
SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENT 5

MATH 319 WINTER 2016

Problem 9.1:14

Statement. The speed a of wave propagation in a rectangular drum is 600 ft./sec.. The
lowest two frequencies of the drum are 300 and 400 cycles per second. What are the length
and the width of the drum?

Solution. We have the formua

νn,m =
a

2

√
n2

L2
+
m2

M2
,

for the frequency of the (n,m)-th harmonic, cf. Equation (33) in §9.1 of the textbook. Without
loss of generality, we can assume M ≤ L. Then the lowest two frequencies are ν1,1 and ν2,1,
and therefore we have the equations

ν2
1,1 =

a2

4

( 1

L2
+

1

M2

)
, ν2

2,1 =
a2

4

( 4

L2
+

1

M2

)
.

We know a, ν1,1, and ν2,1, so it should be possible to find L and M from these two equations.
Rearranging the equations, we infer

1

L2
+

1

M2
=

4ν2
1,1

a2
= 1 ft.−2,

4

L2
+

1

M2
=

4ν2
2,1

a2
=

16

9
ft.−2,

which can easily be solved as

1

L2
=

7

27
ft.−2,

1

M2
=

20

27
ft.−2.

Thus, the length and the width of the drum are

L =
3
√

21

7
ft. ≈ 1.96 ft., M =

3
√

15

10
ft. ≈ 1.16 ft..

Problem B1

Statement. For each of the following situations in the xy-plane, compute the monopole,
dipole, and quadrupole moments, and write down the multipole expansion of the electrostatic
potential up to (and including) the quadrupole term. Normalize the constant so that the
potential of a unit charge at the origin would be log 1

r , where r is the radial coordinate.

(a) The rectangle R = {(x, y) : −1 ≤ x ≤ 1, −h ≤ y ≤ h} with total charge 1, and uniform
charge density. Here h > 0 is a given constant.

(b) The same as in (a), but now the half R ∩ {x > 0} of the rectangle has total charge +1
with uniform density, and the other half has total charge −1 with uniform density.
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Solution. (a) Since the total charge is 1, the monopole moment is a0 = 1. The area of the
rectangle is |R| = 4h, so the charge density is µ = 1

4h . We compute the dipole moment as

a1 =

∫ 1

−1

∫ h

−h
xµ dydx = 0, b1 =

∫ 1

−1

∫ h

−h
yµdydx = 0.

As for the quadrupole moment, we have

a2 =
1

2

∫ 1

−1

∫ h

−h
(x2 − y2)µ dydx =

1

2
· 2hµ

∫ 1

−1
x2dx− 1

2
· 2h3

3
µ

∫ 1

−1
dx

=
2

3
hµ− 2

3
h3µ =

1

6
− 1

6
h2,

and

b2 =

∫ 1

−1

∫ h

−h
xyµdydx = 0.

Hence the potential generated by the charged rectangle, up to the quadrupole term is

u(r, θ) = log
1

r
+

(1− h2) cos 2θ

r2
+ . . . .

(b) In this case, the total charge is 0, and the charge density is µ(x) = ± 1
2h depending on

whether x > 0 or x < 0. Obviously, there is no monopole moment: a0 = 0. For the dipole
moment, we have

a1 =
1

2h

∫ 1

0

∫ h

−h
x dydx− 1

2h

∫ 0

−1

∫ h

−h
x dydx =

1

2h
· 2h

∫ 1

0
x dx− 1

2h
· 2h

∫ 0

−1
x dx

=
1

2
−
(
− 1

2

)
=

1

4
,

and

b1 =
1

2h

∫ 1

0

∫ h

−h
y dydx− 1

2h

∫ 0

−1

∫ h

−h
y dydx = 0− 0 = 0,

because y is an odd function of y. Next, we compute the quadrupole moment as

a2 =
1

2
· 1

2h

∫ 1

0

∫ h

−h
(x2 − y2) dydx− 1

2
· 1

2h

∫ 0

−1

∫ h

−h
(x2 − y2) dydx

=
1

2
· 1

2h

∫ 1

0

∫ h

−h
(x2 − y2) dydx− 1

2
· 1

2h

∫ 1

0

∫ h

−h
(x2 − y2) dydx = 0,

because x2 − y2 is an even function of x, and

b2 =
1

2h

∫ 1

0

∫ h

−h
xy dydx− 1

2h

∫ 0

−1

∫ h

−h
xy dydx = 0− 0 = 0,

because xy is an odd function of y. The conclusion is that

u(r, θ) =
cos θ

4r
+O(r−3),

where the error term O(r−3) is there to indicate that the quadrupole term is in fact 0.



SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENT 5 3

Problem B2

Statement. Let u(x, y, t) be a smooth function satisfying
utt = uxx + uyy in Ω, for t > 0,

u = 0 on ∂Ω, for t > 0,

u(x, y, 0) = f(x, y) for (x, y) ∈ Ω,

ut(x, y, 0) = g(x, y) for (x, y) ∈ Ω,

where Ω ⊂ R2 is a bounded region in the plane, and f and g are given initial data. In other
words, u is a solution of the Dirichlet initial-boundary value problem for the wave equation in
the domain Ω. By using the energy method, show that u is the unique solution of this problem,
i.e., that there are no other solutions. Hint: Suppose that v(x, y, t) is another solution of the
problem (with the same initial and boundary data), and consider the energy

E(t) =

∫
Ω

(w2
t + w2

x + w2
y), (1)

for difference w = u − v. Compute the time derivative E′(t). Apply the divergence theorem
to the vector field F = wt gradw.

Solution. As suggested in the hint, let v(x, y, t) be another solution of the problem with the
same initial and boundary data, and let w(x, y, t) = u(x, y, t)− v(x, y, t). Then w satisfies

wtt = wxx + wyy in Ω, for t > 0,

w = 0 on ∂Ω, for t > 0,

w(x, y, 0) = 0 for (x, y) ∈ Ω,

wt(x, y, 0) = 0 for (x, y) ∈ Ω.

For E(t) defined by (1), we have

E′(t) =

∫
Ω

(2wtwtt + 2wxwxt + 2wywyt) = 2

∫
Ω

(wt∆w + wxwxt + wywyt), (2)

where we have used the wave equation wtt = ∆w. Now, for F = wt gradw = (wtwx, wtwy),
we compute

divF =
∂

∂x
(wtwx) +

∂

∂y
(wtwy) = wtxwx + wtwxx + wtywy + wtwyy = wt∆w + wxwxt + wywyt,

which is exactly the expression under the integral in (2). Therefore, we infer

E′(t) = 2

∫
Ω

divF = 2

∫
∂Ω
n · F = 2

∫
∂Ω
wt(n · gradw) = 0, (3)

where we have used the divergence theorem in the second step, the definition F = wt gradw
in the third step, and the fact that w ≡ 0 on ∂Ω in the last step. The equality (3) tells us
that the energy E(t) stays constant.

Since w(x, y, 0) ≡ 0, we have wx(x, y, 0) ≡ 0 and wy(x, y, 0) ≡ 0 as well, and hence

E(0) =

∫
Ω

(
wt(x, y, 0)2 + wx(x, y, 0)2 + wy(x, y, 0)2

)
dxdy = 0.

By combining this result with (3), we conclude that E(t) ≡ 0 for all t. In view of (1), E(t) ≡ 0
implies that wt ≡ wx ≡ wy ≡ 0. Then for an arbitrary point (x, y) ∈ Ω and an arbitrary time
t > 0, we have

w(x, y, t) = w(x, y, 0) +

∫ t

0
wt(x, y, s) ds = 0 + 0 = 0.

This means that u ≡ v, that is, the solution u is unique.


