
MATH 387 ASSIGNMENT 2

SAMPLE SOLUTIONS BY IBRAHIM AL BALUSHI

Problem 4

A matrix A “ raiks P Rnˆn is called symmetric if aik “ aki for all i, k, and is called
positive definite if xTAx ě 0 for all x P Rn, with xTAx “ 0 only when x “ 0. Suppose that
A P Rnˆn is symmetric and positive definite.

(a) Show that aii ą 0 for all i.
(b) Show that maxi aii “ maxi,k |aik|.

(c) Let Ak “ ra
pkq
ij s be the matrix that enters in the k-th step of the Gaussian elimination

process (with A1 “ A). Show that for each k “ 1, . . . , n, the submatrix ra
pkq
ij skďi,jďn is

symmetric and positive definite. Conclude that Gaussian elimination does not break
down (hence in particular, that A is invertible).

(d) Show that a
pkq
ii ď a

pk´1q
ii for k ď i ď n and for all k “ 2, 3, . . . , n. Conclude that for

Gaussian elimination in exact arithmetics, the growth factor is 1. Note that in exact
arithmetics, the growth factor would be defined by

gpAq “
maxi,j,k |a

pkq
ij |

maxi,j |aij |
.

Solution

(a) Let ej P Rn be jth canonical basis vector for Rn.

eTj Aej “ ajj ą 0 @j “ 1, ..., n.

(b) Let x “ ei ´ αej for some α P R.

xTAx “ eTi Apei ´ αejq ´ αe
T
j Apei ´ αejq “ aii ´ 2αaij ` α

2ajj .

Suppose that some i ‰ j the quantity |aij | is maximal. The entry aij cannot be zero;
otherwise it will contradict the assumption.

xTAx “ aii ´ αaij ` αpαajj ´ ajiq

If aij is positive then pick α “ 1 and obtain

xTAx “ paii ´ aijq ` pajj ´ ajiq ă 0
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whereas if aji is negative pick α “ ´1 and obtain

xTAx “ aii ` aij ` pajj ` ajiq ă 0

(because diagonal entries are always positive).

(c) We may write Lj “ I ´ `je
T
j where `j “

´

0,
xj`1,j

xjj
, ...,

xnj

xjj

¯T
P Rn.

LjLj`1 “ pI ´ `je
T
j qpI ´ `j`1e

T
j`1q “ I ´ `je

T
j ´ `j`1e

T
j`1

because eTj `j`1 “ 0. Therefore at any k ´ 1th step,

L1 ¨ ¨ ¨Lk´1 “ I ´ `je
T
j ´ ¨ ¨ ¨ ´ `k´1e

T
k´1

and rL1 ¨ ¨ ¨Lk´1skďi,jďn “ O P Rkˆk zero matrix, so the symmetry of kth step submatrix

ra
pkq
ij skďi,jďn remains unchanged. As for positive definiteness, it follows from the fact

xTAx ě 0 @x P tx P Rn : xj “ 0 @1 ď j ă ku.

It follows that at each step a
pkq
ii ą 0 for every k ď i ď n and therefore the resulting matrix

An “ LA, with L “ L1 ¨ ¨ ¨Ln, is upper triangular with non-zero diagonal entries; detpAnq
is nonzero and A´1 “ A´1n L´1.

(d) By direct computation: Let k ď i ď n. r`k´1e
T
k´1sii “ a

pk´1q
i,k´1 {a

pk´1q
k´1,k´1

a
pkq
ii “ rLk´1Ak´1sii

“ a
pk´1q
ii ´

a
pk´1q
i,k´1

a
pk´1q
k´1,k´1

a
pk´1q
i,k´1

“ a
pk´1q
ii ´

´

a
pk´1q
i,k´1

¯2

a
pk´1q
k´1,k´1

ď a
pk´1q
ii .

It follows that

gpAq “
maxi,j,k |a

pkq
ij |

maxi,j |aij |
ď

maxi,j |a
p1q
ij |

maxi,j |aij |
“ 1.

Problem 6

(a) Let U be an upper triangular matrix with no zeroes on its diagonal. Let x̃ P Rn be the
result of back-substitution applied to the system Ux “ b in floating point arithmetic
(with the “machine epsilon” ε ą 0). Show that there exists an upper triangular matrix

Ũ , such that Ũ x̃ “ b in exact arithmetics and that the entries of Ũ´U can be bounded
in absolute value by an expression depending only on ε, n, and U . Argue that back-
substitution is backward stable.
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(b) Recall that Gaussian elimination in floating point arithmetics produces matrices L̃ and

Ũ , where L̃ is lower triangular with unit diagonal and Ũ is upper triangular, satisfying

}L̃Ũ ´A}8 ď
3ngε

p1´ εq2
}A}8.

Turn this into the following bound

}L̃Ũ ´A} ď Cngε}A}, for all small ε,

where } ¨ } is the matrix norm induced by the Euclidean norm in Rn. In particular, try
get a near-optimal value for the constant Cn.

(c) By combining the preceding two results, perform a backward error analysis of the
Gaussian elimination process for solving the equation Ax “ b. That is, complete the
analysis we did in class by taking into account the round-off errors of the forward
elimination (solution of L̃y “ b) and back substitution (solution of Ũx “ y).

Solution

(a) Entries of matrix U P Rnˆn are given by uij . Backward substitution algorithm is given
by

xj “

¨

˝bj ´
n
ÿ

k“j`1

xkujk

˛

‚

N

ujj , j “ n, n´ 1, ..., 1.

Let yj “ bj ´
řn
k“j`1 xkujk. Per iteration we do x̃j “ yj c ujj . Axiom on floating

point operations: for some |εj | ď εmac we have x̃j “
yj
ujj
p1 ` εjq. We want to quantify a

perturbation matrix δU of U . Note that

1` εj “
1

1` ε1j
ðñ ε1j “

´εj
1` εj

then ε1j “ ´εj

´

1
1´p´εjq

¯

“ ´εj ` Opε2j q which implies |ε1j | ď εmac ` Opε2macq. So if

y “ 1
xp1` εq then y “ 1

xp1`ε1q for ε1 “ ´ε`Opε2q. The computation goes as follows:

x̃n “ bn c unn “
bn
unn

p1` ε1q

where by the previous remark may be written x̃n as bn
unnp1`ε11q

for some |ε11| ď εmac`Opε2macq.

x̃n´1 “ rbn´1 a px̃n b un´1,nqs c un´1,n´1

We may write bn´1aΣ̃n´1 “ pbn´1´Σ̃n´1qp1`ε1q and Σ̃n´1 “ x̃nbun´1,n “ x̃nun´1,np1`
η1q so

x̃n´1 “
bn´1 ´ x̃nun´1,np1` η1q

un´1,n´1p1` ε12qp1` ε
1
1q
.
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The algorithm terminates for j “ 1.

x̃1 “

«

b1 a

˜

n
à

k“2

x̃k b u1k

¸ff

c u11 “

«

b1 a

˜

n
à

k“2

x̃k b u1k

¸ff

N

u11p1` ε
1
1q

It is important to recognize the nesting nature of carrying a sequence of floating point
operations when we deal with

Àn
k“2. Observe that

a‘ b‘ c “ pa‘ bq ‘ c

“ rpa` bqp1` ε1qs ‘ c

“ prpa` bqp1` ε1qs ` cqp1` ε2q.

Rewrite into

b1 a

„ n
à

k“2

x̃k b u1k



“

„

b1 a px̃2 b u12q

 n
á

k“3

x̃k b u1k

and b1 a px̃2 b u12q “ pb1 ´ x̃2 b u12qp1` ε2q so we rewrite into

“

„

b1 ´ x̃2 b u12

 n
á

k“3

x̃k b u1kp1` ε2q

N

p1` ε12q for |ε12| ď εmac `Opε2macq.

We arrive at

x̃1 “

"„

b1 ´ x̃2 b u12

 n
á

k“3

x̃k b u1kp1` ε2q

*N

u11p1` ε
1
1qp1` ε

1
2q.

Again,

x̃1 “

"„

b1 ´ x̃2 b u12 ´ x̃3 b u13p1` ε2q

 n
á

k“4

x̃k b u1kp1` ε2qp1` ε3q

*

N

u11p1` ε
1
1qp1` ε

1
2qp1` ε

1
3q.

We arrive at (we have included the contribution from b):

px1 “

#

b1 ´
n
ÿ

k“2

u1kx̃kp1` ηkq
k´1
ź

j“2

p1` εjq

+

N

u11p1` ε
1
1q

n
ź

k“2

p1` ε1kq.

which we can rewrite to

u11p1` ε
1
1q

n
ź

k“2

p1` ε1kqx̃1 `
n
ÿ

k“2

u1kx̃kp1` ηkq
k´1
ź

j“1

p1` εjq “ b1.

which we can rewrite to

u11p1` ε
1
1q

n
ź

k“2

p1` ε1kqx̃1 `
n
ÿ

k“2

u1kx̃kp1` ηkq
k´1
ź

j“2

p1` εjq “ b1.
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p1` ε11qp1` ε
1
2q ¨ ¨ ¨ p1` ε

1
nqu11x̃1

` p1` η2qu12x̃2

` p1` η3qp1` ε2qu13x̃3

` ¨ ¨ ¨

` p1` ηnqp1` ε2q ¨ ¨ ¨ p1` εn´1qu1nx̃n “ b1

We note that all |εi|, |εi|, |ηi| ď εmac and |ε1i| ď εmac`Opε2macq and for sufficiently small ε we

always have
śm
i“1p1` εq “ 1`mε`Opε2q. In light of the expression Ũ x̃ “ pδU `Uqx̃ “ b,

we have

|δU |

|U |
ď

¨

˚

˚

˚

˚

˚

˚

˚

˝

n 1 2 ¨ ¨ ¨ n´ 2 n´ 1
n´ 1 1 ¨ ¨ ¨ n´ 3 n´ 2

. . .
...

...
1 2
2 1

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooooooooooomooooooooooooooooooooooon

αpnq

εmac `Opε2macq.

where by | ¨ | and { we mean term-wise absolute value and division of entries. |Ũ´U | “ |δU |
so

|Ũ ´ U | “ αpnq ¨ |U |εmac `Opε2macq ¨ |U |

where the ¨ is also taken as term-wise multiplication.
(b) We first show that }M}8 ď

?
n}M} ď n}M}8 for n ˆ n matrices. Recall that for

x P Rn we have }x}8 ď }x} ď
?
n}x}8

}M}8 “ max
1ďiďn

n
ÿ

j“1

|Mij |

Then
1
?
n
}L̃Ũ ´A} ď }L̃Ũ ´A}8 ď

3ngε

p1´ εq2
}A}8 ď

3ngε

p1´ εq2
?
n}A}

and ε
p1´εq2

“ εp1´ 2ε`Opε2qq so

}L̃Ũ ´A} ď 3n2gε}A}.

(c) The exact solution x satisfies

LUx “ b.

When we solve this by Gaussian elimination, we perform the following steps:

‚ Perform the LU decomposition in inexact arithmetics: L̃Ũ “ A ` E. By (b), the
size of E can be estimated as }E} “ Opεq.

‚ Forward elimination: Solve L̃y “ b inexactly, as pL̃` δLqỹ “ b. By (a), the size of
δL can be estimated as }δL} “ Opεq.

‚ Backward substotution: Solve Ũz “ ỹ inexactly, as pŨ ` δUqx̃ “ ỹ. This solution
x̃ is the final result. By (a), the size of δU can be estimated as }δU} “ Opεq.
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If we combine the aforementioned steps, we get

pL̃` δLqpŨ ` δUqx̃ “ b,

or

pL̃Ũ ` δLŨ ` L̃δU ` δLδUqx̃ “ LUx.

This can be rearranged to yield

LUpx´ x̃q “ pE ` δLŨ ` L̃δU ` δLδUqx̃.

Since each of E, δL, δU is of size Opεq, we conclude that }x´ x̃} “ Opεq.

Problem 7

In class, we have shown that if K is a square matrix with }K} ă 1, then I ´ K is
invertible, and

I `K `K2 ` . . .`Km Ñ pI ´Kq´1 as mÑ8.

We can use this fact to design an iterative method to solve Ax “ b. The starting point
should be to somehow write A in terms of I ´K, where K has small norm. We can write
A “ I ´pI ´Aq and set K “ I ´A, but we would need }I ´A} ă 1 to ensure convergence.
As a simple way to introduce some flexibility, let us multiply Ax “ b by some number
ω P Rzt0u, to get

ωAx “ ωb,

and then introduce K “ I ´ ωA, yielding

pI ´Kqx “ ωb ðñ Ax “ b.

If }K} “ }I ´ ωA} ă 1, then

xm :“ pI `K `K2 ` . . .`KmqωbÑ x.

The iterates xm satisfy the recurrent relation

xm`1 “ ωb`KpI `K ` . . .`Kmqωb “ ωb`Kxm “ ωb` pI ´ ωAqxm

“ xm ` ωpb´Axmq,

which is convenient for implementation.

(a) Assuming that }I´ωA} ă 1, derive an estimate on }xm´x} that goes to 0 geometrically
as mÑ8.

(b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate
}I ´ ωA} in terms of λ1, λn, and ω. Here λ1 and λn are the smallest and the largest
eigenvalues of A, respectively.

(c) In the estimate derived in (b), optimize the choice of the parameter ω.
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Solution

(a) We have

xm ´ x “ ωb` pI ´ ωAqxm´1 ´ x

“ ωAx` pI ´ ωAqxm´1 ´ x

“ pI ´ ωAqxm´1 ´ pI ´ ωAqx

“ pI ´ ωAqpxm´1 ´ xq.

Then for 0 ă α ă 1

}xm ´ x} ď }I ´ ωA}}xm´1 ´ x} ď α}xm´1 ´ x}, pm ě 1q.

Then
}xm ´ x} ď α}xm´1 ´ x} ď α2}xm´2 ´ x} ď ¨ ¨ ¨ ď αm}x0 ´ x}.

(b) For invertible matrix Q with unit norm we write A “ QDQ´1 for some diagonal matrix
D. Then

I ´ ωA “ QQ´1 ´ ωQΛQ´1 “ QpI ´ ωΛqQ´1.

If ∆ is any diagonal matrix with entries ∆i then }∆} “ maxi |∆i|. Therefore

}I ´ ωA} ď }Q}}I ´ ωD}}Q´1} “ maxt|1´ ωλ1|, |1´ ωλn|u.

(c) Look at the function

fpωq “ maxt|1´ ωλ1|, |1´ ωλn|u

“
1

2

ˆ

|1´ ωλ1| ` |1´ ωλn| `
ˇ

ˇ|1´ ωλ1| ´ |1´ ωλn|
ˇ

ˇ

˙

The minimum occurs when |1´ ωλ1| “ |1` ωλn|, which corresponds to ω “ 2
λ1`λ2

.
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