MATH 387 ASSIGNMENT 2

SAMPLE SOLUTIONS BY IBRAHIM AL BALUSHI

PROBLEM 4

A matrix A = [a;] € R™™ is called symmetric if a;; = ay; for all i, k, and is called
positive definite if 27 Az > 0 for all z € R”, with 27 Az = 0 only when = = 0. Suppose that
A e R™" is symmetric and positive definite.

(a) Show that a;; > 0 for all i.
(b) Show that max; a; = max; i |aik|.

(c) Let Ap = [agf)] be the matrix that enters in the k-th step of the Gaussian elimination

process (with A; = A). Show that for each k = 1,...,n, the submatrix [(I,L(-;-C)]k;gi7j<n is

symmetric and positive definite. Conclude that Gaussian elimination does not break
down (hence in particular, that A is invertible).

(d) Show that agf) < al(f_l) for k <i¢<mnandforall k=2,3,...,n. Conclude that for
Gaussian elimination in exact arithmetics, the growth factor is 1. Note that in exact
arithmetics, the growth factor would be defined by

maxi,jk Iagf)\
g(A) = ————.
max;,j |ai;|
SOLUTION
(a) Let e; € R™ be jth canonical basis vector for R™.
e]TAej = aj; > 0 Vj = 1, ey N

(b) Let = = e; — ce; for some o € R.

2T Az = eiTA(ei — aej) — ae?A(ei — O[ej) = Qi — 2aaij + a2ajj.

Suppose that some ¢ # j the quantity |a;;| is maximal. The entry a;; cannot be zero;
otherwise it will contradict the assumption.

T Az = ai; — aaij + aaaj; — aji)
If a;; is positive then pick a = 1 and obtain

T Az = (a; — al-]-) + (Cij - aji) <0
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whereas if aj; is negative pick o = —1 and obtain
$TA1‘ = a4 + Qij + ((Ijj + aji) <0
(because diagonal entries are always positive).

o AT
(c) We may write L; = I — Eje]T where (; = (O, Titli . Iﬂ) e R".

Tjj T T
LiLjt1= (- Eje] (I — €J+1e]+1) I—1; e €j+1ef+1
because e?ﬁjﬂ = 0. Therefore at any k — 1th step,
Ly Lyy=1—1lje] — - —lp_1€f_,
and [Li - Li—1]k<ij<n = O € RF** zero matrix, so the symmetry of kth step submatrix
[agf)] k<i,j<n Temains unchanged. As for positive definiteness, it follows from the fact

tTAz >0Vre{reR" 2, =0Vl <j <k}
(k)

It follows that at each step a,;;” > 0 for every k < i < n and therefore the resulting matrix
A, =LA, with L = Ly --- Ly, is upper triangular Wlth non-zero diagonal entries; det(A,,)
is nonzero and A=! = A-1L1

(d) By direct computation: Let k <i < n. [{p_1el ] = 112 11)/

k

al) = (L1 A1l

’l’l

k—1
(k—1) ai,k—l) (k—1)

= QG F-1)  Yik-1
Ap—1,k—1
(i)
(k=1) 1,k—1
= 4 h—1)
A 1k-1
E—1
< aF .

i1

It follows that
max; j i |a(.l.€)| max; ; |a(1)|
g(A) = - < E A}

~
max;;|a;;|  max;jla]

PROBLEM 6

(a) Let U be an upper triangular matrix with no zeroes on its diagonal. Let € R™ be the
result of back-substitution applied to the system Uz = b in floating point arithmetic
(with the “machine epsilon” € > 0). Show that there exists an upper triangular matrix
U, such that Uz = b in exact arithmetics and that the entries of U — U can be bounded
in absolute value by an expression depending only on ¢, n, and U. Argue that back-
substitution is backward stable.
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(b) Recall that Gaussian elimination in floating point arithmetics produces matrices L and
U, where L is lower triangular with unit diagonal and U is upper triangular, satisfying

3nge

= oy 1Al

Turn this into the following bound
|LU — A|| < Crge| Al for all small ¢,

where | - | is the matrix norm induced by the Euclidean norm in R™. In particular, try
get a near-optimal value for the constant C,,.

(c) By combining the preceding two results, perform a backward error analysis of the
Gaussian elimination process for solving the equation Az = b. That is, complete the
analysis we did in class by taking into account the round-off errors of the forward
elimination (solution of Ly = b) and back substitution (solution of Uz = ).

SOLUTION

(a) Entries of matrix U € R™*™ are given by u;;. Backward substitution algorithm is given
by

n
Z TpUjk /Ujj, j zn,n—l,...,l.
k=j+1
__ 1. __\™M . 3 ; Fooo— . i 1
Let y; = Dk —j+1 ThUjk- Per iteration we do Z; = y; ® u;;. Axiom on floating

point operatlons for some |ej| < emac we have Z; = 22(1 4+ ¢;). We want to quantify a
27
perturbation matrix U of U. Note that

1 L= A
e L+¢ DR 1+¢;
then ¢} = —¢; (ﬁ) = —&j + O(&3) which implies [¢j| < emac + O(epe)- So if
y=1(1+¢) theny = (1+€) for & = —e + O(£?). The computation goes as follows:

bn
Ty = by @ Upy = 7(1 +51)

nn

by,
Unn (1+€])

Tp—1 = [bn—l © (-fz'n ® Un—l,n)] S) Unp—1,n—1

We may write b,_1OX,_1 = (bp—1 —in,l)(l +€1) and Yo = Tn®Un—1n = TnUn—1,n(1+
71) SO

where by the previous remark may be written Z,, as for some |} | < emac+O(e2,.)-

7 _ bp—1 — -i‘nunfl,n(l =+ 771)
T Ui (L )1+ €))




4 SAMPLE SOLUTIONS BY IBRAHIM AL BALUSHI

The algorithm terminates for j = 1.

= [bl o ((—T} Tk ®u1k>] Quir = [b1 © ((—T} fk@’ulk)] /un(l +e7)
k=2 k=2

It is important to recognize the nesting nature of carrying a sequence of floating point
operations when we deal with @) _,. Observe that

a®b®c=(a®b)Dc
=[(a+b)(1+e)]Bc
= ([(a+b)(1+e1)] +c)(1+ e2).

Rewrite into

k=3
and b1 © (T2 ® u12) = (b1 — T2 ® u12)(1 + €2) so we rewrite into

b1 © [(—B%@um] [51@ To ®ui2 } O Z Qua
)

= [bl — X9 ®U12] @xk ®’U,1k(1 + 62)/(1 + 6/2) for ’62‘ Emac T O( )
k=3

We arrive at
T = {[bl — X2 ®’UJ12:| @ k@ uik(l + 62):| }/Ull(l + 8,1)(1 + 6,2)
Again,

z = {[ln — T2 ®@ui2 — T3 ®@u13(1 + 62)} O i @uik(l+e)(1+ 63)}}
k=4

/U11(1 + Ell)(l + 6/2)(1 + eé)

We arrive at (we have included the contribution from ®):

n - n
§1={bl—zulk§k(1+7]kH1+€J}/U11 + &) Hl—FEk
k=2 =2 k=2

which we can rewrite to
k—1

n
w1 (1 + €}) H1+6kx1+2u1kxk1+77k) (1+¢€) =01
k=2 k=2

<.
Il
_

which we can rewrite to

T

1

n
u11 +€1 Hl—i—ekxl-l—ZulkﬂUkl‘f‘ﬁk) (1+€j):b1-
k=2 k=2

<.
Il
N}
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(L+e)d +ep) - (1 + e )unnds
+ (1 4 n2)ui2Zs
+ (14 n3)(1 + e2)ui32s
T
+ (@ +m)d+e) (1 +en1)un@y = b1

We note that all ||, €], |7i] < €mac and |€ | < emac+0O(e2,,.) and for sufficiently small £ we
always have [ " (1 +¢) = 1+me +O(e?). In light of the expression Uz = (6U +U)Z = b,
we have

n 1 2 - n—-2 n-1
n—-11 -+ n—-3 n—-2
|(5U] . :
|U’ 1 €mac + O( mac)
2 1
1
a(n)
where by |-| and / we mean term-wise absolute value and division of entries. |U—U| = |6U]|

SO
U~ U] = a(n) - [Ulemac + O(etmac) - U]
where the - is also taken as term-wise multiplication.

(b) We first show that | M|, < /n|M| < n|M|s for n x n matrices. Recall that for
z € R" we have 2] < |io] < vzl

|M]oo = max Z | M;;
=1

1<ig<n
Then 1 -~ ~ 3nge 3nge
%HLU — Al < [LU - Al < ﬁ\lAHoo Saoop — 5 vn[A|
and ﬁ =¢e(1 —2e+ O(e?)) so

L0 — A] < 3n%ge] A
(c) The exact solution x satisfies
LUz =b.
When we solve this by Gaussian elimination, we perform the following steps:
e Perform the LU decomposition in inexact arithmetics: LU = A + E. By (b), the

size of E can be estimated as |E| = O(e).
e Forward elimination: Solve Ly = b inexactly, as (L + 6L)§ = b. By (a), the size of
0L can be estimated as [|[0L| = O(e).

e Backward substotution: Solve Uz = § inexactly, as (U + 0U)Z = g. This solution
T is the final result. By (a), the size of 60U can be estimated as [|0U| = O(e).
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If we combine the aforementioned steps, we get
(L4 6L)(U + 6U)& = b,
or
(LU 4 6LU + LoU + 6LSU)& = LUz
This can be rearranged to yield
LU(z — &) = (E 4+ 6LU + LOU + 6L6U)i.
Since each of E, 0L, dU is of size O(e), we conclude that |z — z| = O(e).

PROBLEM 7

In class, we have shown that if K is a square matrix with |K|| < 1, then [ — K is
invertible, and

I+K+K*+...+K" > (I-K)! as m — .

We can use this fact to design an iterative method to solve Az = b. The starting point
should be to somehow write A in terms of I — K, where K has small norm. We can write
A=1—(I—-A)andset K =1—A, but we would need |/ — A| < 1 to ensure convergence.
As a simple way to introduce some flexibility, let us multiply Az = b by some number
w € R\{0}, to get

wAx = wb,
and then introduce K = I — wA, yielding
(I — K)x = wb — Az =b.
If |K| =|I—wA| <1, then
T o= (I +K+K*+ ...+ K™wb — .
The iterates x,, satisfy the recurrent relation
Tme1 =wb+ KT+ K+ ...+ K™)wb =wb+ Kz = wb+ (I —wA)x,y,
= Tm + w(b— Azy),
which is convenient for implementation.

(a) Assuming that |[I—wA| < 1, derive an estimate on |z, —x|| that goes to 0 geometrically
as m — o0.

(b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate
[I —wA| in terms of A1, Ay, and w. Here A\; and A, are the smallest and the largest
eigenvalues of A, respectively.

(c¢) In the estimate derived in (b), optimize the choice of the parameter w.
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SOLUTION

(a) We have
Tm—x=wb+ ([ —wA)ry_1 —x
=wAzr + (I —wA)xpm—1 —
= —-wA)zy—1— I —-wA)zx
= (I —wA)(zpm—1 — ).
Then for 0 <a <1
[ — 2l < IT = wAl |21 — 2] < altm 1 — 2], (m > 1)

Then

ltm — 2| < e zm1 - 2| < ®am—2 — 2] < -+ < @™ |wo — z].
(b) For invertible matrix ¢ with unit norm we write A = QDQ~" for some diagonal matrix
D. Then

I —wA=QQ ' —wQAQ™! = QI —wN)Q™L.
If A is any diagonal matrix with entries A; then |A| = max; |A;|. Therefore
|1 = wAl < QI - wD||Q7"| = max{|l — wAi], |1 — wAnl}.
(c) Look at the function
f(w) = max{|l —wAi], |1 — wAn}

1
- 2(|1w>\1| F 1l —wAp] + |1 —wAi| =1 w)\n|)

The minimum occurs when |1 — wA;| = |1 + wA,|, which corresponds to w = ﬁ
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