
PROBLEMS AND SOLUTIONS 3

Problem 3.1:1

Statement. Let u(x, t) be a solution of ut = kuxx. Show that the following facts hold.
(a) For constants a, x0 and t0, the function v(x, t) = u(ax−x0, a2t− t0) satisfies vt = kvxx.

(b) For any constant k′, the function v(x, t) = u(x, (k
′

k )t) satisfies vt = k′vxx.

(c) The function v(x, t) = t−
1
2 exp(− x2

4kt) · u(xt ,−
1
t ) satisfies vt = kvxx.

Solution. (a) By a direct computation we have

vt(x, t) = a2ut(ax− x0, a2t− t0), vxx(x, t) = a2uxx(ax− x0, a2t− t0),
which confirms

vt(x, t) = a2ut(ax− x0, a2t− t0) = a2kuxx(ax− x0, a2t− t0) = kvxx(x, t),

where we have used the fact that ut = kuxx.
(b) Similarly to the preceding case, we have

vt(x, t) =
k′

k
ut(x, (

k′

k
)t), vxx(x, t) = uxx(x, (

k′

k
)t),

and so

vt(x, t) =
k′

k
ut(x, (

k′

k
)t) =

k′

k
kuxx(x, (

k′

k
)t) = k′vxx(x, t).

(c) Let w(x, t) = t−
1
2 exp(− x2

4kt), so that v(x, t) = w(x, t)u(xt ,−
1
t ). We have

wt(x, t) = −1

2
t−

3
2 exp(− x2

4kt
) + t−

1
2 exp(− x2

4kt
) · x

2

4kt2
,

wx(x, t) = t−
1
2 exp(− x2

4kt
) · (− x

2kt
),

and

wxx(x, t) = t−
1
2 exp(− x2

4kt
) · x2

4k2t2
+ t−

1
2 exp(− x2

4kt
) · (− 1

2kt
).

We note that

wt = kwxx, and wx(x, t) = − x

2kt
w(x, t). (1)

Let us calculate vt and vxx as

vt(x, t) = wt(x, t)u(
x

t
,−1

t
) + w(x, t)

(
− x
t2
ux(

x

t
,−1

t
) +

1

t2
ut(

x

t
,−1

t
)

)
,

vx(x, t) = wx(x, t)u(
x

t
,−1

t
) + w(x, t)

1

t
ux(

x

t
,−1

t
),

and

vxx(x, t) = wxx(x, t)u(
x

t
,−1

t
) + 2wx(x, t)

1

t
ux(

x

t
,−1

t
) + w(x, t)

1

t2
uxx(

x

t
,−1

t
).

Now by comparing the expressions for vt and vxx, and taking (1) into account, we conclude
vt = kvxx.
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Problems 3.1:6bd

Statement. Solve the problem

ut = uxx, (t ≥ 0),

with the initial condition u(x, 0) = f(x), where the functions u(x, t) and f(x) are assumed to
be 2π-periodic in the x variable. The function f is given in each case by

(b) f(x) = 1
2 + cos(2x)− 6 sin(2x),

(d) f(x) = 6 sin(x)− 7 cos(3x)− 7 sin(3x).

Solution. We know that the solution of the above problem with the initial condition

f(x) = A0 +
N∑
n=1

(an cos(nx) + bn sin(nx)),

is given by

u(x, t) = A0 +
N∑
n=1

e−n
2t(an cos(nx) + bn sin(nx)).

A direct application of this formula gives

(b) u(x, t) = 1
2 + e−4t cos(2x)− 6e−4t sin(2x),

(d) u(x, t) = 6e−t sin(x)− 7e−9t cos(3x)− 7e−9t sin(3x).

Problem 3.1:8

Statement.

(a) Consider the problem

ut = kuxx, (x ≥ 0, t ≥ 0),

u(0, t) = cos(ωt), (t ≥ 0).
(2)

This is a heat conduction problem for a semi-infinite rod (x ≥ 0) whose end (at x = 0)
is subjected to a periodic temperature variation u(0, t) = cos(ωt). Use the particular
solutions

u(x, t) = Aeλx cos(λx+ 2kλ2t) +Beλx sin(λx+ 2kλ2t), (3)

to find a solution of this problem which has both of the additional properties:
(P1) u(x, t)→ 0 as x→∞,
(P2) u(x, t+ 2π

ω ) = u(x, t).
(b) Show that the solution of (2) is not unique, if either (P1) or (P2) is omitted.
(c) Assuming that ω = π

2 and k = π
4 , roughly sketch the graph of the temperature distribution

in the xu-plane when t = 0, 1, 2, 3, 4, paying attention to where u(x, t) = 0.
(d) Show that at any fixed time t, the distance between consecutive local maxima, say x1

and x2, of u(x, t) is 2π
√

2k
ω , and show that the ratio u(x2, t)/u(x1, t) is e−2π ≈ 0.00187,

regardless of the positive values of k and ω.

Solution. (a) In view of (3), the boundary condition u(0, t) = cos(ωt) gives

u(0, t) = A cos(2kλ2t) +B sin(2kλ2t) = cos(ωt), t ≥ 0,

implying that A = 1, B = 0, and λ = ±
√

ω
2k , i.e., we have the solution

u(x, t) = exp(±
√

ω
2kx) cos(±

√
ω
2kx+ ωt). (4)

In order to satisfy (P1) we need to choose the minus sign in ±
√

ω
2k , so we finally have

u(x, t) = exp(−
√

ω
2kx) cos(−

√
ω
2kx+ ωt). (5)
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It is clear that this solution satisfies (P2).
(b) If (P1) is omitted, we can choose either plus or minus sign in (4), which means that

the solution is not unique. On the other hand, if (P2) is dropped, we can add any v(x, t)
satisfying

vt = kvxx, (x ≥ 0, t ≥ 0),

v(0, t) = 0, (t ≥ 0),

to u(x, t). For example, we can take

v(x, t) =
1√
t+ 1

(
exp

(
− (x− 1)2

4k(t+ 1)

)
− exp

(
− (x+ 1)2

4k(t+ 1)

))
.

(c) The time snapshots are depicted in Figure 1. To give a better idea of how the solution
looks like, a spacetime graph of the solution is shown in Figure 2.
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-0.5

0.5

1.0

Figure 1. Time snapshots of the solution for 3.1:8c. Legend: t = 0 blue,
t = 1 red, t = 2 yellow, t = 3 green, t = 4 blue again.

(d) The x-derivative of (5) is

ux(x, t) = −
√

ω
2k exp(−

√
ω
2kx)

(
cos(−

√
ω
2kx+ ωt)− sin(−

√
ω
2kx+ ωt)

)
= −

√
ω
k exp(−

√
ω
2kx) cos(−

√
ω
2kx+ ωt+ π

4 ).

Since exp(−
√

ω
2kx) 6= for all x, the zeroes of ux(x, t) coincide with the zeroes of cos(−

√
ω
2kx+

ωt+ π
4 ). The latter function is periodic in x with period 2π

√
2k
ω . This implies that the distance

between consecutive local maxima is 2π
√

2k
ω (there are two zeroes of ux in one period, but

one of the zeroes corresponds to a local minumum). As for the ratio of the values, we have

u(x2, t)

u(x1, t)
=

exp(−
√

ω
2kx2) cos(−

√
ω
2kx2 + ωt+ π

4 )

exp(−
√

ω
2kx1) cos(−

√
ω
2kx1 + ωt+ π

4 )
= exp(−

√
ω
2k · 2π

√
2k
ω ) = e−2π,

where we have taken into account the periodicity of cosine and the fact that x2−x1 = 2π
√

2k
ω .
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Figure 2. Spacetime graph of the solution for 3.1:8c. The t-axis is the one
from left to right, the x-axis is from top to bottom, and the u-axis is directed
towards the reader.

Problem 3.2:1

Statement.

(a) Let v(x, t) be any C2 solution of vt = kvxx (0 ≤ x ≤ L, t ≥ 0), which satisfies the
boundary conditions v(0, t) = 0 and v(L, t) = 0 (without initial condition). Show that for
any t1, t2, with t2 ≥ t1 ≥ 0,∫ L

0
[v(x, t2)]

2dx ≤
∫ L

0
[v(x, t1)]

2dx. (6)

(b) Explain why the conclusion (6) still holds when the boundary conditions are replaced by
any of the following pairs of boundary conditions:

(i) vx(0, t) = vx(L, t) = 0,
(ii) vx(0, t) = v(L, t) = 0,

(iii) vx(0, t) = h · v(0, t) and v(L, t) = 0, where h > 0.

Solution. Let us define the function

E(t) =

∫ L

0
[v(x, t)]2dx,

which can be called energy. Then (6) can be rephrased as

E(t2) ≤ E(t1), for t2 ≥ t1 ≥ 0.
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In other words, we have to show that E is a nondecreasing function of t. Let us calculate the
time derivative of E as

E′(t) =

∫ L

0
2v(x, t)vt(x, t)dx =

∫ L

0
2v(x, t)kvxx(x, t)dx

= 2kv(L, t)vx(L, t)− 2kv(0, t)vx(0, t)− 2k

∫ L

0
|vx(x, t)|2dx

≤ 2kv(L, t)vx(L, t)− 2kv(0, t)vx(0, t).

(7)

We will show below that E′(t) ≤ 0 in various cases, which will then imply that E is nonde-
creasing. Note that each case requires a slightly different reasoning.

(a) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2k v(0, t)︸ ︷︷ ︸
=0

vx(0, t) = 0.

(b)(i) Similarly, we have

E′(t) ≤ 2kv(L, t) vx(L, t)︸ ︷︷ ︸
=0

−2kv(0, t) vx(0, t)︸ ︷︷ ︸
=0

= 0.

(b)(ii) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2kv(0, t) vx(0, t)︸ ︷︷ ︸
=0

= 0.

(b)(iii) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2kv(0, t) vx(0, t)︸ ︷︷ ︸
=hv(0,t)

= −2kh|v(0, t)|2 ≤ 0.

Problem 3.2:2

Statement. State and prove a uniqueness theorem for the problem

ut = uxx,

with the boundary conditions ux(0, t) = a(t) and ux(L, t) = b(t), and the initial condition
u(x, 0) = f(x).

Solution. We will prove that any two C2 solutions u1 and u2 must be equal to each other.
Supposing that u1 and u2 are two C2 solutions of our problem, let us define v = u1 − u2.

Then by subtracting the equations satisfied by u2 from the corresponding ones for u1, we see
that v satisfies vt = vxx with the boundary conditions vx(0, t) = vx(L, t) = 0, and the initial
condition v(x, 0) = 0. We want to show that v is zero everywhere. From Part (b)(i) of the
previous problem, we have E(t) ≤ E(0) for all t ≥ 0, that is

E(t) =

∫ L

0
[v(x, t)]2dx ≤ E(0) =

∫ L

0
[v(x, 0)]2dx = 0.

Since v(x, t) is a continuous function of x, this implies that v(x, t) = 0 for all 0 ≤ x ≤ L, and
as t ≥ 0 was arbitrary, we conclude that v = 0 everywhere.
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Problem 3.2:3

Statement. Use maximum/minimum principles to deduce that the solution u of the problem

ut = kuxx, (0 ≤ x ≤ π, t ≥ 0),

u(0, t) = u(π, t) = 0, (t ≥ 0),

u(x, 0) = sinx+ 1
2 sin 2x, (0 ≤ x ≤ π),

satisfies 0 ≤ u(x, t) ≤ 3
4

√
3 for all 0 ≤ x ≤ π and t ≥ 0.

Solution. We will show that 0 ≤ sinx+ 1
2 sin 2x ≤ 3

4

√
3 for all 0 ≤ x ≤ π, which would then

imply by the maximum and minimum principles the desired bounds for the solution u. First
of all, the representation

f(x) = sinx+ 1
2 sin 2x = sinx+ sinx cosx = (1 + cosx) sinx,

reveals that f(x) ≥ 0 for 0 ≤ x ≤ π. Let us find the maximum of f(x). We calculate

f ′(x) = cosx+ cos 2x = 2 cos2 x+ cosx− 1,

whose zeros are given by cosx = −1±3
4 . This implies x = 2π

3 and x = π. The point x = π is
clearly not a maximum because f(π) = 0. The other candidate gives

f(2π3 ) = (1 + cos 2π
3 ) sin 2π

3 = 3
2 ·
√
3
2 .

It is easy to see from the behaviour of the function f ′(x) or from an inspection of f ′′(x) that
x = 2π

3 is the only maximum point in the interval 0 ≤ x ≤ π.

Problem 3.3:5

Statement. Solve 
ut = 5uxx, 0 ≤ x ≤ 10, t ≥ 0,

ux(0, t) = 2, ux(10, t) = 3,

u(x, 0) = 1
20x

2 + 2x+ cos(πx).

Solution. First of all, we need to shift the unknown function so that the boundary conditions
are homogeneous. Looking for a polynomial p(x) = Ax2 + Bx satisfying p′(0) = 2 and
p′(10) = 3, we find A = 1

20 and B = 2. Now define the new unknown v = u − p, so that
u = p+ v. Then since ut = vt and uxx = vxx + 2A, we see that v must satisfy

vt = 5vxx + 1
2 , 0 ≤ x ≤ 10, t ≥ 0,

vx(0, t) = 0, vx(10, t) = 0,

v(x, 0) = u(x, 0)− p(x) = cos(πx).

Next, we want to get rid of the inhomogeneous term (+1
2) in the right hand side of the heat

equation. This can be achieved by modifying v by a linear function of t. Namely, if we put
v(x, t) = w(x, t) + 1

2 t, then vt = wt + 1
2 and vxx = wxx, so that w satisfies

wt = 5wxx, 0 ≤ x ≤ 10, t ≥ 0,

wx(0, t) = 0, wx(10, t) = 0,

w(x, 0) = cos(πx).

Note that we have used the properties wx(0, t) = vx(0, t), wx(10, t) = vx(10, t), and w(x, 0) =
v(x, 0). The problem for w can be solved easily, as

w(x, t) = e−5π
2t cos(πx),
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which yields

u(x, t) = w(x, t) +
1

2
t+ p(x) =

1

2
t+

1

20
x2 + 2x+ e−5π

2t cos(πx).

Problem 3.4:3

Statement. Solve
ut − uxx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,

u(0, t) = 0, u(π, t) = 0,

u(x, 0) = sin(3x).

Solution. Let us decouple the effects of the initial condition and the inhomogeneity, by
writing u(x, t) = v(x, t) + w(x, t), where v satisfies

vt − vxx = 0, 0 ≤ x ≤ π, t ≥ 0,

v(0, t) = 0, v(π, t) = 0,

v(x, 0) = sin(3x),

and w satisfies 
wt − wxx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,

w(0, t) = 0, w(π, t) = 0,

w(x, 0) = 0.

From separation of variables it is immediate that

v(x, t) = e−9t sin(3x).

To find w, for each fixed t ≥ 0, we expand w(x, t) as a function of x ∈ [0, π], in terms of a
Fourier sine series, as

w(x, t) =
∞∑
n=1

an(t) sin(nx).

Now our task is to find the (time-dependent) coefficients an(t). If we also similarly expand the
right hand side f(x, t) = e−4t cos(t) sin(2x) in the equation wt − wxx = f , then it is obvious
that the coefficients bn(t) in

f(x, t) =
∞∑
n=1

bn(t) sin(nx),

all vanish except for the case n = 2. The n-th coefficient of wt−wxx is a′n(t) +n2an(t), which
leads to the equations {

a′n(t) + n2an(t) = 0 (n 6= 2),

a′2(t) + 22a2(t) = e−4t cos(t).

Note that since since u(x, 0) = 0, we have an(0) = 0 for all n = 1, 2, 3, . . .. Hence for n 6= 2,
we get an(t) ≡ 0. For n = 2, we have

(e4ta2)
′ = e4t(a′2 + 4a2) = cos t,

and so
e4ta2(t) = a2(0) + sin t = sin t,

or
a2(t) = e−4t sin t.

Finally, we conclude
w(x, t) = e−4t sin(t) sin(2x),
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and thus
u(x, t) = e−9t sin(3x) + e−4t sin(t) sin(2x).

Problem 3.4:9

Statement. Solve
ut − uxx = x− x2 + 2t+ e−4π

2t cos(2πx), 0 ≤ x ≤ 1, t ≥ 0,

ux(0, t) = t, ux(π, t) = −t,
u(x, 0) = 0.

Solution. First, we need to shift the unknown function so that the boundary conditions are
homogeneous. The function p(x, t) = (x − x2)t satisfies px(0, t) = t and px(1, t) = −t. Now
define the new unknown v = u − p, so that u = p + v. Then since ut = vt + x − x2 and
uxx = vxx − 2t, we see that v must satisfy

vt − vxx = e−4π
2t cos(2πx), 0 ≤ x ≤ 1, t ≥ 0,

vx(0, t) = 0, vx(1, t) = 0,

v(x, 0) = 0.

This can be solved by using the Duhamel principle. The coefficients of the expansion

v(x, t) =
∞∑
n=0

an(t) cos(πnx),

must satisfy {
a′n(t) + π2n2an(t) = 0 (n 6= 2),

a′2(t) + π222a2(t) = e−4π
2t,

and an(0) = 0 for all n = 0, 1, 2, . . .. Hence for n 6= 2, we get an(t) ≡ 0. For n = 2, we have

(e4π
2ta2)

′ = e4π
2t(a′2 + 4π2a2) = 1,

and so
e4π

2ta2(t) = a2(0) + t = t,

or
a2(t) = te−4π

2t.

Finally, we conclude

v(x, t) = te−4π
2t cos(2πx),

and thus
u(x, t) = t(x− x2) + te−4π

2t cos(2πx).

Problem 4.3:9

Statement. (a) Find a formal solution of the problem
ut = kuxx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = f(x),

where

f(x) =

{
x if 0 ≤ x ≤ 1

2 ,

1− x if 1
2 ≤ x ≤ 1.

(b) If ut(x, t) is formally computed by differentiating each term of the formal solution with
respect to t, then show that ut(

1
2 , 0) = −∞ results. Provide a physical explanation of this
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observation by considering the flux of heat through the ends of a small interval centred at
x = 1

2 .

Solution. (a) The formal solution is given by

u(x, t) =
∞∑
n=1

bne
−nπ2kt sin(nπx), with bn = 2

∫ 1

0
f(x) sin(nπx) dx.

Note that sin(nπ(1 − x)) = sin(nπ − nπx) = sin(nπx) when n is odd, and sin(nπ − nπx) =
− sin(nπx) when n is even. Using this symmetry, and taking into account that f(1−x) = f(x),
we infer

bn = 2

∫ 1
2

0
f(x) sin(nπx) dx+ 2(−1)n+1

∫ 1
2

0
f(x) sin(nπx) dx.

So bn = 0 for even n, and

bn = 4

∫ 1
2

0
f(x) sin(nπx) dx = − 4

nπ
cos(nπx)

∣∣∣∣ 12
0

+
4

nπ

∫ 1
2

0
cos(nπx) dx

=
4

nπ
+ (−1)m

4

n2π2
,

for odd n, with n = 2m+ 1. Putting everything together, we conclude

u(x, t) =
∞∑
m=0

(
4

nπ
+ (−1)m

4

n2π2

)
e−nπ

2kt sin(nπx),

where n depends on m as n = 2m+ 1.
(b) Formally, we compute

ut(x, t) = −
∞∑
m=0

(
4πk + (−1)m

4k

n

)
e−nπ

2kt sin(nπx),

and so

ut(
1
2 , 0) = −4k

∞∑
m=0

(
π +

(−1)m

2m+ 1

)
sin

(2m+ 1)π

2

= −4k
∞∑
m=0

(
(−1)mπ +

1

2m+ 1

)
= −∞,

since k > 0 and
∑∞

m=0
1

2m+1 = ∞. This result suggests that the temperature at the point

x = 1
2 drops infinitely fast for a very short (in fact infinitesimal) time near t = 0.

As suggested in the statement, we can also formally compute the flux as∫ 1
2
+ε

1
2
−ε

ut(x, 0) dx = k

∫ 1
2
+ε

1
2
−ε

uxx(x, 0) dx = kux(x, 0)
∣∣∣ 12+ε
1
2
−ε

= −2k,

where ε > 0 is small. We see that no matter how small the interval [12−ε,
1
2 +ε] is, the integral

of ut over it is a fixed negative number. Therefore, the function ut must become negative
infinity at x = 1

2 .

Problem 4.3:12

Statement. Find a formal solution of the problem
ut = kuxx, 0 ≤ x ≤ 10, t ≥ 0,

ux(0, t) = 2, ux(10, t) = 3,

u(x, 0) = 0.
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Solution. First of all, we need to shift the unknown function so that the boundary conditions
are homogeneous. Looking for a polynomial p(x) = Ax2 + Bx satisfying p′(0) = 2 and
p′(10) = 3, we find A = 1

20 and B = 2. Now define the new unknown v = u − p, so that
u = p+ v. Then since ut = vt and uxx = vxx + 2A, we see that v must satisfy

vt = kvxx + 2kA, 0 ≤ x ≤ 10, t ≥ 0,

vx(0, t) = 0, vx(10, t) = 0,

v(x, 0) = −p(x) = −Ax2 −Bx.
In order to use separation of variables, we assume

v(x, t) =
∞∑
n=0

an(t) cos(
nπx

10
),

and formally substitute it into vt = kvxx + 2kA, to get

a′0(t) = 2kA,

and

a′n(t) = −n
2π2k

100
an(t), n > 0.

Note that the cosine series of 2kA involves only the constant term, so it does not affect at
all the equations for n > 0, which remain the same as the equation for the homogeneous case
vt = kvxx. The equations are easily solved as

a0(t) = a0(0) + 2kAt, and an(t) = an(0) exp(−n
2π2k

100
t), n > 0.

Obviously, an(0) for n ≥ 0 are the cosine series coefficients of the initial datum v(x, 0) = −p(x),
which are given by

a0(0) = − 1

10

∫ 10

0
p(x) dx, and an(0) = −1

5

∫ 10

0
p(x) cos(

nπx

10
) dx, n > 0.

Let us do the computation. We have∫ 10

0
p(x) dx =

(
Ax3

3
+
Bx2

2

)∣∣∣∣10
0

=
50

3
+ 100,

and ∫ 10

0
x cos(

nπx

10
) dx =

10

nπ
x sin(

nπx

10
)

∣∣∣∣10
0

− 10

nπ

∫ 10

0
sin(

nπx

10
) dx

=
100

n2π2
cos(

nπx

10
)

∣∣∣∣10
0

= ((−1)n − 1)
100

n2π2
,

as well as ∫ 10

0
x2 cos(

nπx

10
) dx =

10

nπ
x2 sin(

nπx

10
)

∣∣∣∣10
0

− 20

nπ

∫ 10

0
x sin(

nπx

10
) dx

=
200

n2π2
x cos(

nπx

10
)

∣∣∣∣10
0

− 200

n2π2

∫ 10

0
cos(

nπx

10
) dx

= (−1)n
2000

n2π2
,

leading to

a0(0) =
35

3
, an(0) = −(−1)n

400

n2π2
A+ (1− (−1)n)

20

n2π2
B =

40 + 60(−1)n+1

n2π2
.
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Therefore, we conclude

v(x, t) =
35

3
+

k

10
t+

∞∑
n=1

40 + 60(−1)n+1

n2π2
exp(−n

2π2k

100
t) cos(

nπx

10
),

and so

u(x, t) =
35

3
+ 2x+

1

20
x2 +

k

10
t+

∞∑
n=1

40 + 60(−1)n+1

n2π2
exp(−n

2π2k

100
t) cos(

nπx

10
).


