MATH 387 ASSIGNMENT 4

DUE THURSDAY APRIL 14

1. Let $\rho \in C(\mathbb{R})$ be a nonnegative function satisfying

$$\int_{\mathbb{R}} \rho(x) \, \mathrm{d}x = 1, \qquad \text{and} \qquad \rho(x) = 0 \quad \text{for } |x| > 1.$$

For example, one can take

$$\rho(x) = \max\{0, 1 - |x|\}.$$

Then for $\varepsilon > 0$, define

$$\rho_{\varepsilon}(x) = \frac{1}{\varepsilon}\rho(x/\varepsilon).$$

Note that ρ_{ε} satisfies

$$\int_{\mathbb{R}} \rho_{\varepsilon}(x) \, \mathrm{d}x = 1, \quad \text{and} \quad \rho_{\varepsilon}(x) = 0 \quad \text{for } |x| > \varepsilon.$$

Now, suppose that x_0, x_1, \ldots, x_n are distinct points in some interval (a, b), and consider the weight function

$$w_{\varepsilon}(x) = \rho_{\varepsilon}(x-x_0) + \rho_{\varepsilon}(x-x_1) + \ldots + \rho_{\varepsilon}(x-x_n),$$

for small $\varepsilon > 0$. Let $f \in C([a, b])$, and let $p_{\varepsilon} \in \mathbb{P}_n$ be the least-squares approximation of f with respect to the weight w_{ε} . Informally speaking, the weight w_{ε} tries to drive the approximation to be accurate in the regions near the nodes x_0, x_1, \ldots, x_n . Show that

$$\|p_{\varepsilon} - p\|_{\infty} \to 0$$
 as $\varepsilon \to 0$

where $p \in \mathbb{P}_n$ is the Lagrange interpolation polynomial of f with the nodes $\{x_0, x_1, \dots, x_n\}$. For functions $f \in C([a, b])$ where $-\infty \leq a \leq b \leq \infty$ and for $1 \leq n \leq \infty$ define the

2. For functions $f \in C([a, b])$ where $-\infty < a < b < \infty$, and for 1 , define the*p*-norm

$$||f||_p = \left(\int_a^b |f(x)|^p \mathrm{d}x\right)^{\frac{1}{p}},$$

and consider the problem of approximating f by polynomials in the *p*-norm: Find $q \in \mathbb{P}_n$ such that $||f - q||_p$ is minimal.

(a) Show that for any $f \in C([a, b])$, there exists $g_n \in \mathbb{P}_n$ such that

$$|f - g_n||_p = \inf_{q \in \mathbb{P}_n} ||f - q||_p$$

- (b) Show that the best approximation $g_n \in \mathbb{P}_n$ as in (a) is unique.
- (c) Show that g_n converges to f in the *p*-norm as $n \to \infty$.

Date: Winter 2016.

DUE THURSDAY APRIL 14

(d) Design an algorithm to compute g_n .

3. Consider the inner product and the corresponding norm

$$\langle f,g \rangle = \int_{\mathbb{R}} f(x)g(x)e^{-x^2} dx$$
, and $||f|| = \sqrt{\langle f,f \rangle}$,

respectively, for functions defined on $\mathbb{R} = (-\infty, \infty)$. Starting with the monomials $1, x, x^2, \ldots$, one can generate orthogonal polynomials with respect to the inner product $\langle \cdot, \cdot \rangle$. Up to a normalization, these are called the *Hermite polynomials*.

- (a) Compute the first 6 Hermite polynomials, with the normalization that the leading coefficient of the *n*-th degree Hermite polynomial is 2^n .
- (b) Let $f \in C(\mathbb{R})$, and suppose that for some m,

$$\sup_{x \in \mathbb{R}} \frac{|f(x)|}{1+|x|^m} < \infty.$$

In other words, f grows slower than a polynomial at infinity. Show that there exists a unique $g_n \in \mathbb{P}_n$ such that

$$||f - g_n|| = \inf_{q \in \mathbb{P}_n} ||f - q||.$$

(c) Show that $||f - g_n|| \to 0$ as $n \to \infty$, where f and g_n are as in (b).

4. In each of the following cases, compute weights and nodes of the quadrature formula

$$\int_a^b w(x)f(x) \, \mathrm{d}x \approx \omega_0 f(x_0) + \omega_1 f(x_1) + \ldots + \omega_n f(x_n),$$

so that the order (or equivalently, the degree of exactness) of the quadrature is maximum.

- (a) $w(x) = 1 + \theta(x)$, (a, b) = (-1, 1), n = 1, where θ is the Heaviside step function.
- (b) $w(x) = \sin x$, $(a, b) = (0, \frac{\pi}{2})$, n = 1.
- (c) $w(x) = e^{-x}$, $(a, b) = (0, \infty)$, n = 3.
- 5. In each of the following cases, analyze the convergence of the fixed point iteration

$$x_{n+1} = \phi(x_n),$$

for computing the solutions of f(x) = 0. That is, how do the existence as well as the value of the limit $\lim x_n$ depend on the initial guess x_0 , and what is the order of convergence? Sketch a cobweb plot of the iteration.

- (a) $\phi(x) = \cos x, f(x) = x \cos x.$
- (b) $\phi(x) = x^2 2$, $f(x) = x^2 x 2$.

- (b) $\varphi(x) = x 2$, f(x) = x 2. (c) $\phi(x) = -\sqrt{x+2}$, $f(x) = x^2 x 2$. (d) $\phi(x) = x 2 + \frac{x}{x-1}$, $f(x) = \frac{2x^2 3x 2}{x-1}$. 6. In each of the following cases, propose two different fixed point methods for approximating the root $x = \alpha$ of f(x) = 0, such that one method is linearly convergent, and the other is quadratically convergent. Give detailed proofs of convergence.
 - (a) $f(x) = e^{-x} \sin x$, and α is the smallest positive root.
 - (b) f(x) has a double root at $x = \alpha$.