end{aligned}$$

It follows that

$$g(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \leqslant \frac{\max_{i,j} |a_{ij}^{(1)}|}{\max_{i,j} |a_{ij}|} = 1$$

Problem 6

(a) Let U be an upper triangular matrix with no zeroes on its diagonal. Let $\tilde{x} \in \mathbb{R}^n$ be the result of back-substitution applied to the system Ux = b in floating point arithmetic (with the "machine epsilon" $\varepsilon > 0$). Show that there exists an upper triangular matrix \tilde{U} , such that $\tilde{U}\tilde{x} = b$ in exact arithmetics and that the entries of $\tilde{U} - U$ can be bounded in absolute value by an expression depending only on ε , n, and U. Argue that back-substitution is backward stable.

(b) Recall that Gaussian elimination in floating point arithmetics produces matrices \tilde{L} and \tilde{U} , where \tilde{L} is lower triangular with unit diagonal and \tilde{U} is upper triangular, satisfying

$$\|\tilde{L}\tilde{U} - A\|_{\infty} \leq \frac{3ng\varepsilon}{(1-\varepsilon)^2} \|A\|_{\infty}$$

Turn this into the following bound

$$\|\tilde{L}\tilde{U} - A\| \leq C_n g\varepsilon \|A\|, \quad \text{for all small } \varepsilon,$$

where $\|\cdot\|$ is the matrix norm induced by the Euclidean norm in \mathbb{R}^n . In particular, try get a near-optimal value for the constant C_n .

(c) By combining the preceding two results, perform a backward error analysis of the Gaussian elimination process for solving the equation Ax = b. That is, complete the analysis we did in class by taking into account the round-off errors of the forward elimination (solution of $\tilde{L}y = b$) and back substitution (solution of $\tilde{U}x = y$).

SOLUTION

(a) Entries of matrix $U \in \mathbb{R}^{n \times n}$ are given by u_{ij} . Backward substitution algorithm is given by

$$x_{j} = \left(b_{j} - \sum_{k=j+1}^{n} x_{k} u_{jk} \right) / u_{jj}, \quad j = n, n-1, ..., 1.$$

Let $y_j = b_j - \sum_{k=j+1}^n x_k u_{jk}$. Per iteration we do $\tilde{x}_j = y_j \oplus u_{jj}$. Axiom on floating point operations: for some $|\varepsilon_j| \leq \varepsilon_{\text{mac}}$ we have $\tilde{x}_j = \frac{y_j}{u_{jj}}(1 + \varepsilon_j)$. We want to quantify a perturbation matrix δU of U. Note that

$$1 + \varepsilon_j = \frac{1}{1 + \varepsilon'_j} \iff \varepsilon'_j = \frac{-\varepsilon_j}{1 + \varepsilon_j}$$

then $\varepsilon'_j = -\varepsilon_j \left(\frac{1}{1-(-\varepsilon_j)}\right) = -\varepsilon_j + \mathcal{O}(\varepsilon_j^2)$ which implies $|\varepsilon'_j| \leq \varepsilon_{\text{mac}} + \mathcal{O}(\varepsilon_{\text{mac}}^2)$. So if $y = \frac{1}{x}(1+\varepsilon)$ then $y = \frac{1}{x(1+\varepsilon')}$ for $\varepsilon' = -\varepsilon + \mathcal{O}(\varepsilon^2)$. The computation goes as follows:

$$\tilde{x}_n = b_n \oplus u_{nn} = \frac{b_n}{u_{nn}} (1 + \varepsilon_1)$$

where by the previous remark may be written \tilde{x}_n as $\frac{b_n}{u_{nn}(1+\varepsilon_1')}$ for some $|\varepsilon_1'| \leq \varepsilon_{\text{mac}} + \mathcal{O}(\varepsilon_{\text{mac}}^2)$.

$$\tilde{x}_{n-1} = [b_{n-1} \ominus (\tilde{x}_n \otimes u_{n-1,n})] \oplus u_{n-1,n-1}$$

We may write $b_{n-1} \ominus \tilde{\Sigma}_{n-1} = (b_{n-1} - \tilde{\Sigma}_{n-1})(1 + \epsilon_1)$ and $\tilde{\Sigma}_{n-1} = \tilde{x}_n \otimes u_{n-1,n} = \tilde{x}_n u_{n-1,n}(1 + \eta_1)$ so

$$\tilde{x}_{n-1} = \frac{b_{n-1} - \tilde{x}_n u_{n-1,n} (1+\eta_1)}{u_{n-1,n-1} (1+\varepsilon_2') (1+\varepsilon_1')}.$$

The algorithm terminates for j = 1.

$$\tilde{x}_1 = \left[b_1 \ominus \left(\bigoplus_{k=2}^n \tilde{x}_k \otimes u_{1k} \right) \right] \oplus u_{11} = \left[b_1 \ominus \left(\bigoplus_{k=2}^n \tilde{x}_k \otimes u_{1k} \right) \right] \Big/ u_{11} (1 + \varepsilon_1')$$

It is important to recognize the nesting nature of carrying a sequence of floating point operations when we deal with $\bigoplus_{k=2}^{n}$. Observe that

$$a \oplus b \oplus c = (a \oplus b) \oplus c$$
$$= [(a+b)(1+\epsilon_1)] \oplus c$$
$$= ([(a+b)(1+\epsilon_1)] + c)(1+\epsilon_2).$$

Rewrite into

$$b_1 \ominus \left[\bigoplus_{k=2}^n \tilde{x}_k \otimes u_{1k} \right] = \left[b_1 \ominus (\tilde{x}_2 \otimes u_{12}) \right] \bigoplus_{k=3}^n \tilde{x}_k \otimes u_{1k}$$

and $b_1 \ominus (\tilde{x}_2 \otimes u_{12}) = (b_1 - \tilde{x}_2 \otimes u_{12})(1 + \epsilon_2)$ so we rewrite into

$$= \left[b_1 - \tilde{x}_2 \otimes u_{12} \right] \bigoplus_{k=3}^n \tilde{x}_k \otimes u_{1k} (1 + \epsilon_2) / (1 + \epsilon_2') \quad \text{for } |\epsilon_2'| \leq \varepsilon_{\text{mac}} + \mathcal{O}(\varepsilon_{\text{mac}}^2).$$

We arrive at

$$\tilde{x}_1 = \left\{ \left[b_1 - \tilde{x}_2 \otimes u_{12} \right] \bigoplus_{k=3}^n \tilde{x}_k \otimes u_{1k} (1 + \epsilon_2) \right] \right\} / u_{11} (1 + \epsilon_1') (1 + \epsilon_2').$$

Again,

$$\tilde{x}_1 = \left\{ \left[b_1 - \tilde{x}_2 \otimes u_{12} - \tilde{x}_3 \otimes u_{13}(1+\epsilon_2) \right] \bigoplus_{k=4}^n \tilde{x}_k \otimes u_{1k}(1+\epsilon_2)(1+\epsilon_3) \right] \right\}$$
$$/ u_{11}(1+\epsilon_1')(1+\epsilon_2')(1+\epsilon_3').$$

We arrive at (we have included the contribution from \otimes):

$$\widehat{x}_1 = \left\{ b_1 - \sum_{k=2}^n u_{1k} \widetilde{x}_k (1+\eta_k) \prod_{j=2}^{k-1} (1+\epsilon_j) \right\} / u_{11} (1+\epsilon_1') \prod_{k=2}^n (1+\epsilon_k').$$

which we can rewrite to

$$u_{11}(1+\varepsilon_1')\prod_{k=2}^n (1+\epsilon_k')\tilde{x}_1 + \sum_{k=2}^n u_{1k}\tilde{x}_k(1+\eta_k)\prod_{j=1}^{k-1} (1+\epsilon_j) = b_1.$$

which we can rewrite to

$$u_{11}(1+\varepsilon_1')\prod_{k=2}^n (1+\epsilon_k')\tilde{x}_1 + \sum_{k=2}^n u_{1k}\tilde{x}_k(1+\eta_k)\prod_{j=2}^{k-1} (1+\epsilon_j) = b_1.$$

$$(1 + \varepsilon_1')(1 + \epsilon_2') \cdots (1 + \epsilon_n')u_{11}\tilde{x}_1 + (1 + \eta_2)u_{12}\tilde{x}_2 + (1 + \eta_3)(1 + \epsilon_2)u_{13}\tilde{x}_3 + \cdots + (1 + \eta_n)(1 + \epsilon_2) \cdots (1 + \epsilon_{n-1})u_{1n}\tilde{x}_n = b_1$$

We note that all $|\varepsilon_i|, |\epsilon_i|, |\eta_i| \leq \varepsilon_{\text{mac}}$ and $|\varepsilon'_i| \leq \varepsilon_{\text{mac}} + \mathcal{O}(\varepsilon_{\text{mac}}^2)$ and for sufficiently small ε we always have $\prod_{i=1}^m (1+\varepsilon) = 1 + m\varepsilon + \mathcal{O}(\varepsilon^2)$. In light of the expression $\tilde{U}\tilde{x} = (\delta U + U)\tilde{x} = b$, we have

$$\frac{|\delta U|}{|U|} \leq \underbrace{\begin{pmatrix} n & 1 & 2 & \cdots & n-2 & n-1\\ & n-1 & 1 & \cdots & n-3 & n-2\\ & & \ddots & \vdots & \vdots\\ & & & 1 & 2\\ & & & & 1 & 2\\ & & & & 1 & 2\\ & & & & & 1 & 2\\ & & & & & 1 & 2\\ & & & & & 1 & 2\\ & & & & & 1 & 2\\ & & & & & & 1 & 2\\ & & & & 1 & 2\\ & & & & 1 & 2\\ & & & & 1 & 2$$

where by $|\cdot|$ and / we mean term-wise absolute value and division of entries. $|\tilde{U} - U| = |\delta U|$ so

$$\tilde{U} - U| = \alpha(n) \cdot |U|\varepsilon_{\text{mac}} + \mathcal{O}(\varepsilon_{\text{mac}}^2) \cdot |U|$$

where the \cdot is also taken as term-wise multiplication. (b) We first show that $||M||_{\infty} \leq \sqrt{n} ||M|| \leq n ||M||_{\infty}$ for $n \times n$ matrices. Recall that for $x \in \mathbb{R}^n$ we have $||x||_{\infty} \leq ||x|| \leq \sqrt{n} ||x||_{\infty}$

$$||M||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |M_{ij}|$$

Then

$$\frac{1}{/n} \|\tilde{L}\tilde{U} - A\| \leqslant \|\tilde{L}\tilde{U} - A\|_{\infty} \leqslant \frac{3ng\varepsilon}{(1-\varepsilon)^2} \|A\|_{\infty} \leqslant \frac{3ng\varepsilon}{(1-\varepsilon)^2} \sqrt{n} \|A\|$$

 $\frac{1}{\sqrt{n}} \| L U - A \| \leq \| \tilde{L} \tilde{U}$ and $\frac{\varepsilon}{(1-\varepsilon)^2} = \varepsilon (1 - 2\varepsilon + \mathcal{O}(\varepsilon^2))$ so

$$\|\tilde{L}\tilde{U} - A\| \leqslant 3n^2 g\varepsilon \|A\|.$$

(c) The exact solution x satisfies

$$LUx = b.$$

When we solve this by Gaussian elimination, we perform the following steps:

- Perform the LU decomposition in inexact arithmetics: $\tilde{L}\tilde{U} = A + E$. By (b), the size of E can be estimated as $||E|| = O(\varepsilon)$.
- Forward elimination: Solve $\tilde{L}y = b$ inexactly, as $(\tilde{L} + \delta L)\tilde{y} = b$. By (a), the size of δL can be estimated as $\|\delta L\| = O(\varepsilon)$.
- Backward substotution: Solve $\tilde{U}z = \tilde{y}$ inexactly, as $(\tilde{U} + \delta U)\tilde{x} = \tilde{y}$. This solution \tilde{x} is the final result. By (a), the size of δU can be estimated as $\|\delta U\| = O(\varepsilon)$.

If we combine the aforementioned steps, we get

$$(L+\delta L)(U+\delta U)\tilde{x}=b,$$

or

$$(LU + \delta LU + L\delta U + \delta L\delta U)\tilde{x} = LUx.$$

This can be rearranged to yield

$$LU(x - \tilde{x}) = (E + \delta L \tilde{U} + L \delta U + \delta L \delta U)\tilde{x}.$$

Since each of E, δL , δU is of size $O(\varepsilon)$, we conclude that $||x - \tilde{x}|| = O(\varepsilon)$.

Problem 7

In class, we have shown that if K is a square matrix with ||K|| < 1, then I - K is invertible, and

$$I + K + K^2 + \ldots + K^m \to (I - K)^{-1}$$
 as $m \to \infty$.

We can use this fact to design an iterative method to solve Ax = b. The starting point should be to somehow write A in terms of I - K, where K has small norm. We can write A = I - (I - A) and set K = I - A, but we would need ||I - A|| < 1 to ensure convergence. As a simple way to introduce some flexibility, let us multiply Ax = b by some number $\omega \in \mathbb{R} \setminus \{0\}$, to get

$$\omega Ax = \omega b,$$

and then introduce $K = I - \omega A$, yielding

$$(I - K)x = \omega b \quad \iff \quad Ax = b.$$

If $||K|| = ||I - \omega A|| < 1$, then

$$x_m := (I + K + K^2 + \ldots + K^m)\omega b \to x.$$

The iterates x_m satisfy the recurrent relation

$$x_{m+1} = \omega b + K(I + K + \dots + K^m)\omega b = \omega b + Kx_m = \omega b + (I - \omega A)x_m$$
$$= x_m + \omega (b - Ax_m),$$

which is convenient for implementation.

- (a) Assuming that $||I \omega A|| < 1$, derive an estimate on $||x_m x||$ that goes to 0 geometrically as $m \to \infty$.
- (b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate $||I \omega A||$ in terms of λ_1 , λ_n , and ω . Here λ_1 and λ_n are the smallest and the largest eigenvalues of A, respectively.
- (c) In the estimate derived in (b), optimize the choice of the parameter ω .

Solution

(a) We have

$$x_m - x = \omega b + (I - \omega A)x_{m-1} - x$$

= $\omega A x + (I - \omega A)x_{m-1} - x$
= $(I - \omega A)x_{m-1} - (I - \omega A)x$
= $(I - \omega A)(x_{m-1} - x).$

Then for $0 < \alpha < 1$

$$||x_m - x|| \le ||I - \omega A|| ||x_{m-1} - x|| \le \alpha ||x_{m-1} - x||, \quad (m \ge 1).$$

Then

$$|x_m - x|| \le \alpha ||x_{m-1} - x|| \le \alpha^2 ||x_{m-2} - x|| \le \dots \le \alpha^m ||x_0 - x||.$$

(b) For invertible matrix Q with unit norm we write $A = QDQ^{-1}$ for some diagonal matrix D. Then

$$I - \omega A = QQ^{-1} - \omega Q\Lambda Q^{-1} = Q(I - \omega\Lambda)Q^{-1}.$$

If Δ is any diagonal matrix with entries Δ_i then $\|\Delta\| = \max_i |\Delta_i|$. Therefore

$$||I - \omega A|| \le ||Q|| ||I - \omega D|| ||Q^{-1}|| = \max\{|1 - \omega \lambda_1|, |1 - \omega \lambda_n|\}.$$

(c) Look at the function

$$f(\omega) = \max\{|1 - \omega\lambda_1|, |1 - \omega\lambda_n|\}$$
$$= \frac{1}{2} \left(|1 - \omega\lambda_1| + |1 - \omega\lambda_n| + ||1 - \omega\lambda_1| - |1 - \omega\lambda_n||\right)$$

The minimum occurs when $|1 - \omega \lambda_1| = |1 + \omega \lambda_n|$, which corresponds to $\omega = \frac{2}{\lambda_1 + \lambda_2}$.